
 

 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    

Energistics Transfer Protocol (ETP) 
Specification v1.2  

  

ETP Overview Energistics Transport Protocol (ETP) is a data-
transfer specification that enables the efficient 
transmission of data between applications, 
including realtime streaming and CRUD 
operations. ETP is a component in the 
Energistics Common Technical Architecture 
and can be used with other Energistics data 
model specifications, such as WITSML, 
RESQML, and PRODML. 

Version of Standard 1.2 

Version of Document 1.1 

Date published September 27, 2021 

Prepared by Energistics and the Architecture Team 

Document type Specification 

Abstract Describes how ETP works, identifies 
requirements, and provides examples of related 
message schemas. Produced in part from 
contents of the ETP UML model.  

Language U.S. English 

Keywords standards, energy, data, information, process, 
transfer protocol 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 2 

 

 

Acknowledgements  

Energistics would like to thank the Energistics Architecture Team, who drove ETP design, and the 
members of the WITSML, RESQML and PRODML Special Interest Groups (SIGs) who participate in the 
design, testing, review, and implementation of ETP. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

Usage, Intellectual Property Rights, and Copyright 

This document was developed using the Energistics Standards Procedures. These procedures help implement 
Energistics’ requirements for consensus building and openness. Questions concerning the meaning of the 
contents of this document or comments about the standards procedures may be sent to Energistics at 
info@energistics.org. 

The material described in this document was developed by and is the intellectual property of Energistics. 
Energistics develops material for open, public use so that the material is accessible and can be of maximum 
value to everyone.  

Use of the material in this document is governed by the Energistics Intellectual Property Policy document and the 
Product Licensing Agreement, both of which can be found on the Energistics website, 
https://www.energistics.org/legal-page/. 

All Energistics published materials are freely available for public comment and use. Anyone may copy and share 
the materials but must always acknowledge Energistics as the source. No one may restrict use or dissemination 
of Energistics materials in any way.  

Trademarks 

Energistics®, WITSML™, PRODML™, RESQML™ and, Adopt. Advance. Accelerate.™ and their logos are 
trademarks or registered trademarks of Energistics in the United States. Access, receipt, and/or use of these 
documents and all Energistics materials are generally available to the public and are specifically governed by the 
Energistics Product Licensing Agreement (http://www.energistics.org/product-license-agreement). 

Other company, product, or service names may be trademarks or service marks of others. 

mailto:info@energistics.org
https://www.energistics.org/legal-page/
http://www.energistics.org/product-license-agreement


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 3 

 

Amendment History 

Standard 
Version 

Document 
Version 

Date Comment 

1.2 1.1 Sept 27, 2021 Documentation udpate (clarification) only. No 
schema change.  

For channel data protocols:  

 Content was added to clarify that the primary 
index is or must be first, for example, in an array 
of channel data. 

 For range replace messages, content was added 
to explicitly state expected data and order (similar 
to content for ChannelData messages).  

Chapters/protocols impacted:  

 Chapter 6, ChannelStreaming (Protocol 1) 
(Sections: 6.1.1, 6.2.2 (Row 3), 6.3.4) 

 Chapter 7, ChannelDataFrame (Protocol 2)  
(Sections: 7.2.2 (Row 8), 7.3.2, 7.3.6) 

 Chapter 19, ChannelSubscribe (Protocol 21) 
(Sections 19.2.2  (Row 7), 19.3.5, 19.3.7, 19.3.11) 

 Chapter 20, ChannelDataLoad (Protocol 22) 
(Sections 20.2.2. (Row 6), 20.3.6, 20.3.7)  

 Chapter 23, ETP Datatypes (Section 23.33.7) 

1.2 1.0 Sept. 9, 2021 Publication of ETP v1.2. 

Version v1.2 is an extensive redesign and expansion 
of ETP v1.1. For the summary of changes, see 
Section 2.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 4 

Table of Contents 
Table of Contents ..................................................................................................... 4 

1 Introduction to ETP .........................................................................................14 

1.1 Working with Different Energistics Data Models ..................................................... 14 
1.2 Support for Multiple Versions of ETP ...................................................................... 14 
1.3 Overview of Supported Use Cases ......................................................................... 15 
1.4 ETP Design Principles ............................................................................................ 16 

1.4.1 Design Decisions for ETP v1.2 ..................................................................... 17 
1.5 Document Details .................................................................................................... 17 

1.5.1 How to Use This Document (IMPORTANT: Read This!) ............................. 17 
1.5.2 Recommendation for Using the PDF............................................................ 18 
1.5.3 Parts of this Document Are Created from the ETP UML Model ................... 18 
1.5.4 Documentation Conventions ........................................................................ 18 

1.6 ETP Resources Available for Download ................................................................. 20 

2 Published ETP Protocols and Summary of Changes ...................................21 

2.1 Summary of Changes from ETP v1.1 to v1.2 ......................................................... 22 
2.1.1 The Specification Document has been Reorganized and Improved ............ 22 
2.1.2 Things that Have Been Removed from ETP ................................................ 23 
2.1.3 Improved/Redesigned ETP Sub-Protocols and New Features .................... 24 
2.1.4 New ETP Sub-Protocols ............................................................................... 27 
2.1.5 Error Codes Have Been Significantly Revised ............................................. 28 

3 Overview of ETP and How it Works (Crucial—read this chapter!) ...............30 

3.1 ETP Overview: Big Picture ..................................................................................... 31 
3.1.1 Sub-Protocols defined by ETP ..................................................................... 32 
3.1.2 Endpoints and Roles .................................................................................... 33 
3.1.3 Session ......................................................................................................... 34 
3.1.4 Data objects, Resources, and Identifiers (UUIDs, URIs, and UIDs) ............ 35 
3.1.5 ETP Messages ............................................................................................. 35 
3.1.6 Security ......................................................................................................... 36 

3.2 Sessions: HTTP, WebSocket and ETP .................................................................. 36 
3.2.1 Why WebSocket for Transport? ................................................................... 36 

3.3 Capabilities: Endpoint, Protocol, Server and Data Object ...................................... 37 
3.3.1 How Protocol and Endpoint Capabilities Work ............................................. 38 
3.3.2 "Global" Capabilities ..................................................................................... 39 
3.3.3 Support for ETP Optional Functionality ........................................................ 47 
3.3.4 Data Object Capabilities: How They Work ................................................... 48 
3.3.5 ADVISORY: Implication of Capabilities and Required Behavior for Stores . 49 

3.4 ETP Message Approach ......................................................................................... 49 
3.4.1 Messages are Defined by Avro Schemas .................................................... 49 
3.4.2 General Message Types and Naming Conventions ..................................... 51 

3.5 ETP Message Format and Basic Sequence Requirements ................................... 53 
3.5.1 Overview of an ETP Message ...................................................................... 53 
3.5.2 General Requirements for ETP Message Format ........................................ 53 
3.5.3 General Sequence for ETP Request/Response Messages ......................... 54 
3.5.4 ETP Message Header .................................................................................. 55 
3.5.5 ETP Message Body ...................................................................................... 58 
3.5.6 Mechanisms to Limit Message Size ............................................................. 59 
3.5.7 Message Compression ................................................................................. 59 

3.6 ETP Extension Mechanisms ................................................................................... 60 
3.6.1 Custom Protocols and Capabilities .............................................................. 60 
3.6.2 MessageHeaderExtension ........................................................................... 60 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 5 

3.6.3 Data Attribute Metadata ............................................................................... 61 
3.6.4 Message Extension ...................................................................................... 61 
3.6.5 Data Object Extension .................................................................................. 62 

3.7 ETP Message Patterns ........................................................................................... 62 
3.7.1 Message Patterns: Key Concepts and Definitions ....................................... 62 
3.7.2 ETP "Universal" Messages: Usage Rules .................................................... 64 
3.7.3 Usage Rules for "Plural Messages" ............................................................. 67 
3.7.4 How and "Where" URIs are Used in ETP (General Usage Rules) .............. 75 

3.8 Avro Serialization .................................................................................................... 76 
3.8.1 Supported Data Encoding ............................................................................ 77 

3.9 WebSocket Transport ............................................................................................. 77 
3.9.1 How ETP is Bound to WebSocket ................................................................ 77 
3.9.2 ETP Uses Asynchronous Exchange of Messages ....................................... 79 

3.10 URI Query String Syntax with OData ...................................................................... 79 
3.11 Tracking and Detecting Changes in an ETP Store ................................................. 80 

3.11.1 Benefits of Change Tracking and Detection Features ................................. 80 
3.11.2 "Relaxed" Change Tracking and Detection Behavior for Some Stores ....... 80 
3.11.3 Some Important Points About Change Detection ........................................ 81 

3.12 How to Handle Commonly Used Types of Data in ETP ......................................... 81 
3.12.1 Data Model as a Graph ................................................................................ 81 
3.12.2 Encoding Rules for ETP ............................................................................... 82 
3.12.3 Serialization of URIs ..................................................................................... 82 
3.12.4 "Store-Managed" Fields................................................................................ 82 
3.12.5 Time .............................................................................................................. 82 
3.12.6 Units of Measure (UOM) .............................................................................. 85 
3.12.7 Use of PWLS ................................................................................................ 85 
3.12.8 Value and Range Endpoint Comparisons in Requests ................................ 86 
3.12.9 Nullable Values ............................................................................................. 88 

3.13 Troubleshooting ...................................................................................................... 88 
3.13.1 ETP-defined Capabilities .............................................................................. 88 
3.13.2 Trying to Do Too Many Operations at the Same Time ................................. 89 
3.13.3 Always an Option: Drop the Connection ...................................................... 89 
3.13.4 Receiver not Receiving Messages Fast Enough ......................................... 89 
3.13.5 Authorization Expiring .................................................................................. 90 

4 Securing an ETP Session and Establishing a WebSocket Connection ......91 

4.1 ETP Security ........................................................................................................... 91 
4.1.1 Overview of the Approach ............................................................................ 91 
4.1.2 High-Level Workflow for Getting a Bearer Token ......................................... 94 
4.1.3 Contents of the AuthorizationDetails Capability and How it is Used ............ 95 
4.1.4 ETP Security Requirements for Establishing a WebSocket Connection ..... 95 

4.2 Prerequisites for Establishing a WebSocket Connection ....................................... 96 
4.3 How a Client Establishes a WebSocket Connection to an ETP Server ................. 96 

4.3.1 Requirements for Getting and Using an ETP ServerCapabilities ................ 99 
4.3.2 How Browser-based Clients use Query Parameters Instead of Header Properties
 102 

5 Core (Protocol 0): Establishing and Authorizing an ETP Session ............ 103 

5.1 Core: Key Concepts .............................................................................................. 103 
5.1.1 ETP Session ............................................................................................... 103 
5.1.2 Security and Authorization ......................................................................... 104 

5.2 Core: Required Behavior ...................................................................................... 104 
5.2.1 Core: Message Sequences ........................................................................ 104 
5.2.2 Core: General Requirements ..................................................................... 110 
5.2.3 Core: Capabilities ....................................................................................... 112 

5.3 Core: Message Schemas ..................................................................................... 114 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 6 

5.3.1 Message: RequestSession ......................................................................... 115 
5.3.2 Message: OpenSession ............................................................................. 117 
5.3.3 Message: CloseSession ............................................................................. 120 
5.3.4 Message: Authorize .................................................................................... 121 
5.3.5 Message: Ping ............................................................................................ 122 
5.3.6 Message: Pong ........................................................................................... 122 
5.3.7 Message: AuthorizeResponse ................................................................... 123 
5.3.8 Message: ProtocolException ...................................................................... 124 
5.3.9 Message: Acknowledge ............................................................................. 125 

6 ChannelStreaming (Protocol 1) .................................................................... 127 

6.1 Channels: Key Concepts ...................................................................................... 127 
6.1.1 Channel Definition and its Design in Energistics Standards ...................... 128 
6.1.2 Metadata for Channels, Indexes and Attributes ......................................... 128 
6.1.3 What Data is Sent When Streaming Channels .......................................... 129 
6.1.4 "Simple Streamer" vs. "Standard Streamer" .............................................. 130 
6.1.5 Organizing Channels into ChannelSets and Logs ..................................... 131 

6.2 ChannelStreaming: Required Behavior ................................................................ 131 
6.2.1 ChannelStreaming: Message Sequence .................................................... 131 
6.2.2 ChannelStreaming: General Requirements ............................................... 133 
6.2.3 ChannelStreaming: Capabilities ................................................................. 134 

6.3 ChannelStreaming: Message Schemas ............................................................... 135 
6.3.1 Message: StartStreaming ........................................................................... 136 
6.3.2 Message: StopStreaming ........................................................................... 136 
6.3.3 Message: ChannelMetadata ...................................................................... 136 
6.3.4 Message: ChannelData .............................................................................. 137 
6.3.5 Message: TruncateChannels ..................................................................... 139 

7 ChannelDataFrame (Protocol 2) ................................................................... 140 

7.1 ChannelDataFrame: Concepts ............................................................................. 140 
7.1.1 Channel, Channel Set, Log and Frame ...................................................... 141 
7.1.2 Support for Secondary Indexes .................................................................. 141 

7.2 ChannelDataFrame: Required Behavior............................................................... 142 
7.2.1 ChannelDataFrame: Message Sequences ................................................ 142 
7.2.2 ChannelDataFrame: General Requirements .............................................. 144 
7.2.3 ChannelDataFrame: Capabilities ............................................................... 146 

7.3 ChannelDataFrame: Message Schemas .............................................................. 148 
7.3.1 Message: GetFrame ................................................................................... 148 
7.3.2 Message: GetFrameResponseHeader....................................................... 150 
7.3.3 Message: GetFrameResponseRows ......................................................... 150 
7.3.4 Message: CancelGetFrame ....................................................................... 151 
7.3.5 Message: GetFrameMetadata .................................................................... 152 
7.3.6 Message: GetFrameMetadataResponse ................................................... 152 

8 Discovery (Protocol 3) .................................................................................. 154 

8.1 Discovery: Key Concepts ...................................................................................... 155 
8.1.1 Data Model as a Graph .............................................................................. 155 

8.2 Discovery: Required Behavior .............................................................................. 158 
8.2.1 Discovery: Message Sequences ................................................................ 160 
8.2.2 Discovery: General Requirements ............................................................. 165 
8.2.3 Discovery: Capabilities ............................................................................... 168 

8.3 Discovery: Message Schemas ............................................................................. 170 
8.3.1 Message: GetResources ............................................................................ 170 
8.3.2 Message: GetResourcesResponse ............................................................ 172 
8.3.3 Message: GetResourcesEdgesResponse ................................................. 173 
8.3.4 Message: GetDeletedResources ............................................................... 174 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 7 

8.3.5 Message: GetDeletedResourcesResponse ............................................... 175 

9 Store (Protocol 4) .......................................................................................... 177 

9.1 Store: Key Concepts ............................................................................................. 178 
9.1.1 ETP uses 'Upsert' Semantics ..................................................................... 178 
9.1.2 Handling Binary Large Objects (BLOBs) in ETP ........................................ 178 
9.1.3 "Container" and "Contained" Data Objects ................................................ 178 

9.2 Store: Required Behavior ..................................................................................... 179 
9.2.1 Store: Message Sequences ....................................................................... 180 
9.2.2 Store: General Requirements ..................................................................... 184 
9.2.3 Store: Capabilities ...................................................................................... 192 

9.3 Store: Message Schemas ..................................................................................... 195 
9.3.1 Message: GetDataObjects ......................................................................... 195 
9.3.2 Message: PutDataObjects .......................................................................... 196 
9.3.3 Message: PutDataObjectsResponse ......................................................... 197 
9.3.4 Message: DeleteDataObjects ..................................................................... 198 
9.3.5 Message: DeleteDataObjectsResponse .................................................... 199 
9.3.6 Message: GetDataObjectsResponse ......................................................... 200 
9.3.7 Message: Chunk ......................................................................................... 201 

10 StoreNotification (Protocol 5) ...................................................................... 203 

10.1 StoreNotification: Key Concepts ........................................................................... 204 
10.1.1 Definitions ................................................................................................... 204 
10.1.2 Data Model as Graph ................................................................................. 204 
10.1.3 Handling Binary Large Objects (BLOBs) in ETP ........................................ 205 

10.2 StoreNotification: Required Behavior .................................................................... 205 
10.2.1 StoreNotification: Message Sequences ..................................................... 205 
10.2.2 StoreNotification: General Requirements ................................................... 207 
10.2.3 StoreNotification: Capabilities .................................................................... 212 

10.3 StoreNotification: Message Schemas ................................................................... 215 
10.3.1 Message: UnsubscribeNotifications ........................................................... 215 
10.3.2 Message: ObjectChanged .......................................................................... 216 
10.3.3 Message: ObjectDeleted ............................................................................ 217 
10.3.4 Message: ObjectAccessRevoked ............................................................... 218 
10.3.5 Message: SubscriptionEnded ..................................................................... 219 
10.3.6 Message: SubscribeNotifications ............................................................... 220 
10.3.7 Message: SubscribeNotificationsResponse ............................................... 221 
10.3.8 Message: ObjectActiveStatusChanged ...................................................... 221 
10.3.9 Message: UnsolicitedStoreNotifications ..................................................... 222 
10.3.10 Message: Chunk ................................................................................... 223 

11 GrowingObject (Protocol 6) .......................................................................... 225 

11.1 GrowingObject: Key Concepts .............................................................................. 226 
11.1.1 What is a Growing Data Object and how is it Handled in ETP? ................ 226 
11.1.2 Most Actions are on the "Parts" in the Context of One "Parent" Data Object226 
11.1.3 An Update Operation on a Range of Parts is an Atomic Operation ........... 227 
11.1.4 Change Annotations ................................................................................... 227 

11.2 GrowingObject: Required Behavior ...................................................................... 229 
11.2.1 GrowingObject: Message Sequences ........................................................ 230 
11.2.2 GrowingObject: General Requirements ..................................................... 238 
11.2.3 GrowingObject: Capabilities ....................................................................... 249 

11.3 GrowingObject: Message Schemas ..................................................................... 252 
11.3.1 Message: GetParts ..................................................................................... 253 
11.3.2 Message: GetPartsResponse .................................................................... 253 
11.3.3 Message: GetGrowingDataObjectsHeader ................................................ 254 
11.3.4 Message: GetGrowingDataObjectsHeaderResponse ................................ 255 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 8 

11.3.5 Message: PutParts ..................................................................................... 256 
11.3.6 Message: PutPartsResponse ..................................................................... 257 
11.3.7 Message: PutGrowingDataObjectsHeader ................................................ 257 
11.3.8 Message: PutGrowingDataObjectsHeaderResponse ................................ 258 
11.3.9 Message: DeleteParts ................................................................................ 259 
11.3.10 Message: DeletePartsResponse .......................................................... 260 
11.3.11 Message: GetPartsByRange ................................................................ 260 
11.3.12 Message: GetPartsByRangeResponse ................................................ 262 
11.3.13 Message: GetPartsMetadata ................................................................ 263 
11.3.14 Message: GetPartsMetadataResponse ................................................ 263 
11.3.15 Message: ReplacePartsByRange ......................................................... 264 
11.3.16 Message: ReplacePartsByRangeResponse ........................................ 266 
11.3.17 Message: GetChangeAnnotations ........................................................ 266 
11.3.18 Message: GetChangeAnnotationsResponse ....................................... 267 

12 GrowingObjectNotification (Protocol 7) ...................................................... 269 

12.1 GrowingObjectNotification: Key Concepts ............................................................ 269 
12.2 GrowingObjectNotification: Required Behavior .................................................... 269 

12.2.1 GrowingObjectNotification: Message Sequences ...................................... 270 
12.2.2 GrowingObjectNotification: General Requirements ................................... 272 
12.2.3 GrowingObjectNotification: Capabilities ..................................................... 276 

12.3 GrowingObjectNotification: Message Schemas ................................................... 277 
12.3.1 Message: SubscribePartNotifications ......................................................... 277 
12.3.2 Message: SubscribePartNotificationsResponse ........................................ 279 
12.3.3 Message: PartsChanged ............................................................................ 279 
12.3.4 Message: PartsDeleted .............................................................................. 281 
12.3.5 Message: UnsubscribePartNotification ...................................................... 282 
12.3.6 Message: PartsReplacedByRange ............................................................ 282 
12.3.7 Message: PartSubscriptionEnded .............................................................. 284 
12.3.8 Message: UnsolicitedPartNotifications ....................................................... 285 

13 DataArray (Protocol 9) .................................................................................. 287 

13.1 DataArray Key Concepts ...................................................................................... 287 
13.1.1 HDF5 and EPC Files .................................................................................. 287 

13.2 DataArray: Required Behavior .............................................................................. 288 
13.2.1 DataArray: Message Sequences ................................................................ 288 
13.2.2 DataArray: General Requirements ............................................................. 290 
13.2.3 DataArray: Capabilities ............................................................................... 293 

13.3 DataArray: Message Schemas ............................................................................. 294 
13.3.1 Message: GetDataArrays ........................................................................... 294 
13.3.2 Message: GetDataArraysResponse ........................................................... 295 
13.3.3 Message: GetDataSubarrays ..................................................................... 296 
13.3.4 Message: GetDataSubarraysResponse ..................................................... 296 
13.3.5 Message: PutDataArrays ........................................................................... 297 
13.3.6 Message: PutDataArraysResponse ........................................................... 298 
13.3.7 Message: PutDataSubarrays ..................................................................... 298 
13.3.8 Message: PutDataSubarraysResponse ..................................................... 299 
13.3.9 Message: PutUninitializedDataArrays ........................................................ 300 
13.3.10 Message: PutUninitializedDataArraysResponse .................................. 300 
13.3.11 Message: GetDataArrayMetadata ........................................................ 301 
13.3.12 Message: GetDataArrayMetadataResponse ........................................ 302 

14 Overview of Query Behavior ........................................................................ 303 

14.1 Supported Query Options and Requirements ...................................................... 304 
14.1.1 Filtering ....................................................................................................... 304 
14.1.2 Pagination ................................................................................................... 304 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 9 

14.2 Unsupported Query Options ................................................................................. 305 
14.3 General Behavior for all ETP Query Sub-Protocols ............................................. 305 

14.3.1 Message Sequence for All ETP Query Sub-Protocols ............................... 305 
14.3.2 Usage Rules for Query Syntax with ETP Query Sub-Protocols ................. 306 
14.3.3 Use of PWLS in Queries ............................................................................ 307 

14.4 Query Examples ................................................................................................... 307 

15 DiscoveryQuery (Protocol 13) ...................................................................... 309 

15.1 DiscoveryQuery: Key Concepts ............................................................................ 309 
15.1.1 Data Model as Graph ................................................................................. 309 

15.2 DiscoveryQuery: Required Behavior .................................................................... 309 
15.2.1 DiscoveryQuery: Message Sequence ........................................................ 310 
15.2.2 DiscoveryQuery: General Requirements ................................................... 310 
15.2.3 DiscoveryQuery: Capabilities ..................................................................... 311 

15.3 DiscoveryQuery: Message Schemas .................................................................... 313 
15.3.1 Message: FindResources ........................................................................... 313 
15.3.2 Message: FindResourcesResponse .......................................................... 314 

16 StoreQuery (Protocol 14) .............................................................................. 316 

16.1 StoreQuery: Key Concepts ................................................................................... 316 
16.1.1 Data Model as Graph ................................................................................. 316 

16.2 StoreQuery: Required Behavior ............................................................................ 316 
16.2.1 StoreQuery: Message Sequence ............................................................... 317 
16.2.2 StoreQuery: General Requirements ........................................................... 317 
16.2.3 StoreQuery: Capabilities ............................................................................ 319 

16.3 StoreQuery: Message Schemas ........................................................................... 321 
16.3.1 Message: FindDataObjects ........................................................................ 321 
16.3.2 Message: FindDataObjectsResponse ........................................................ 323 
16.3.3 Message: Chunk ......................................................................................... 323 

17 GrowingObjectQuery (Protocol 16) ............................................................. 326 

17.1 GrowingObjectQuery: Key Concepts .................................................................... 326 
17.2 GrowingObjectQuery: Required Behavior ............................................................ 326 

17.2.1 GrowingObjectQuery: Message Sequence ................................................ 326 
17.2.2 GrowingObjectQuery: General Requirements ........................................... 327 
17.2.3 GrowingObjectQuery: Capabilities ............................................................. 328 

17.3 GrowingObjectQuery: Message Schemas............................................................ 330 
17.3.1 Message: FindParts.................................................................................... 330 
17.3.2 Message: FindPartsResponse ................................................................... 331 

18 Transaction (Protocol 18) ............................................................................. 333 

18.1 Transaction: Required Behavior ........................................................................... 333 
18.1.1 Transaction: Message Sequence ............................................................... 334 
18.1.2 Transaction: General Requirements .......................................................... 336 
18.1.3 Transaction: Capabilities ............................................................................ 337 

18.2 Transaction: Message Schemas .......................................................................... 338 
18.2.1 Message: StartTransaction ........................................................................ 338 
18.2.2 Message: StartTransactionResponse ........................................................ 339 
18.2.3 Message: CommitTransaction .................................................................... 340 
18.2.4 Message: CommitTransactionResponse ................................................... 340 
18.2.5 Message: RollbackTransaction .................................................................. 341 
18.2.6 Message: RollbackTransactionResponse .................................................. 342 

19 ChannelSubscribe (Protocol 21) .................................................................. 344 

19.1 ChannelSubscribe: Key Concepts ........................................................................ 345 
19.2 Required Behavior ................................................................................................ 345 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 10 

19.2.1 ChannelSubscribe: Message Sequence .................................................... 346 
19.2.2 ChannelSubscribe: General Requirements ................................................ 352 
19.2.3 ChannelSubscribe: Capabilities ................................................................. 356 

19.3 ChannelSubscribe: Message Schemas ................................................................ 359 
19.3.1 Message: GetChannelMetadata ................................................................. 360 
19.3.2 Message: GetChannelMetadataResponse ................................................ 360 
19.3.3 Message: SubscribeChannels .................................................................... 361 
19.3.4 Message: SubscribeChannelsResponse ................................................... 362 
19.3.5 Message: ChannelData .............................................................................. 362 
19.3.6 Message: ChannelsTruncated ................................................................... 364 
19.3.7 Message: RangeReplaced ......................................................................... 365 
19.3.8 Message: UnsubscribeChannels ................................................................ 367 
19.3.9 Message: SubscriptionsStopped ................................................................ 367 
19.3.10 Message: GetRanges ........................................................................... 368 
19.3.11 Message: GetRangesResponse ........................................................... 369 
19.3.12 Message: CancelGetRanges ................................................................ 370 
19.3.13 Message: GetChangeAnnotations ........................................................ 371 
19.3.14 Message: GetChangeAnnotationsResponse ....................................... 371 

20 ChannelDataLoad (Protocol 22) ................................................................... 373 

20.1 ChannelDataLoad: Key Concepts ........................................................................ 374 
20.2 ChannelDataLoad: Required Behavior ................................................................. 374 

20.2.1 ChannelDataLoad: Message Sequences ................................................... 375 
20.2.2 ChannelDataLoad: General Requirements ................................................ 378 
20.2.3 ChannelDataLoad: Capabilities .................................................................. 382 

20.3 ChannelDataLoad: Message Schemas ................................................................ 383 
20.3.1 Message: OpenChannels ........................................................................... 384 
20.3.2 Message: OpenChannelsResponse........................................................... 384 
20.3.3 Message: CloseChannels .......................................................................... 385 
20.3.4 Message: TruncateChannels ..................................................................... 386 
20.3.5 Message: TruncateChannelsResponse ..................................................... 386 
20.3.6 Message: ChannelData .............................................................................. 387 
20.3.7 Message: ReplaceRange ........................................................................... 389 
20.3.8 Message: ReplaceRangeResponse ........................................................... 391 
20.3.9 Message: ChannelsClosed ........................................................................ 391 

21 Dataspace (Protocol 24) ............................................................................... 393 

21.1 Dataspace: Key Concepts .................................................................................... 393 
21.1.1 Dataspace: Definition ................................................................................. 393 

21.2 Dataspace: Required Behavior ............................................................................. 393 
21.2.1 Dataspace: Message Sequence ................................................................ 394 
21.2.2 Dataspace: General Requirements ............................................................ 395 
21.2.3 Dataspace: Capabilities .............................................................................. 396 

21.3 Dataspace: Message Schemas ............................................................................ 398 
21.3.1 Message: GetDataspaces .......................................................................... 398 
21.3.2 Message: GetDataspacesResponse .......................................................... 399 
21.3.3 Message: PutDataspaces .......................................................................... 399 
21.3.4 Message: PutDataspacesResponse .......................................................... 400 
21.3.5 Message: DeleteDataspaces ..................................................................... 401 
21.3.6 Message: DeleteDataspacesResponse ..................................................... 402 

22 SupportedTypes (Protocol 25) ..................................................................... 403 

22.1 SupportedTypes: Key Concepts ........................................................................... 403 
22.1.1 Data Model as Graph ................................................................................. 403 

22.2 SupportedTypes: Required Behavior .................................................................... 403 
22.2.1 SupportedTypes: Message Sequence ....................................................... 404 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 11 

22.2.2 SupportedTypes: General Requirements ................................................... 405 
22.2.3 SupportedTypes: Capabilities .................................................................... 406 

22.3 SupportedTypes: Message Schemas ................................................................... 407 
22.3.1 Message: GetSupportedTypes ................................................................... 407 
22.3.2 Message: GetSupportedTypesResponse .................................................. 409 

23 ETP Datatypes ............................................................................................... 410 

23.1 AnyLogicalArrayType ............................................................................................ 412 
23.2 AnyArrayType ....................................................................................................... 413 
23.3 DataObjectCapabilityKind ..................................................................................... 413 
23.4 EndpointCapabilityKind ......................................................................................... 415 
23.5 ProtocolCapabilityKind .......................................................................................... 419 
23.6 fixed: Uuid ............................................................................................................. 421 
23.7 record: ArrayOfBoolean ........................................................................................ 421 
23.8 record: ArrayOfNullableBoolean ........................................................................... 421 
23.9 record: ArrayOfInt ................................................................................................. 422 
23.10 record: ArrayOfNullableInt .................................................................................... 422 
23.11 record: ArrayOfLong ............................................................................................. 422 
23.12 record: ArrayOfNullableLong ................................................................................ 423 
23.13 record: ArrayOfFloat ............................................................................................. 423 
23.14 record: ArrayOfDouble .......................................................................................... 424 
23.15 record: ArrayOfString ............................................................................................ 424 
23.16 record: ArrayOfBytes ............................................................................................ 424 
23.17 record: AnySparseArray........................................................................................ 425 
23.18 record: AnySubarray ............................................................................................. 425 
23.19 record: ServerCapabilities .................................................................................... 425 
23.20 record: SupportedDataObject ............................................................................... 427 
23.21 record: SupportedProtocol .................................................................................... 428 
23.22 record: Version ...................................................................................................... 429 
23.23 record: DataAttribute ............................................................................................. 430 
23.24 record: AttributeMetadataRecord .......................................................................... 430 
23.25 record: MessageHeader ....................................................................................... 432 
23.26 record: MessageHeaderExtension ....................................................................... 434 
23.27 record: Contact ..................................................................................................... 434 
23.28 record: ErrorInfo .................................................................................................... 435 
23.29 union: AnyArray .................................................................................................... 436 
23.30 union: DataValue .................................................................................................. 436 
23.31 union: IndexValue ................................................................................................. 436 
23.32 DataArrayTypes .................................................................................................... 437 

23.32.1 record: DataArray ................................................................................. 437 
23.32.2 record: DataArrayMetadata .................................................................. 438 
23.32.3 record: DataArrayIdentifier .................................................................... 440 
23.32.4 record: GetDataSubarraysType ............................................................ 440 
23.32.5 record: PutDataArraysType .................................................................. 441 
23.32.6 record: PutUninitializedDataArrayType ................................................ 442 
23.32.7 record: PutDataSubarraysType ............................................................ 442 

23.33 ChannelData ......................................................................................................... 443 
23.33.1 ChannelDataKind .................................................................................. 444 
23.33.2 ChannelIndexKind ................................................................................ 445 
23.33.3 IndexDirection ....................................................................................... 446 
23.33.4 PassDirection ........................................................................................ 447 
23.33.5 record: DataItem ................................................................................... 447 
23.33.6 record: IndexMetadataRecord .............................................................. 448 
23.33.7 record: ChannelMetadataRecord.......................................................... 450 
23.33.8 record: ChannelRangeInfo .................................................................... 453 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 12 

23.33.9 record: ChannelSubscribeInfo .............................................................. 453 
23.33.10 record: OpenChannelInfo ................................................................... 454 
23.33.11 record: FrameChannelMetadataRecord ............................................. 454 
23.33.12 record: FramePoint ............................................................................. 456 
23.33.13 record: FrameRow .............................................................................. 457 
23.33.14 record: TruncateInfo ........................................................................... 457 
23.33.15 record: ChannelChangeRequestInfo .................................................. 458 
23.33.16 record: PassIndexedDepth ................................................................. 458 

23.34 Object .................................................................................................................... 460 
23.34.1 ActiveStatusKind ................................................................................... 461 
23.34.2 RelationshipKind ................................................................................... 461 
23.34.3 ContextScopeKind ................................................................................ 462 
23.34.4 ObjectChangeKind ................................................................................ 463 
23.34.5 record: DataObject ................................................................................ 463 
23.34.6 record: ObjectPart ................................................................................. 464 
23.34.7 record: ObjectChange ........................................................................... 466 
23.34.8 record: IndexInterval ............................................................................. 466 
23.34.9 record: PutResponse ............................................................................ 467 
23.34.10 record: Dataspace .............................................................................. 468 
23.34.11 record: Resource ................................................................................ 469 
23.34.12 record: DeletedResource .................................................................... 473 
23.34.13 record: Edge ....................................................................................... 473 
23.34.14 record: SupportedType ....................................................................... 474 
23.34.15 record: ContextInfo ............................................................................. 475 
23.34.16 record: SubscriptionInfo ...................................................................... 477 
23.34.17 record: PartsMetadataInfo .................................................................. 478 
23.34.18 record: ChangeAnnotation .................................................................. 479 
23.34.19 record: ChangeResponseInfo ............................................................. 480 

24 ETP Error Codes ........................................................................................... 482 

24.1 Error Code Numbering Scheme ........................................................................... 482 
24.2 Domain Model-Defined Error Codes ..................................................................... 482 
24.3 Current ETP Error Codes ..................................................................................... 482 

25 Appendix: Energistics Identifiers ................................................................ 486 

25.1 Definitions: Data Objects, Resources, and Dataspaces ....................................... 486 
25.2 Mechanisms for Identification: UUIDs and URIs .................................................. 487 
25.3 Energistics URIs ................................................................................................... 487 

25.3.1 Requirements for Supporting URIs ............................................................ 487 
25.3.2 Overview ..................................................................................................... 488 
25.3.3 URI Notation ............................................................................................... 488 
25.3.4 Canonical URIs ........................................................................................... 488 
25.3.5 Canonical Energistics URIs ........................................................................ 488 
25.3.6 Dataspace URIs ......................................................................................... 488 
25.3.7 Data Object URIs ........................................................................................ 489 
25.3.8 Data Object Query URIs ............................................................................. 490 
25.3.9 Alternate URIs ............................................................................................ 491 
25.3.10 Regular Expressions for Validating Canonical Energistics URIs .......... 492 

26 Appendix: Data Replication and Outage Recovery Workflows ................. 494 

26.1 Goal and Scope of Replication ............................................................................. 494 
26.2 Key Concepts and Definitions for Replication ...................................................... 494 

26.2.1 Change Annotations ................................................................................... 494 
26.2.2 Replication Approaches and Related Definitions ....................................... 495 
26.2.3 Graphs, Scope and Replication Scope ...................................................... 496 
26.2.4 Understanding the Workflows in this Appendix .......................................... 496 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 13 

26.3 Main Replication Tasks ......................................................................................... 496 
26.4 Push Workflow ...................................................................................................... 497 
26.5 Pull Workflow ........................................................................................................ 498 
26.6 Outage Recovery: Resuming Operations After a Disconnect .............................. 499 

26.6.1 Goal of Outage Recovery ........................................................................... 500 
26.6.2 Key Concepts for Outage Recovery ........................................................... 500 
26.6.3 Main Resumption Workflow ........................................................................ 502 
26.6.4 Resumption Workflow: Details for Push ..................................................... 504 
26.6.5 Resumption Workflow: Details for Pull ....................................................... 505 

27 Appendix: Security Requirements and Rationale for the Current Approach514 

27.1 ETP Security Considerations and Requirements ................................................. 514 
27.2 Approaches Considered and Why the Current One Was Selected ...................... 515 

 
 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 14 

1 Introduction to ETP 
Energistics Transfer Protocol (ETP) is a data transfer specification that enables the efficient transfer of 
data between two software applications (endpoints), which includes real-time streaming. ETP has been 
specifically envisioned and designed to meet the unique needs of the upstream oil and gas industry and, 
more specifically, to facilitate the exchange of data in the Energistics family of data standards, which 
includes: WITSML (well/drilling), RESQML (earth/reservoir modeling), PRODML (production), and EML 
(the data objects defined in Energistics common, which is shared by the other three domain standards). 
Initially designed to be the API for WITSML v2.0, ETP is now part of the Energistics Common Technical 
Architecture (CTA). 

ETP defines a publish/subscribe mechanism so that data receivers do not have to poll for data and can 
receive new data as soon as they are available from a data provider, which reduces data on the wire and 
improves data transmission efficiency and latency. Additionally, ETP functionality includes data discovery, 
real-time streaming, store (CRUD) operations, and historical data queries, among others. 

 For the list of protocols published in the current version of ETP and list of changes since the previous 
version, see Chapter 2. 

 For an overview of how ETP works, see Chapter 3.  

 Section 3.1 is a big picture overview that defines the main concepts and constructs in ETP and 
how those "pieces" work together; both developers and business people who want a high-level 
understanding of "how ETP works" should find it useful.  

- The remaining sections in Chapter 3 are details for developers. 

1.1 Working with Different Energistics Data Models 

 ETP is supported for version 2.0 or higher of all Energistics domain data models (i.e., WITSML, 
RESQML, and PRODML, which are informally referred to as "the MLs"). In the download package 
and set of schemas, each ML has a folder named Energistics common, which contains a set of data 
objects shared by the domain standards; Energistics common has a namespace that begins EML.  

 In a commercial implementation, you CAN NOT reference an object from an ML that has not yet been 
released.  

1.2 Support for Multiple Versions of ETP 

Beginning with ETP version 1.2, changes have been made to how ETP is versioned. This change was 
made so that it is easier for developers to implement multiple versions of ETP in the same codebase. The 
main change is the visible use of a 2-digit version number in the namespace.  

 ETP v1.2 Namespace: Energistics.Etp.v12  EXAMPLE: Energistics.Etp.v12.Datatypes 

 ETP v1.1 Namespace: Energistics  EXAMPLE: Energistics.Datatypes 

To determine which version(s) of ETP are available from a given server and the capabilities of each 
version, see Section 4.3. 

IMPORTANT: Both endpoints in an ETP session MUST use the same version of ETP.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 15 

1.3 Overview of Supported Use Cases 

Use cases for the business problems that Energistics standards help to solve are defined by the individual 
domain standards—WITSML, RESQML and PRODML. ETP defines how these domain standards "move 
data" in support of those use cases. But that "data movement" can be aggregated into higher level use 
cases, that can help you better understand the role of ETP, its design, and how to implement it. 

ETP supports these data movement use cases:  
1. Rigsite Aggregation: Several ETP clients and servers, some possibly without external internet 

access, connecting at a rigsite to exchange data. 

2. Rig-to-Shore: A single data store located at a rig site exchanging data with an off-site data store, 
possibly in the cloud or a data center. 

3. Data Center Replication: The contents of a central data store are (partially) replicated to another 
central data store. 

4. Real-Time Monitoring and Calculations: The contents of a central data store are monitored in real-
time, sometimes with calculated data values written back to the central data store. 

5. Data Import/Export: Ad-hoc bulk imports and exports of data into / out of central data stores. 

6. Peer-to-Peer Data Sharing: Data exchange between end-user applications running in end-user 
environments. 

These use cases share some common features, which can include:  
 Potentially long-lived sessions: An ETP session (which represents a single WebSocket 

connection) may be expected to last anywhere from minutes to months. 

 Dynamic data: Over the lifetime of a session, many changes—including deletions, additions, 
authorizations and "de-authorizations"—may happen to data available in the session’s endpoints. 

The variations in these use cases also fall into broad categories, which also impact the design and 
implementation of ETP. These variations include:  

 End-User Driven: Scenarios where an end user is using an application that is an ETP client 
connected to an ETP server. 

 Machine-to-Machine: Scenarios where a background service is operating an ETP client connected 
to an ETP server. 

 Partner Data Sharing: Scenarios where the ETP clients and servers belong to unrelated companies. 

 Reverse Data Flows: Scenarios where ETP clients act as data stores and ETP servers act as data 
customers.  

For more information, about: 
 High-level ETP data replication use cases and workflows, see Appendix: Data Replication and 

Outage Recovery Workflows. 

 Domain-specific use cases, see the relevant domain documentation.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 16 

1.4 ETP Design Principles 

As in all of its design efforts, Energistics aims to leverage existing relevant IT and industry standards; 
those used in ETP are referenced throughout this document. EXAMPLES:  

 As its transport mechanism, ETP uses WebSocket, which is a protocol standardized by the Internet 
Engineering Task Force (IETF) as RFC 6455 (http:/tools.ietf.org/html/rfc6455). 

 For serialization of messages, ETP follows a subset of the Apache Avro specification 
(http://avro.apache.org/docs/current/spec.html). 

 For query functionality, ETP uses an OData-like syntax based on a subset of the Open Data Protocol 
(OData) query string syntax, specifically OData v4.0, which is an OASIS standard (https://www.oasis-
open.org/standards#odatav4.0). 

In designing ETP protocols, Energistics and its various technical working teams aim to honor well known 
design principles of software, such as:  

1. Single responsibility: https://en.wikipedia.org/wiki/Single_responsibility_principle 

2. Don't repeat yourself: https://en.wikipedia.org/wiki/Don%27t_repeat_yourself 

Additionally, ETP has these specific principles: 

3. ETP communication is carried out through the asynchronous exchange of messages between two 
endpoints (e.g., a client and server) and only 2 endpoints (no multicasting).  

4. ETP is organized into a set of sub-protocols, each of which has a specific purpose.  

a. EXAMPLE: Core (Protocol 0) is the ETP sub-protocol to create and manage an ETP session; 
Discovery (Protocol 3) is for finding data objects in a store; Store (Protocol 4) is for CRUD 
operations for data objects.  

b. EXAMPLE: Some sub-protocols have been developed to work with specific types of data. For 
example, Store (Protocol 4) operates on data objects, which includes channels. To add a 
channel, use Store (Protocol 4). However, to move the data in a channel, ETP provides these 
protocols: ChannelStreaming (Protocol 1) (for simple streamers like a sensor); 
ChannelDataFrame (Protocol 2) (for getting a set of channels in rows); ChannelSubscribe 
(Protocol 21) (for more subscribe and more sophisticated read/get than Protocol 1); and 
ChannelDataLoad (Protocol 22) (for write/put channel data operations).  

5. Unless otherwise specified, message names, key words, etc. identified by this specification are case-
INSENSITIVE. 

a. An important exception to this rule is the keys in Avro maps, which are ALWAYS case sensitive. 

6. To allow for the smallest, most efficient binary transfers, ETP regularly uses a pattern of assigning 
numeric identifiers in addition to human-readable names. EXAMPLES: 

a. Each Protocol has both a human-readable name and a number (e.g., the Core protocol is 
Protocol 0, and the Store protocol is Protocol 4). 

b. Each ETP message type is has a human-readable message name and an assigned number.  

c. For high-frequency messages with small payloads, like streaming Channel data, longer 
identifiers, such as URIs, are replaced with integer identifiers, which are used in subsequent 
operations in the sub-protocol for an ETP session.  

7. ETP includes the notion of roles. Roles govern behavior within an ETP sub-protocol and define sets 
of functionality that can be associated with a specific role. For each sub-protocol in ETP, this 
specification identifies the two allowable roles (which for most sub-protocols are "customer" and 
"store"). For more information on ETP roles, see Section 3.1.2. 

8. ETP implements “upsert” semantics for data objects, which means any change to a data object 
requires a full replacement of the data object. Partial updates of individual fields is not supported.  

http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc6455
http://avro.apache.org/docs/current/spec.html
http://avro.apache.org/docs/current/spec.html
https://www.oasis-open.org/standards#odatav4.0
https://www.oasis-open.org/standards#odatav4.0
https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 17 

a. This principle does not extend to bulk data such as channel data, growing object parts, and array data. 
ETP provides support for adding, editing, or removing subsets of bulk data in specialized protocols.  

1.4.1 Design Decisions for ETP v1.2 

This section lists design decisions that were made for ETP v1.2, which implementers must be aware of.  

1. Security and entitlements are intentionally outside the scope of ETP aside from a minimum set of 
authorization functionality to facilitate interoperability. 

2. Support for eventual consistency relies heavily on endpoint-provided timestamps. This approach was 
chosen as a reasonable tradeoff between implementation complexity and the ability to automatically 
recover from most real-world causes of data outages. 

3. ETP does NOT explicitly handle multi-master updates to a data object, for example, 2 applications 
trying to write to the same data object. In the current design, the “last write wins”. 

4. ETP does not provide any features to rate limit incoming messages.  

1.5 Document Details 

This specification is intended for IT and software professionals who want to implement ETP. A basic 
understanding of the technology and related general concepts is assumed. For a detailed explanation of 
key ETP and Energistics concepts, see Chapter 3.  

1.5.1 How to Use This Document (IMPORTANT: Read This!) 

Each ETP sub-protocol has its own chapter. The intent is for each protocol-specific chapter to be the 
starting point for everything you need to know about each specific sub-protocol—including the messages 
in that protocol, basic message sequence, and functional requirements—but links to other relevant 
information—such as standard behavior across all of ETP, definitions, etc.—are provided. 

This document is organized as follows:  

 Each sub-protocol defined by ETP has its own chapter, which contains all the key information about 
that sub-protocol, with each chapter structured in the same consistent way to include:  

 Introduction (purpose, scope, etc.) and relationship to other ETP sub-protocols.  

 Message sequence for the main tasks performed in a sub-protocol, including request and 
required response patterns; use of ETP-defined endpoint, data object and protocol capabilities; 
and error conditions and related error messages. 

 Behavior requirements (in addition to those defined in the message sequence section).  

 Sample schemas of the messages defined in a sub-protocol (which are identical to the Avro 
schemas published with this version of ETP). However, only the schema content in this 
specification includes definitions of each field in a schema. 

 Chapter 3, Overview of ETP and How it Works, has a lot of important principles and concepts that 
apply across ETP. The relevant parts of Chapter 3 are NOT repeated in the protocol-specific 
chapters. To fully understand a protocol, you MUST use both Chapter 3 and the protocol’s specific 
chapter. 

RECOMMENDATION: This document was designed to be used primarily as a PDF, with extensive linked 
cross references. If you choose to actually print a hard copy of this document (which many developers 
have said they will do), you will still need the PDF to navigate the links; see the next section.   



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 18 

1.5.2 Recommendation for Using the PDF  

With 17 defined sub-protocols (each one with its own chapter) and additional chapters and appendixes, 
this ETP Specification is a complete, detailed, and lengthy document. To help more easily navigate the 
document, we recommend clicking on the circled icon in your PDF navigation pane (as shown in the 
screenshot below). When you do that, it displays the navigation pane shown, which makes it easier to 
explore the contents and move throughout the document. The document also provides extensive in-line 
links to related content. 

 

 

 

1.5.3 Parts of this Document Are Created from the ETP UML Model 

ETP has been designed and developed using UML® implemented with Enterprise Architect (EA), a UML 
modeling tool from Sparx Systems. The schemas and some of the content in this specification (the 
example message schemas for each protocol and Datatypes in Chapter 23) have been generated from 
the UML model.  

 If any discrepancy exists between the schema and the specification, the schema is the primary 
source (though all content should be consistent because it is produced from the same source.) 
NOTE: Only this document provides definitions of data fields in the schemas.  

 Content in this specification should be considered "normative" unless otherwise specified.  

1.5.4 Documentation Conventions 

1. The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", 
"SHOULD NOT", "RECOMMENDED", "MAY" and "OPTIONAL" in this document are to be interpreted 
as described in RFC 2119. (http://www.ietf.org/rfc/rfc2119.txt).  

2. Text formatting conventions:  

a. References to other chapters or sections in this document are hyper-links that appear in bolded 
blue text.  

i. Links generated in Enterprise Architect (UML modeling tool from which schemas are 
generated) and HTTP links use the standard convention (blue text, underlined).   

Click this icon  
to display this navigation pane. 

http://www.ietf.org/rfc/rfc2119.txt


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 19 

b. Message names are in bold, italic text (and Pascal case); EXAMPLE: the OpenSession 
message. 

c. Field names are in italics (and camel case); EXAMPLE: the serverInstanceId.  

3. Energistics domain standards—WITSML (well/drilling), RESQML (earth/reservoir modeling), 
PRODML (production operations and reporting)—are informally referred to as the "MLs".  

a. Name spaces for the MLs include the ML name and version number. EXAMPLE: witsml20. 

b. Each domain standard has a package of shared data objects defined in Energistics common 
(which, in this document, is always referred to as shown here: Energistics common). Objects 
defined in Energistics common have a namespace of eml plus the version of common 
EXAMPLE: For Energistics common v2.1 the namespace is eml21.  

4. Error codes. For brevity in this specification, when an error condition is described, the text states 
"send error Name (N)" where Name and N are actual error code names and numbers, such as "send 
error EUNSUPPORTED_PROTOCOL (4)" as defined by this specification (see Chapter 24). The 
error code is sent in the Protocol Exception message, which is defined in Core (Protocol 0) but is 
used in any protocol when an error occurs. For more information, see Section 3.7.2.1 and Section 
5.3.8. 

5. Extensive use of numbering. In addition to chapter and section numbering, main steps, paragraphs, 
table rows, and key points are numbered in this document.  

a. In some cases (EXAMPLE: The task/message sequence section in each protocol-specific 
chapter) the numbers are used to show sequence.  

b. In other cases, items have been numbered for easy reference (i.e., when discussing with a 
colleague or reporting an issue, you can refer to "Section 3.7.3, Paragraph 2.b.ii"). Use of 
numbering makes it easier to link to very specific content; when possible, that has been done.  

6. Energistics documentation is produced using U.S. English spelling and punctuation conventions.  

 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 20 

1.6 ETP Resources Available for Download  

ETP leverages existing information technology standards, for example, the WebSocket Protocol, which is 
published by the Internet Engineering Task Force (IETF) and OData, which is published by OASIS. Links 
to those and other relevant standards are provided elsewhere throughout this specification.  

The table below list resources from Energistics that are available for implementing ETP, all of which are 
freely available to everyone, from the Energistics website: https://www.energistics.org/download-
standards/. Resources are included in the ETP download, unless otherwise specified. 

 Document/Resource Description 

1.  ETP Specification v1.2 

(This document) 

Provides an overview or ETP, its business purpose, supported 
use cases, design, etc. It's located in the doc folder of the ETP 

download package.  

Defines key concepts, messages, field definitions, and 
behaviors of ETP. For full understanding of ETP, the 
specification MUST be used in conjunction with the schemas.  

NOTE: Only this document provides the definitions of the data 

fields in the schemas. 

2.  Schemas Avro schemas as described in this document. The download 
package organizes the ETP schemas into 2 main groups 
(folders) plus a standalone file:  

 Protocols: A folder for each ETP sub-protocol, which contains 

the message schemas for messages defined in those 
protocols.  

 Datatypes: A set of folders for the low-level data structures, 

which are used to define the ETP messages. It contains data 
types defined by both Avro and ETP. 

 etp.apvr file: Is a single file that contains all schemas.  

3.  Proxy classes The src folder contains proxy classes for the following: 

 C#  

 Java 

4.  ETP DevKit 
(NOT in the ETP download) 

A .NET library providing a common foundation and the basic 
infrastructure for implementing ETP. For more information and 
to download a copy, go to this link at the Energistics website: 
https://www.energistics.org/developer-resources/ 

5.  ML-specific implementation specifications  
(These will be made available when 
published.) 

Each version of each Energistics domain standard (i.e., 
WITSML, RESQML and PRODML) has or will have its own 
implementation specification that provides any ML-specific 
details required to use a particular version of ETP with a 
particular version of an ML/data model.  

 

https://www.energistics.org/download-standards/
https://www.energistics.org/download-standards/
https://www.energistics.org/developer-resources/


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 21 

2 Published ETP Protocols and Summary of 
Changes 

The current version of ETP (ETP v1.2) includes the ETP sub-protocols listed in the table below. (Gaps in 
numbering in the table below mean that the protocol number has been assigned, but the protocol is not 
yet ready for publication.)  

 For an overview of how ETP works—including key concepts, technology, and functionality patterns 
used throughout ETP—see Chapter 3.  

 For ETP design principles and decisions, see Section 1.4. 

 For the content that defines each of these protocols, see subsequent chapters in this specification. 
The table below links to the protocol-specific chapter. 

This chapter also lists a summary of changes (see Section 2.1).  

Protocol Name and 
Number 

Description 

Core (Protocol 0): Establishing and 
Authorizing an ETP Session 

Creates, manages and optionally authorizes ETP sessions. 

ChannelStreaming (Protocol 1)  Minimalist streaming functionality for scenarios like smart sensors streaming data. 
For richer streaming functionality, see ChannelSubscribe (Protocol 21) and 
ChannelDataLoad (Protocol 22). 

ChannelDataFrame (Protocol 2) Gets channel data from a store in "rows". Supports the log on-disk use case.  

Discovery (Protocol 3) Enables store customers to enumerate and understand the contents of a store of 
data objects as a graph. 

Store (Protocol 4) Performs CRUD operations (create, read, update and delete) on data objects in a 
store.  

StoreNotification (Protocol 5) Allows store customers to receive notification of changes to data objects in the 
store in an event-driven manner, resulting from events/operations in Protocol 4. 

GrowingObject (Protocol 6) Manages the growing parts of data objects that are index-based (i.e., time and 
depth) other than channels. Also enables operations (adds and updates) on the 
growing data object header. 

GrowingObjectNotification 
(Protocol 7) 

Allows a store customer to receive notifications of changes to the growing parts of 
growing data objects in a store, in an event-driven manner, resulting from 
operations in Protocol 6. 

Protocol 8: DEPRECATED Deprecated and implemented as custom protocol, 2100.This protocol number will 
never be reused. 

DataArray (Protocol 9) Transfers large, binary arrays of data, which Energistics domain standards 
typically store using HDF5. 

DiscoveryQuery (Protocol 13) Query for resources with OData-like syntax (main discovery behavior is defined in 
Protocol 3). 

StoreQuery (Protocol 14) Query for data objects with OData-like syntax (main store behavior is defined in 
Protocol 4). 

GrowingObjectQuery (Protocol 16) Query for parts in a growing data object using OData-like syntax (main growing 
data object behavior is defined in Protocol 6). 

Transaction (Protocol 18) Provides high level support for transactions on operations in other protocols, 
especially Protocols 4 and 9 (typically associated with earth modeling/RESQML). 

ChannelSubscribe (Protocol 21) Provides read/get data behavior for channels with standard publish/subscribe 
behavior for customers to connect to a store (server) and receive new channel 
data as available (streaming).  

ChannelDataLoad (Protocol 22) Provides write/put data behavior for channels, allowing one endpoint to 
push/load/stream data to another endpoint. 

Dataspace (Protocol 24) Used to discover dataspaces in a store. After discovering dataspaces, use 
Discovery (Protocol 3) to discover objects in the dataspace. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 22 

Protocol Name and 
Number 

Description 

SupportedTypes (Protocol 25) Enables store customers to discover a store's data model, to dynamically 
understand what object types are possible in the store at a given location in the 
data model (though the store may have no data for these object types), without 
prior knowledge of the overall data model and graph connectivity. 

Protocol 26 – 1999 Undefined. Reserved for future use.  

Protocol 2001+ Custom. Available for custom use by individual companies (not Energistics). 

Protocol 2100: WitsmlSoap In ETP v1.1, this protocol was published as Protocol 8. It is now a custom 
protocol published by an Energistics member company. . 

2.1 Summary of Changes from ETP v1.1 to v1.2 

The design changes from ETP v1.1 to v1.2 are significant. These changes were made in efforts to make 
the design more consistent and robust, based on feedback from real-world use, plus adding key 
functionality to support a broader range of use cases, include increased reliability (i.e., avoiding data 
loss). Additionally, the design was improved to make ETP work consistently across all Energistics domain 
standards, WITSML, RESQML and PRODML.  

There are many more protocols in ETP v1.2, which is by design, in efforts to support adoption and 
implementation of ETP.  

A conscious design decision was to not "overload" any one protocol with too much functionality and to 
avoid or minimize any interdependency of protocols; this approach allows implementers to implement only 
the functionality they need. But for consistency, when you implement an ETP protocol, you MUST 
implement all of it (i.e., you must support all messages and functional requirements).  

EXAMPLES: A discovery process for dataspaces is in its own protocol (Dataspaces (Protocol 24)) 
because for many use cases, discovery of dataspaces is not needed. Also query behavior was put into 
separate "companion" protocols so that support of query behavior could be optional (e.g., DiscoveryQuery 
(Protocol 13) contains the query behavior/capabilities for Discovery (Protocol 3), and StoreQuery 
(Protocol 14) contains the query behavior/capabilities for Store (Protocol 4)). 

For the complete list of ETP design principles, see Section 1.3. 

This section provides a summary of the key changes.  

2.1.1 The Specification Document has been Reorganized and Improved 

Key changes:  

 Each sub-protocol defined by ETP has its own chapter, which contains all the key information about 
that sub-protocol, with each chapter structured in the same consistent way to include:  

 Introduction (purpose, scope, etc.) and relationship to other ETP sub-protocols.  

 Message sequence for the main tasks performed in a sub-protocol, including request and 
required response patterns; use of ETP-defined endpoint, data object and protocol capabilities; 
and error conditions and related error messages. 

 Behavior requirements (in addition to those defined in the message sequence section).  

 Sample schemas of the messages defined in a sub-protocol (which are identical to the Avro 
schemas published with this version of ETP). However, only the schema content in this 
specification includes definitions of each field in a schema. 

 New Chapter: Chapter 3, Overview of ETP and How it Works explains important concepts and 
patterns applicable across ETP. RECOMMENDATION: Familiarize yourself with this chapter; 
complete understanding of each individual ETP sub-protocol relies on information in Chapter 3. 

 Other organizational changes and cross references in an effort to improve the usability of the 
document.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 23 

 New Appendixes:  

 Appendix: Energistics Identifiers documents the specific requirements for identifying 
Energistics data objects in the domain standards and in ETP, which is predominantly using URIs, 
which most use the formats specified in the appendix, which are referred to as the canonical 
Energistics URIs. NOTE: For ETP v1.2, this content supersedes the Energistics Identifier 
Specification, v4.0. 

 Appendix: Data Replication and Outage Recovery Workflows describes high-level workflows 
for the stated tasks and also provides additional information about why new features have been 
added to ETP v1.2 (for example, the storeLastWrite field, which is a key component for these 
workflows) how some  of the sub-protocols and new features are intended to work.  

- Appendix: Security Requirements and Rationale for the Current Approach 
provides a high-level summary of requirements for the new security design and a brief 
explanation as to why the other security standards that were considered were not selected.  

2.1.2 Things that Have Been Removed from ETP 

This section lists things (functionality/features) that have been removed since ETP v1.1. The bulleted list 
below are the simpler changes; the sub-sections are for things that were removed and require more 
explanation. 

 Nullable unions removed for strings, arrays and maps (and other types that are natively nullable). 

 Growing object parts can no longer be streamed using ChannelStreaming (Protocol 1) (as was done 
in ETP v1.1). GrowingObject (Protocol 6) has now been significantly enhanced to handle all 
operations for growing object parts; see Section 2.1.3).  

 Retained notifications. Notifications are now only sent for changes that happen while a session is 
established. New mechanisms have been added to support efficiently discovering changes that 
happened while disconnected. 

 Removed MIME types for object types and now use data object types that are based on OData 
qualified types. This change resulted in a change to the URI format. For more information, see 
Section 2.1.3.1 and Appendix: Energistics Identifiers. 

2.1.2.1 Stability Indexes  
Up to v1.1, ETP used stability indexes (a concept borrowed from Node.js API), which let us mark 
protocols on a scale of "Experimental" to "Stable". The idea was to allow evolutionary development of the 
specification, while allowing implementers to use with confidence the portions that are stable.  

In reality, these indexes weren't as practical or helpful as was hoped, so they have been removed. Now if 
content is published in the specification, it is considered normative and ready for implementation. Draft 
content may be published in a separate document, so that it is available for people to review and test, 
until it is ready to be published. 

2.1.2.2 Protocol 8 (WitsmlSoap) Deprecated/Moved to Custom Protocol 
Protocol 8 has been deprecated and implemented as custom protocol, 2100. Protocol 8 (number) will 
never be reused. 

2.1.2.3 Session Survivability Functionality 
All previous behaviors associated with "remembering" things across connections have been removed. 
There is no more session state maintained between connections. ETP servers are now 'stateless'. 
Individual protocols describe behavior for reconnecting and "catching up". NOTE: The domain data, in 
some cases, is still required to remember some state, such as deletions or when something changed. 
Those behaviors are described in the individual protocols, in Appendix: Data Replication and Outage 
Recovery Workflows, and additional information may be provided in the companion ML-specific ETP 
implementation specifications.   



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 24 

2.1.3 Improved/Redesigned ETP Sub-Protocols and New Features 

The table below lists protocols that were officially in ETP v1.1 and a summary of changes. However, the 
protocols may have been "experimental" (the former stability index as described in Section 2.1.2.1) or 
they have been changed/improved significantly in ETP v1.2, as part of the overall design and an effort to 
implement consistent patterns across protocols and make them work for all Energistics data models.  

Protocol Description of Change 

Core (Protocol 0)  Some new data fields have been added to existing messages, for example, timestamps 
to support clock-based eventual consistency (data replication) workflows and changed 
or new fields to support new security behavior (see Section 2.1.3.5).   

o RenewToken message has been renamed to Authorize and a new 
AuthorizeResponse message has been added; these messages are used for 
initial authorization of an ETP session and for renewal of Bearer Tokens.  

 New Ping and Pong messages to also support clock-based eventual consistency (data 
replication) workflows.  

 Support for multiple versions of ETP: 

o Server can support both ETP v1.1 and ETP v1.2. 

o Client can choose which version of ETP it wants to use. 

 CANNOT use different versions of ETP sub-protocols from different versions of ETP. 
(That is, an ETP session now is with one version of ETP and all sub-protocols in that 
version).  

 Placeholder support for exchanging data objects in JSON or other formats. 

 More granular object support. 

 More secure session identifiers. 

 Message compression support (vs. object compression support in ETP v1.1).  

 Addition of endpoint and data object capabilities (in addition to protocol capabilities). 

o WebSocket limits are exchanged and must be respected.  

 Error handling: ProtocolException messages now have 2 modes: 

o Single error. 

o Map of error messages relating back to a map of multiple request items (which, 
allows some of the requests to pass/fail (instead of the entire request failing)). 

ChannelStreaming (Protocol 1)  Now for "simple streaming" only, so many messages have been removed and the message 
names and behavior have been simplified. The "standard streaming" capabilities have been 
moved to two new protocols (ChannelSubscribe (Protocol 21) and ChannelDataLoad 
(Protocol 22)), which are explained in Section 2.1.4).  

 Removed all ‘discovery’ aspects previously in this protocols; all discovery operations are 
done using Discovery (Protocol 3). 

 Removed the notification aspects (channel status changes and notifications of added / 
removed channels); all relevant notifications are now done with StoreNotification 
(Protocol 5). 

 Data rate-throttling limits were removed.  

 Streaming of growing object parts is no longer allowed (as was the case in ETP v1.1). 

Discovery (Protocol 3)   Design change for the discovery operation to "walk" the data model as a graph.  

 Can now discover data objects (nodes on the graph) and relationships between them 
(edges that connect the nodes). 

 Changing this protocol was a major redesign to properly support cross-domain 
workflows and all Energistics data models. 

 Added support for discovering deleted objects 

 Moved support for dataspace discovery to Dataspaces (Protocol 24) and model 
discovery to SupportedTypes (Protocol 25). 

Store (Protocol 4)  Message names and functionality have been changed, significantly. Clear naming-
convention patterns (see Section 3.4.2).  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 25 

Protocol Description of Change 

 Messages can now operate on several objects at the same time: 

o ETP v1.1: GetObject message 

o ETP v1.2: GetDataObjects message 

 Robust support for sending and retrieving large data objects 

o Objects that exceed the WebSocket message constraints are sent using a set of 
new Chunk messages. 

 Can now create (but NOT update!) and read the complete growing data objects (data 
object "header" and its parts).  

 Behavior for data objects that contain other data objects using ByValue mechanism is 
clearly defined (e.g., Channels in Channel Sets). 

 Store role now sends success/confirmation messages in response to Put and Delete 
messages. 

 New per-data-object session capabilities let customers know what operations are 
supported for each object type and per-data-object-limits for sizes (e.g., how many 
contained data objects a container can have).  

StoreNotification (Protocol 5)  This protocol was "experimental" in ETP v1.1. The design is significantly improved and 
consistent with other changes/patterns for ETP v1.2. 

 Subscriptions are now graph-based (were tree-based in v1.1). 

 Many more types of notifications are supported.  

 Notifications are only sent for changes that happen during the session. 

 The store can automatically subscribe the customer to notifications. 

 Robust handling of large data objects (using Chunk messages as in Store (Protocol 4).  

 In ETP v1.1, functionality that was previously in ChannelStreaming (Protocol 1) is now in 
StoreNotification, which includes notifications for channels added, removed and status 
changes. 

GrowingObject (Protocol 6)  This protocol was "unstable" in ETP v1.1. The design is significantly improved and consistent 
with other changes/patterns for ETP v1.2. 

 Now the ONLY way to do CRUD operations on the PARTS of a growing data object.  

o In ETP v1.1, ChannelStreaming (Protocol 1) could be used to read parts; this 
behavior is no longer allowed.  

o Growing data objects and their parts can be ADDED and retrieved using Store 
(Protocol 4). 

 Supports operations on multiple parts. 

 Supports atomic range replace or delete of parts. 

 Supports operations on only the header of the growing data object (either add or 
updated).  

 Robust handling of large data objects. 

 Use of change annotations for more efficient recovery from unplanned outages 
(minimizing the need to "resend the entire data object".  

DataArray (Protocol 9) Previously published as Protocol 7 and as "experimental"; now Protocol 9. Messages names 
and functionality have been changed/added. 

2.1.3.1 New URI Format 
The URI format has been revamped. The use of MIME types have been removed and replaced with data 
types based on OData qualified types, which is reflected in the URI format. For all necessary information 
about the new format, see Appendix: Energistics Identifiers. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 26 

2.1.3.2 New Plural Messages 
As a performance improvement based on testing of ETP v1.1, many protocol messages have been 
updated to allow multiple requests and responses within the same message, (which is typically done 
using array or map data structures). Errors can now also be communicated in the same way using these 
plural features in the ProtocolException message. Multipart messages are also used more widely to 
allow data that is too large to fit into a single WebSocket message to be sent. 

For information on plural message design patterns and how they work, see Section 3.7. 

2.1.3.3 New ETP-Defined Response Messages 
Most messages in all ETP sub-protocols now have an ETP-defined response messages. Many of these 
are called "success only" response messages and have been added to ETP to support more efficient 
operations of customer role software. For example, a customer now receives confirmation of when a data 
object has been successfully added to the store, helping the user of that application to know when they 
can begin additional operations on that data object. 

For message-naming conventions, see Section 3.4.2. 

2.1.3.4 New Reliability Features 
Reliability in ETP is about avoiding data loss. The approach for ETP reliability relies on the exchange of 
timestamps from the store’s clock, in several operations, in various ETP sub-protocols. Endpoints can 
track these timestamps, for about 24 hours, for channel data and growing data object parts and can track 
it for even longer for data objects.  

The approach that ETP takes is eventual consistency, which is "...a characteristic of distributed computing 
systems such that the value for a specific data item will, given enough time without updates, be consistent 
across all nodes. Accordingly, the value across all nodes will be consistent with the last update that was 
made—eventually." (https://whatis.techtarget.com/definition/eventual-
consistency#:~:text=Eventual%20consistency%20is%20a%20characteristic,that%20was%20made%20%
2D%2D%20eventually). 

The main use cases for ETP is server-to-server replication and catching up after unintended outage (e.g., 
a dropped satellite link). For a substantial overview for the intended workflows in ETP, see Appendix: 
Data Replication and Outage Recovery Workflows. 

The new features added to support these workflows include those listed below, which are explained in 
detail in the relevant sections of this specification. 

 Store-only timestamps (e.g., storeCreated and storeLastWrite) which are timestamps on the 
Resource record ONLY—NOT the ML-defined data object in the store (i.e., NOT the Creation or 
LastUpdate elements from the Citation element of the data object). For more information, see 
Section 3.12.5.1. 

Several messages have one or both of these stamps and exchange them to track times (which is 
explained in relevant sections of the specification):  

 OpenSession and RequestSession messages in Core (Protocol 0) 

 Ping and Pong messages, which were added explicitly so that an endpoint can track the latest 
change time (or "high-water mark") or help determine if the store clock has changed; these 
message are defined in Core (Protocol 0), but may be used at any point in an operation.  

 Resource record and through it, the DataObject record (DataObject record uses the Resource 
record) (see Sections 23.34.5 and 23.34.11).  

 Notification messages in StoreNotification (Protocol 5) and GrowingObjectNotification (Protocol 
7). (NOTE: Put operations in Store (Protocol 4) and GrowingObject (Protocol 6) may not have 
timestamps, but an endpoint can get them from notification messages.) 

 Change annotations, which are used in GrowingObject (Protocol 6) and ChannelSubscribe 
(Protocol 21) 

 Ability to query for what has changed.  

https://whatis.techtarget.com/definition/eventual-consistency#:~:text=Eventual%20consistency%20is%20a%20characteristic,that%20was%20made%20%2D%2D%20eventually
https://whatis.techtarget.com/definition/eventual-consistency#:~:text=Eventual%20consistency%20is%20a%20characteristic,that%20was%20made%20%2D%2D%20eventually
https://whatis.techtarget.com/definition/eventual-consistency#:~:text=Eventual%20consistency%20is%20a%20characteristic,that%20was%20made%20%2D%2D%20eventually


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 27 

2.1.3.5 New Security Functionality and Requirements 
ETP v1.1 supported Basic Authentication and JSON Web Tokens (JWT).  

Based on concerns for the need for improved security from the Energistics community, security in ETP 
v1.2 has been redesigned. The new v1.2 approach still focuses on authorizing the connections between 
ETP applications.  

Some of the biggest changes in v1.2: 

 Allows authorization to happen at the ETP application layer instead of OR in addition to the HTTP 
transport layer. 

 Supports authorization workflows for both endpoints in an ETP session (i.e., the client can authorize 
to the server and the server can authorize to the client). 

 Has expanded the use of tokens to include any type of bearer token, not just JWT. 

 Basic Authentication is no longer recommended. 

For more information:  
 About the requirements and how the new approach works, see Chapter 4 Securing an ETP Session 

and Establishing a WebSocket Connection. 

 About the specific changes to ETP v1.2 in support of this new approach, see Section 4.1.1.2. 

 About why and how the Energistics community arrived at the current approach, see Appendix: 
Security Requirements and Rationale for the Current Approach. 

2.1.4 New ETP Sub-Protocols 

Based on a conscious design approach (explained in the introduction to this Section 2.1) the following 
new ETP sub-protocols were added to ETP v1.2.  

New error codes have also been added to accommodate new behaviors; for the complete list of error 
codes defined in this version of ETP, see Chapter 24. 

Protocol Description of Purpose and Features 

ChannelDataFrame (Protocol 2) Gets channel data from a store in "rows". Supports the log on-disk use case. 

GrowingObjectNotification (Protocol 7)  Allows store customers to receive notification of changes to parts of growing data 
objects in the store in an event-driven manner, from events in Protocol 6 
(GrowingObject). 

Where applicable, consistent in design with StoreNotification (Protocol 5)  

DiscoveryQuery (Protocol 13) Query behavior for discovery operations. 

StoreQuery (Protocol 14) Query behavior appended for store operations. 

GrowingObjectQuery (Protocol 16)  Query behavior for parts within a growing data object. 

Transaction (Protocol 18)  Handles messages associate with software application transactions, for example, 
end messages for applications that may have long, complex operations (typically 
associated with earth modeling/RESQML). 

ChannelSubscribe (Protocol 21) The "read/get" behavior for channel data, this protocol provides standard 
publish/subscribe behavior. 

 In ETP v1.1, some of this behavior was previously in ChannelStreaming 
(Protocol 1), which is now only for simple streamers. 

 Significant design to include efficiency and outage recovery.  

 Added previously missing functionality (from WITSML v1.x and ETP v1.1), 
including synchronization/historical change detection features. 

ChannelDataLoad (Protocol 22)  The "write/put" behavior for channel data; this protocol allows an endpoint with the 
customer role to connect to an endpoint with the store role and push/load data to it.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 28 

Protocol Description of Purpose and Features 

 New functionality for ETP v1.2. 

 Similar design to Protocol 21 (for consistency) and to include same/similar 
features for the "write" operations. 

Dataspaces (Protocol 24) Used to discover dataspaces in a store. After discovering dataspaces, use 
Discovery (Protocol 3) to discover objects in the dataspace. 

SupportedTypes (Protocol 25)  Used to discover a store's data model, to dynamically understand what object types 
are possible in the store at a given location (though the store may have no data for 
these object types), without prior knowledge of the overall data model and graph 
connectivity. 

 

2.1.5 Error Codes Have Been Significantly Revised 

This list summarizes the changes. For the complete list of ETP-defined error codes in this version and for 
additional information on assigning and using codes, see Chapter 24.  

 Codes are no longer scoped to individual protocols. 

 Any error code can be used in any appropriate error condition. (NOTE: This specification 
describes error conditions and the error code that MUST be used if that error condition occurs. 
However, the specification does NOT describe all possible error conditions that could occur. 
Implementers are encouraged to use their best judgement to apply the defined error codes for 
error conditions that are not explicitly defined.)  

 Error codes that were numbered based on the protocol in which they were defined have NOT 
been renumbered. (EXAMPLE: ENOTGROWING OBJECT (6001) is still error code 6001 but 
may be used wherever appropriate, for example, in GrowingObjectNotification (Protocol 7) or 
GrowingObjectQuery (Protocol 17).) 

 Implementers MAY specify custom error codes, which MUST be assigned negative code 
numbers. 

 These codes have been deleted:  

Deleted Error Code Name (v1.1) Error Code to use now (v1.2) 

EGROWING_PORTION_IGNORED (3005) 

NOTE: You can now add a growing object and its 

parts via Store (Protocol 4), but update to parts of a 
growing data object are no longer allowed in 
Protocol 4 (parts must be updated with 
GrowingObject (Protocol 6).  

EUPDATEGROWINGOBJECT_DENIED (23)  
(For attempt to update parts using Protocol 4.) 

 

 These codes have been renamed:  

Former Error Code Name (v1.1) New Error Code Name (v1.2) 

EPERMISSION_DENIED (6) EREQUEST_DENIED (6) 

ETOKEN_EXPIRED (10) EAUTHORIZATION_EXPIRED (10) 

EINVALID_OBJECT (3002) EINVALID_OBJECT (14) 

ENOCASCADE_DELETE (3003) ENOCASCADE_DELETE (4003) 

EPLURAL_OBJECT (3004) EPLURAL_OBJECT (4004) 

 

 These new codes have been added: 

 ELIMIT_EXCEEDED (12) 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 29 

 EMAX_TRANSACTIONS_EXCEEDED (15) 

 EDATAOBJECTTYPE_NOTSUPPORTED (16) 

 EMAXSIZE_EXCEEDED (17) 

 EMULTIPART_CANCELLED (18) 

 EINVALID_MESSAGE (19) 

 EINVALID_INDEXKIND (20) 

 ENOSUPPORTEDFORMATS (21) 

 EREQUESTUUID_REJECTED (22) 

 EUPDATEGROWINGOBJECT_DENIED (23) 

 EBRACKPRESSURE_LIMIT_EXCEEDED (24) 

 EBACKPRESSURE_WARNING (25) 

 ETIMED_OUT (26) 

 EAUTHORIZATION_REQUIRED (27) 

 EAUTHORIZATION_EXPIRING (28) 

 ENOSUPPORTEDDATAOBJECTTYPES (29) 

 ERESPONSECOUNT_EXCEEDED (30) 

 EINVALID_APPEND (31) 

 EINVALID_OPERATION (32) 

 ERETENTION_PERIOD_EXCEEDED (5001) 

- ENOTGROWINGOBJECT (6001) 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 30 

3 Overview of ETP and How it Works (Crucial—

read this chapter!) 
This chapter is crucial for developers who are implementing ETP. It provides an overview of the 
Energistics Transfer Protocol (ETP) and detailed explanation of how it works, which includes key 
concepts, functionality, patterns, and technology used throughout ETP.  

IMPORTANT! The protocol-specific chapters in this specification provide details for each specific sub-
protocol in the current version of ETP. Those chapters have been designed to work with this chapter (that 
is, this crucial information is NOT repeated in the protocol-specific chapters, only referenced). To 
understand how a sub-protocol works you need BOTH this chapter and the protocol-specific chapter. It is 
highly recommended you read this chapter first.  

Other related information:  
 For the list of protocols published in this version of ETP and a summary of changes since the 

previous published version of ETP, see Chapter 2. 

 For the list of design principle and decisions for ETP, see Section 1.4. 

 For the list of ETP error codes, see Chapter 24. 

Specifically, this chapter: 

 Provides a "big picture" overview of how ETP works (Section 3.1). It provides important 
introductory material about ETP as it relates to communication protocols and how it uses endpoint 
roles. This section is also the top-down view of some of the bottom-up details provided in other 
sections of this chapter and Chapter 4.  

 Gives an overview of ETP sessions and how they work with HTTP and WebSocket connections 
(Section 3.2).  

 Defines and explains server, protocol, and endpoint capabilities which are ETP-defined 
parameters that are used to help prevent aberrant behavior (e.g., sending oversized messages or 
sending more messages than an endpoint can handle) (Section 3.3).  

 Describes the ETP message approach and related topics (Section 3.4), including: 

 Overview of the Avro schemas that define ETP messages and how they are generated. 

 Architecture of messages (use of ETP-defined records to compose consistent messages).  

- General message types and related naming conventions.  

 Describes the ETP message format, which includes a separate message header and message body 
that are transmitted separately on the wire to support more efficient processing (Section 3.5). 

 Describes ETP extension mechanisms (Section 3.6). 

 Explains some common ETP message patterns designed to optimize processing and data flow; 
these include plural messages and multipart requests, responses, and notifications (which are 
actually composed of multiple messages) (Section 3.7). 

 Describes how ETP messages are serialized with Avro, which supports binary and JSON encoding 
(Section 3.8). NOTE: Currently, JSON encoding may be used only for internal testing and debugging. 

 Describes the message transport mechanism, which is the WebSocket protocol (Section 3.9). 

 Gives an overview of how data queries work in ETP, using URI query string syntax and a tailored 
subset of OData (Section 3.10). 

 Provides an overview of change tracking and detection mechanisms in ETP (Section 3.11) 

 Describes how common types of data that are used extensively by oil and gas software—for 
example, variations of time (e.g., time stamps, elapsed time), units of measure (UOM) and 
ranges/intervals—are handled (Section 3.12). 

 Provides some troubleshooting tips (Section 3.13). 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 31 

3.1 ETP Overview: Big Picture 

ETP is a communication protocol. Generically, a communication protocol can be thought of as a precise 
set of rules for the exchange of data between endpoints, usually in the form of messages. Message 
exchange in ETP is asynchronous. 

ETP is a collection of messages, organized into sub-protocols (Figure 1, orange box). Each sub-protocol 
has a specific purpose, often deals with different types of data (e.g., data objects, channels, arrays, etc.), 
and the messages for each of these sub-protocols are designed to perform tasks specific to their 
respective purposes. For example: 

 The purpose of Protocol 0 is to establish and manage the ETP session; its messages (such as 
RequestSession and OpenSession) have been designed to do tasks required to create and 
manage a session.  

 The purpose of Protocol 3 is to discover data objects and relationships between them in a store.  

 The purpose of Protocol 4 is to perform CRUD operations for data objects in a store. 

 The purpose of Protocol 5 is to subscribe to and receive notifications about changes to data objects. 

 The purpose of Protocol 21 is to subscribe to channels and have the data streamed to you.  

 For the complete list of ETP sub-protocols published in this version of ETP, see Chapter 2, which 
contains links to the individual chapters for each protocol.  

 

Figure 1: High-level schematic of ETP and how it works.  

Like most modern communication protocols, ETP uses a layered approach and sits on top of the existing 
Transmission Control Protocol (TCP) layered model (Figure 1, gray boxes) (for a simplified stack 
diagram, see Figure 2). Thus, the concept of protocol is used in many contexts throughout this document, 
and the notion of a sub-protocol is used to discuss protocols that sit (somewhat un-intuitively) just above 
another protocol in the stack. 

IMPORTANT! In this document, the terms protocol and sub-protocol are used interchangeably, about any 
layer, depending on context.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 32 

 
Figure 2: ETP protocol stack 

Figure 2 shows that ETP is itself a sub-protocol of the WebSocket protocol and that ETP also has its own 
layers and sub-protocols, each designed to carry specific data that follows a specific pattern (in terms of 
size, frequency, and variability of data, as described above). Core (Protocol 0) has a direct connection to 
WebSocket and is agnostic to the various kinds of messages that are carried in each of its own sub-
protocols. (For more information, see Section 3.9.1 How ETP is Bound to WebSocket.) This layered 
approach allows for separation of concerns between the various parts of the stack and supports the 
adoption of future standards that may be developed lower in the stack.  

3.1.1 Sub-Protocols defined by ETP 

Each of the ETP sub-protocols has a name and numeric identifier; as in most cases, the name is for 
humans and the numeric identifier is for computers. For example, the Core protocol is Protocol 0, and the 
ChannelStreaming protocol is Protocol 1. For a complete list of ETP protocol names and numbers 
included in this version, see Chapter 2. Each ETP schema header has a protocol field that shows the 
number of the protocol that defines that message (see Figure 6 in Section 3.5.5).  

3.1.1.1 Custom Protocols 
Optionally, organizations may develop and use their own custom protocols. ETP has designated a range 
of numbers (2000 or higher) to identify custom protocols. 

3.1.1.2 Requirements for Supporting ETP Protocols 
ETP has been designed for flexible implementation, so that a company can implement only the 
functionality it needs. However, for consistency and interoperability, implementers MUST observer these 
rules:  

1. Core (Protocol 0) MUST be supported.  

2. Support for other protocols is optional (depending on the functionality a company wants to implement 
in its software products).  

3. If a software application supports an ETP sub-protocol, then it MUST support all messages and 
behaviors in that protocol.  

a. Protocols that a server supports MUST be listed in its ServerCapabilities record (for more 
information, see Section 4.3.1). 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 33 

b. Where ETP endpoint, protocol or data object capabilities allow, applications may advertise and 
impose certain limits on the functionality they support. 

4. If a sending endpoint requests an action for a protocol that the receiving endpoint does not allow, the 
receiving endpoint MUST send either the specific error code defined by the relevant part of this 
specification or, if no specific error code is defined, EREQUEST_DENIED (6) or an appropriate 
custom error code. 
RECOMMENDATION: Endpoints SHOULD supply an error message explaining why the request was 
denied. For example, for read-only servers (which do not allow Put operations), the explanation could 
be "Read-only server; operation not allowed."  

NOTE: Error codes are sent in a ProtocolException message, which is defined in Core (Protocol 0), 
but is used in the protocol where the error occurred. For more information about ProtocolException 
messages and how they work, see Section 3.7.2.1. 

3.1.2 Endpoints and Roles 

Consistent with all TCP communication, ETP includes the fundamental roles of client and server (Figure 
1, bottom). That is, in all ETP communications, one endpoint MUST be a server that is listening on a TCP 
port, and one endpoint MUST be a client that begins by connecting on that address and port.  

The client connects to the server using WebSocket (ws or wss). (For details of this process and for 
information on ETP security, see Section 4.3.) 

IMPORTANT! Like WebSocket, ETP communication is strictly between two parties—with no allowance 
for multicast messages. That is, ETP allows for multiple sessions, but each session may have only 2 
endpoints.  

3.1.2.1 ETP Defines Two Roles for each Protocol 
ETP also includes the notion of roles and defines 2 possible roles for each sub-protocol. Roles govern 
behavior within an ETP sub-protocol and define sets of functionality that can be associated with a specific 
role. These ETP roles are independent of the initial client server role, and the general direction of 
information flow is independent of this client/server relationship. This separation of direction of information 
flow from the client/server role is a business requirement to support WITSML use cases and workflows. 

The assignment of these roles to each endpoint happens as a part of the ETP session negotiation, which 
happens in Core (Protocol 0) (see Chapter 5). In general, the client begins by telling the server: 

 which sub-protocol(s) it wants to use  

 the named role for each sub-protocol that it wants the server to fulfill in this session. Each endpoint 
can have only one role per protocol, per session.  

IMPORTANT: An endpoint’s roles MUST be consistent across protocols within a single session. That is, 
in one session, an endpoint may not be a store in one protocol and a customer in another. If an endpoint 
needs to use different roles (e.g., both customer and store), it MUST use more than one session. 

The server then responds to indicate it is able to fulfill its role; if it cannot fulfill the role, it MUST send a 
ProtocolException message to the client with an appropriate error code, for example, ENOROLE (1) or 
ENOSUPPORTEDPROTOCOLS (2).  

This “client-goes-first” logic is predicated on the basis that a client knows why it is connecting to a server; 
whereas, a server that is capable of supporting two different roles has no way of knowing which one the 
client wants to use. An endpoint may only choose one role for each sub-protocol in each session.  

3.1.2.2 Current Roles in ETP 
The following table lists the pairs of roles currently used in ETP and the protocols in which they are used. 
Additionally, each protocol-specific chapter in this specification and each message schema identifies its 
two roles, and each section in this specification that describes an ETP message indicates the role that 
sends that message.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 34 

ETP Roles Used In Protocols  

client, server Core (0)  The server role represents the endpoint that listened 

for and accepted the incoming WebSocket 
connection. 

 The client role represents the endpoint that 
connected to the server to establish the WebSocket 

connection. 

producer, consumer ChannelStreaming 
(Protocol 1) 

 The store role represents a store of data objects and 

bulk data defined in the Energistics domain 
standards—WITSML, RESQML, or PRODML—and 
EML, which is the namespace for Energistics 
common, a set of data objects shared by the other 
domain standards. 

 The customer role represents any type of 

Energistics-aware software application wishing to 
read data from or write data to a store, including an 

application that is itself typically a server/store (for 
example, using ETP for data 
replication/synchronization workflows; for more 

information, see Appendix: Data Replication 
and Outage Recovery Workflows). 

store, customer All other ETP protocols  The producer role represents a source that makes 

new data available over time for consumption. 

 The consumer role represents an application 
wishing to consume data produced by a producer. 

 

3.1.2.3 Example of Roles and Their use from WITSML 
Here is a more concrete example from WITSML of how roles work: ChannelSubscribe (Protocol 21) and 
ChannelDataLoad (Protocol 22) are for reading and writing channel data, respectively. Both have the 
same two roles: customer and store.  

When establishing an ETP session (in Protocol 0), the "client" always specifies the role—but it can 
choose to be a store or customer on either protocol, depending on the use case/workflow. 
EXAMPLE:◦Simplistically, we could say that a rig aggregator is usually a store; a service company 
WITSML store can be a either a store or a customer, and a Web browser or desktop client is usually only 
a customer. For the rig aggregator/store interaction, either endpoint could be the "client" that initiates the 
ETP connection and then chooses its role, depending on whether it is going to "pull" data (using 
ChannelSubscribe (Protocol 21)) or "push" data (using ChannelDataLoad (Protocol 22)). (For more 
information, see Appendix: Data Replication and Outage Recovery Workflows, Section 26.2.4.)  

3.1.3 Session 

ETP includes the notion of a session, which is an established WebSocket connection between a client 
and server that is open for a period of time. Each endpoint maintains information for the life of the session 
(as explained in other sections of this specification).  

When the ETP session is established, the client and server (in their respective ETP protocol-specific 
roles) may begin using the sub-protocols and data objects negotiated in the session to perform the 
required operations. The operation of each ETP sub-protocol are covered in Chapters 5–22 of this 
document. 

For more information about ETP sessions, see Section 3.2.  

IMPORTANT! ETP endpoints MUST have clocks. Workflows for reconnecting after a dropped connection 
and eventual consistency between stores are based on these endpoints being able to assess changes 
and retrieve changed (historical) data since a particular time.  

 For more information about use of time and timestamps in ETP, see Section 3.12.5. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 35 

 For more information about workflows based on using these timestamps, see Appendix: Data 
Replication and Outage Recovery Workflows.)  

3.1.4 Data objects, Resources, and Identifiers (UUIDs, URIs, and UIDs) 

Operations in ETP are performed on data objects that represent real-world business objects, like wells, 
horizons, or production volumes. These data objects are defined by the Energistics domain standards, 
WITSML, RESQML and PRODML.  

However, for efficiency of operations, initial inquiries in ETP often return a resource, which is a lighter 
weight meta-object based on the content of the actual instance of a data object.  

Energistics specifies and requires these main types of identifiers: UUID, URI, and UID. (For more 
information about Energistics identifiers, see Appendix: Energistics Identifiers.) 

 UUID. In Energistics domain models, an instance of a data object is uniquely identified with a UUID. 
In most messages and records use of UUID must be of datatype Uuid (Section 23.6). 

 URI. In ETP, an instance of a data object MUST be identified with a URI.  

 Energistics specifies canonical URIs (e.g., for data objects, data spaces, and data object 
queries), which MUST be supported. 

 IMPORTANT! In most cases in this specification, when the customer has to provide a URI (for 
example, in a request message) it must be the canonical Energistics URI (Section 25.3.5).  

 ETP also supports use of alternate URI formats. If an endpoint supports them, and their use is 
established in an ETP session, alternate URI formats may be used in subsequent requests in the 
ETP session. 

- For more information about rules and usage for URIs in ETP, see Section 3.7.4. 

 UID. In Energistics domain models, some data objects have one or more collections of sub-objects or 
parts. A UID uniquely identifies one sub-object or part within its collection. A UID may or may not be 
in the form of a UUID. EXAMPLE: A Trajectory has a collection of TrajectoryStations, and each 
TrajectoryStation has a UID that is different than the UID of all other TrajectoryStations in that 
Trajectory. 

 Some ETP sub-protocols use UIDs to refer directly to a specific part or sub-object within a data 
object.  

- Other IDs like message IDs, channel IDs and map keys are discussed elsewhere in this 
document. 

3.1.5 ETP Messages 

Each ETP sub-protocol defines a set of messages to be used to carry out operations designed for the 
sub-protocol. EXAMPLE: Store (Protocol 4) has messages designed to get objects from the store and 
messages to put objects in the store.  

ETP messages: 

 Are defined in Avro schemas and serialized using Avro (a system specifically designed for this 
purpose). For more information about messages, see Sections 3.4 (ETP Message Approach) and 
3.5 (ETP Message Format). 

 Are transported in accordance with the message framing of the WebSocket (WS) protocol, a protocol 
standardized by the Internet Engineering Task Force (IETF) as RFC 6455 
(http:/tools.ietf.org/html/rfc6455), which allows for high-speed, full-duplex, binary communication 
between endpoints (primarily Web servers and browsers) using TCP and the standard HTTP(s) ports 
80/443.  

NOTE: Like WebSocket, ETP communication is strictly between two parties—with no allowance for 
multicast messages. That is, ETP allows for multiple sessions, but each session may have only 2 
endpoints. For more information on the WebSocket protocol, see Section 3.9. 

http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc6455


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 36 

3.1.6 Security 

In any communication protocol—especially one carrying sensitive, proprietary data—security is a major 
concern. With regard to security:  

 ETP DOES NOT itself define any new security protocols. Rather, it relies on the available security 
mechanisms in its underlying protocols (HTTP, WebSocket, TLS, TCP, etc.).  

 ETP DOES specify authorization methods (based on adoption and adaption of OAuth 2.0 and 
OpenID Connect Discovery v1.0), which MUST be supported by all servers for interoperability. 

 However, this approach DOES allow implementers to add custom behavior now and for future 
extensibility.  

 ETP focuses only on authorizing the connections between ETP applications (not necessarily a 
device). 

For more information, see Section 4.1. 

3.2 Sessions: HTTP, WebSocket and ETP 

ETP includes the notion of a session, which is an established WebSocket connection between a client 
and server that is open for a period of time. Each endpoint maintains information for the life of the session 
(as explained in other sections of this specification). One benefit of a session is that it allows for a context 
within which various domain objects can be referenced in messages by abbreviated identifiers (which are 
often only meaningful/valid during a given session) as opposed to their character-based names. This 
approach allows for much smaller messages on the wire and more efficient processing of messages in 
code. 

Some important facts about ETP sessions: 

 An ETP session is created and maintained by ETP sub-protocol Core (Protocol 0). All messages 
referred to in this list are defined in Core (Protocol 0) and explained in Chapter 5. 

 Each ETP session is assigned a unique identifier (UUID), mainly to help in troubleshooting for 
endpoints/users. The store assigns the sessionId, in the OpenSession message.  

 An ETP session is between 2 endpoints only; multicast messages are NOT allowed. Each endpoint 
assigns itself a unique instance ID (UUID) (clientInstanceId in the RequestSession message and 
serverInstanceId in the OpenSession message) for the session. These instance IDs can also be 
used for troubleshooting. 

 Two endpoints may have 1 or more concurrent ETP sessions (and in fact, some workflows require 
more than 1 session). Each session is independent, with no built-in mechanism for cross-session 
coordination.  

 Some identifiers (such as messageId and channelId) have context only within the scope of a session.  

To establish an ETP session, a client MUST first connect to a server using WebSocket (ws or wss). To 
properly negotiate and establish the ETP session, ETP also specifies some optional functionality that may 
happen as part of the WebSocket connection.  

For more information on:  

 Establishing a WebSocket connection, see Section 4.3. 

 Establishing an ETP session, see Chapter 5. 

3.2.1 Why WebSocket for Transport? 

When design work on ETP began (circa 2012), the Energistics Architecture Team evaluated available 
technology options for the ETP stack. The WebSocket protocol was selected because it was a message-
based, bi-directional protocol approved by the Internet Engineering Task Force (IETF), and a protocol that 
could reliably deliver messages in the order in which they were sent.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 37 

3.3 Capabilities: Endpoint, Protocol, Server and Data Object  

ETP defines parameters—which Energistics refers to as capabilities—that can be used to help prevent 
aberrant behavior, for example: sending oversized messages or sending more messages than an 
endpoint can handle.  

A capability is a key-value pair that is composed of an ETP-defined keyword for a specific parameter 
(EXAMPLES: ChangeRetentionPeriod or ActiveTimeoutPeriod) and an endpoint-specific value for that 
parameter. These parameters and values are then used by the endpoints, as defined in this specification, 
for applicable interactions and required behavior. A client and a server can each specify its capabilities 
and related values. 

 In some cases, ETP specifies a minimum, maximum and/or default value for the parameter.  

 In some cases, the domain standard (WITSML, RESQML or PRODML) specifies appropriate 
parameter values.  

 Individual usage guidance, default values (if applicable), and error messages if the parameter is 
violated are provided in this specification:  

 The "global" capabilities are documented below (see Section 3.3.2).  

 The more specialized capabilities are documented in the protocol-specific chapters where they 
are used.  

NOTE: In the protocol-specific chapters, the behavior related to using the protocols is defined in 
the Required Behavior section (always numbered N.2, where N is the chapter number), which 
includes all of the operational behavior for a protocol.   

IMPORTANT! The capabilities defined by ETP do not appear in any schemas; however, these 
capabilities ARE part of the ETP Specification. The lists of ETP-defined capabilities are maintained in the 
ETP Enterprise Architect model (which is used to produce message schemas and some content in this 
document). If these parameters are presented, they MUST be accepted and processed. 

ETP has these main kinds of capabilities:  
 Endpoint: Parameters that are applicable to an endpoint, in any protocol where it makes sense. For 

example, MaxWebSocketFramePayloadSize—the maximum size for a WebSocket frame that an 
endpoint can handle—applies to all ETP protocols that are implemented by the endpoint.  

 For the list of endpoint capabilities defined by ETP, see Section 23.4. 

- For information about how endpoint capabilities work, see Section 3.3.1. 

 Protocol: Parameters that are applicable to one or more specific protocols. Each protocol-specific 
chapter identifies the applicable capabilities and how they are used to. 

 For the list of all protocol capabilities defined by ETP, see Section 23.5.   

- For information about how protocol capabilities work, see Section 3.3.1. 

 Data Object: Parameters that allow an endpoint to specify capabilities for types of data objects. ETP 
includes commonly used capabilities (i.e., can the data object type be retrieved, saved or deleted) as 
well as some especially for ETP and Energistics data models, such as ActiveTimeOut period.  

 For the list of all data object capabilities defined by ETP, see Section 23.3. 

- For information on how data object capabilities work, see Section 3.3.4. 

Individual ETP implementations MAY define custom or proprietary endpoint, protocol, or data object 
capabilities, which may include new parameters or different values for parameters specified by ETP. If an 
endpoint encounters a capability it does not know how to handle, it MUST IGNORE it. 

The capabilities for each endpoint are exchanged and, when appropriate, negotiated when the session is 
established (see Chapter 5). Servers also advertise their capabilities before clients connect with the 
ServerCapabilities record (see Section 4.3.1). 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 38 

3.3.1 How Protocol and Endpoint Capabilities Work 

Observe these rules for capabilities: 
1. ETP-defined capabilities do NOT appear in any schemas; however, they are part of the ETP 

Specification. (Links to the lists of all capabilities defined by ETP are available in the section above.) 

2. When used, each parameter keyword MUST be used with the exact name shown in this document 
and an endpoint-specific, protocol-specific and/or data-object-specific value (key-value pair).  

a. In some cases, the same ETP-defined capability may be defined as one or more capability kind; 
EXAMPLE: MaxDataObjectSize may be an endpoint, protocol, AND data object capability. In 
these cases, guidance is provided about how all the different kinds are used together (i.e., the 
precedence for applying the kinds of capabilities). 

3. If one or more of the defined capabilities is presented by an endpoint, the other endpoint in the ETP 
session MUST accept it (them) and process the value, and apply them to the behavior as specified in 
this document. That is, each ETP implementation MUST recognize and accept the capabilities 
defined in this specification that are relevant for the protocols, roles, objects and features the 
implementation supports. 

a. If an endpoint does NOT specify a value for a particular capability, then the other endpoint MUST 
use the default value (as specified in this document or a companion ML-specific ETP 
implementation specification) for that capability. EXAMPLE: The default value for 
ResponseTimeoutPeriod is 300 seconds. If a server does not specify a different value for its 
ResponseTimeoutPeriod, a client should expect to receive a response from a request within 300 
seconds.   

4. An endpoint MAY also use custom capabilities. 

a. If an endpoint does NOT understand a custom key word, it MUST ignore it (NOT send an error). 

5. The client and server exchange endpoint, protocol, and data object capabilities in Core (Protocol 0) 
as part of establishing the ETP session. For details on session establishment, including rules for how 
capabilities for a session are determined, see Section 5.2). 

a. Optionally, the client MAY "pre-discover" a server's capabilities through its ServerCapabilities 
record as part of establishing the WebSocket connection (see Section 4.3). 

i. This pre-discovery is very important because after a WebSocket connection is made, it may 
not be possible to change certain parameters (EXAMPLE: WebSocket frame and message 
sizes). So it is important that the client understand these parameters BEFORE establishing the 
WebSocket connection. 

b. A client conveys its capabilities in the RequestSession message in Core (Protocol 0) as part of 
establishing the ETP session (see Chapter 5). 

c. A server conveys its capabilities one of both of these methods: 1) in the ServerCapabilities 
(before creating the WebSocket connection; see Section 4.3.1) and 2) in the OpenSession 
message in Core (Protocol 0), (see Chapter 5).   

i. NOTE: Clients should be aware that, for various reasons, capability values sent in the 
OpenSession message may vary from those "advertised" in the ServerCapabilities record. 

d. Depending on the specifics of the capability, their exchange between endpoints serves as an 
advisory (here is my value; work with it, which is typically the case for server capabilities) OR a 
"pseudo-negotiation", where the lesser of two values may need to be used for successful 
operations between the two endpoints (EXAMPLE: MaxResponseCount (see Section◦3.7.3.1, 
Paragraph◦4.d).  

i. However, if one endpoint cannot comply with a specified constraint, it can always drop the 
connection. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 39 

3.3.2 "Global" Capabilities 

ETP defines several capabilities that are used in all or most ETP sub-protocols, or that impact the 
operation of all or most ETP sub-protocols (such as MaxWebSocketMessagePayloadSize)—which makes 
them essentially "global" throughout ETP. Use of the capabilities are documented here and referenced in 
relevant chapters.  

Additionally, ETP has two other categories of capabilities that are documented here:  

 Capabilities that allow an endpoint to specify optional functionality for an ETP implementation (see 
Section 3.3.3 below). 

 Data object capabilities, which may be applied to any data object supported by an implementation 
(see Section 3.3.4 below). 

NOTE: All of the "global" capabilities listed here are endpoint capabilities (for definition, see above). 
However, not all endpoint capabilities are "global". EXAMPLE: ChangeRetentionPeriod is an endpoint 
capability but is used only by ETP sub-protocols that provide discovery of changes or deleted objects (i.e., 
Discovery (Protocol 3), GrowingObject (Protocol 6) and ChannelSubscribe (Protocol 21)), so is 
documented in relevant sub-protocol chapters.  

3.3.2.1 ActiveTimeoutPeriod (Endpoint) 
The WITSML domain has the notion of “active” data objects. ETP represents this with the activeStatus 
field on the Resource record. WITSML data objects that can be “active” usually also have a status 
element that reflects this, which, in WITSML 2.0, is typically named GrowingStatus or IsActive.  

A data object that is “active” is one where updates are actively being made to the data object itself or to 
other data objects related to it. For channels and growing data objects, this field reflects updates to the 
data object’s data points or parts, respectively. For wellbores, this field reflects updates to channels or 
growing data objects associated with the wellbore.  

 If updates are actively being made that cause a data object’s activeStatus to be set to true, the data 
object is said to be "active". 

 If no such change occurs within its ActiveTimeoutPeriod, the object is said to be "inactive". 

 A data object is “activated” by the first update that causes its activeStatus to be set to true when it 
was previously false. 

 A data object is “deactivated” when its activeStatus is set to false after it was previously true. 

The behavior for each data object and the relevant element in the WITSML data object that maps to the 
activeStatus field in the current version of ETP are defined in the relevant WITSML implementation 
specification. For WITSML 2.0, this is the ETP v1.2 for WITSML 2.0 Implementation Specification.  

The ability to determine which data objects are "active" is important and useful in WITSML workflows. As 
such, ETP supports discovery and query behavior of channels and growing data objects based on their 
active status and displays the active status in the Resource, which is returned in response messages in 
discovery and query operations.  

A store sets a data object's activeStatus field based on activity (e.g., changes to parts of data points in the 
data object) or inactivity (e.g., no changes to parts of data points in the data object) in excess of an 
endpoint's or data object's value for the ActiveTimeoutPeriod capability. 

 The general behavior related to exceeding this capability and setting the status to "inactive" is 
described below in this section.  

 Behavior for setting the status to "active" is described in the protocols where that behavior occurs.  

Changes in active status may also result in notifications being sent; that behavior is explained in the 
relevant protocol-specific chapters. The "scope" table below in this section provides a summary of the 
protocols where behavior is defined to set this status and the messages that display the status. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 40 

IMPORTANT: Not every store will be able to accurately track activeStatus over a long period of time. For 
example, if a store application restarts, the store may lose track of this information. The minimum 
requirement to enable eventual consistency workflows is this:  

 If a store loses track of whether a given data object is “active” or “inactive”, the store MUST set the 
data object’s activeStatus to true and start the ActiveStatusTimeout.  

 The store MUST also send any appropriate notifications caused by the change to activeStatus. 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

ActiveTimeoutPeriod: (This is also a data object capability.)  

The minimum time period in seconds that a store keeps the active 
status (activeStatus field in ETP) for a data object as “active”, after 
the most recent update causing the data object’s active status to 
be set to true. For growing data objects, this is any change to its 
parts. For channels, this is any change to its data points. 

This capability can be set for an endpoint and/or for a data object. 
A data object-specific value overrides an endpoint-specific value. 

long second 
<number of 
seconds> 

Default: 3,600 

MIN: 60 

 

SCOPE: This table summarizes protocols and messages that define behaviors related to changing and 
setting the activeStatus field, sending notifications about change in status and messages that either 
display the field or trigger changes to its. For details, see the relevant ETP-sub-protocol-specific chapters.  

Protocols Behavior Related Messages (see note 
in SCOPE above) 

Discovery (Protocol 3) A customer can filter discovery 
operations on the activeStatus 
field (for relevant object types). 

GetResources 
GetResourcesResponse 
GetResourcesEdgesResponse  

Store (Protocol 4)  Behavior/conditions for when to 
set the field to "active" is 
specified. 

PutDataObjects (for growing data 

objects and channels)  

StoreNotification (Protocol 5)  Behavior/conditions for when to 
send notifications based on 
changes to active status are 
specified. 

ObjectActiveStatusChanged 

GrowingObject (Protocol 6) Behavior/conditions for when to 
set the field to "active" is 
specified. 

All operations that change the 
parts in a growing data object 

DiscoveryQuery (Protocol 13) A customer can filter discovery 
operations on the activeStatus 
field (for relevant object types).  

FindResources 

FindResourcesResponse 

StoreQuery (Protocol 14) Customer can query the 
activeStatus field (for relevant 
object types). 

FindDataObjectsResponse 

ChannelSubscribe (Protocol 21)   GetChannelMetadataResponse 

provides the current activeStatus 
(on the ChannelMetadataRecord) 

ChannelDataLoad (Protocol 22)  Behavior/conditions for when to 
set the field to "active" is 
specified. 

Operations that change channel 
data 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 41 

REQUIRED BEHAVIOR:  
1. For growing data objects, when no parts have been added, changed or deleted for the duration of the 

store's relevant ActiveTimeoutPeriod value, a store MUST set a growing data object's activeStatus 
field (and the data object element it maps to) to "inactive". 

2. For Channel data objects, when no data points have been added, changed or deleted for the duration 
of the store's relevant ActiveTimeoutPeriod value, a store MUST set a channel's activeStatus field 
(and the data object element it maps to) to "inactive".  

3. For other data objects (i.e., other than growing and channel data objects), when no updates have 
been made that cause the data object’s activeStatus to be set to true for the duration of the store’s 
relevant ActiveTimeoutPeriod value, a store MUST set the data object’s activeStatus (and the data 
object element it maps to) to “inactive”. 

4. The relevant ActiveTimeoutPeriod capability is the data object capability for the type of data object 
affected, if set, or, if not set, it is the endpoint capability. 

5. When setting a data object’s activeStatus to “inactive”, the store MUST NOT make the change sooner 
than the ActiveTimeoutPeriod after the most recent change that activated the data object.  

a. The store MUST make the change as soon as is practical after the ActiveTimeoutPeriod has 
elapsed. RECOMMENDATION: Change activeStatus within seconds after the 
ActiveTimeoutPeriod has elapsed. 

6. NOTIFICATION BEHAVIOR: When a data object's activeStatus field changes, a store MUST send an 
ObjectActiveStatusChanged notification message for any relevant subscriptions. For more 
information, see Chapter◦10◦StoreNotification (Protocol 5). 

3.3.2.2 ChangePropagationPeriod (Endpoint) 
 

Name: Description Type Units 

Value Units 

Defaults 

and/or 
MIN/MAX 

ChangePropagationPeriod: The maximum time period in 

seconds—under normal operation on an uncongested session—for 
these conditions:  

 after a change in an endpoint before that endpoint sends a 
change notification covering the change to any subscribed 
endpoint in any ETP session. 

 if the change was the result of a message WITHOUT a 
positive response, it is the maximum time until the change is 

reflected in read operations in any ETP session.  

 If the change was the result of a message WITH a positive 
response, it is the maximum time until the change is reflected in 

ETP sessions other than the session where the change was 
made. RECOMMENDATION: Set as short as possible (i.e., a few 
seconds). 

long second 
<number of 
seconds> 

Default: 5 

MIN:1 

MAX: 600 

 

SCOPE: All Protocols; All get, notification or data messages. 

REQUIRED BEHAVIOR: The following rules assume normal operating conditions on an uncongested 
session. These rules also apply to the other endpoint within the ETP session where the change happened 
as well as other ETP sessions that may be active at the time. An endpoint MUST follow these rules:  

1. After a change in the endpoint happens, the endpoint MUST send any notifications or data messages 
relating to the change no later than the endpoint's ChangePropagationPeriod value. 

a. It MAY send notifications or data messages sooner than this time. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 42 

2. When several changes to the object happen within this period, the endpoint MAY choose to send only 
a single notification for a data object, provided that both of these conditions are met: 

a. The endpoint does not exceed this limit.  

b. The notification accurately reflects the state of the affected object at the time the notification is 
sent, which MUST represent the most recent state of the object. 

3.3.2.3 ResponseTimeoutPeriod (Endpoint) 
 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

ResponseTimeoutPeriod: The maximum time period in seconds 

allowed between a request and the standalone response message 
or the first message in the multipart response message. The period 
is measured as the time between when the request message has 
been successfully sent via the WebSocket and when the first or 
only response message has been fully received via the 
WebSocket. When calculating this period, any Acknowledge 

messages or empty placeholder responses are ignored EXCEPT 
where these are the only and final response(s) to the request. 

 

long second 
<number of 
seconds> 

Default: 300 

MIN:60 

 

SCOPE: All protocols; all request messages.  

REQUIRED BEHAVIOR:  
1. After receiving a request from a customer, a store MUST send the standalone response message or 

the first message in a multipart response no later than the value for the customer's 
ResponseTimeoutPeriod. 

a. If the store cannot respond within the customer's ResponseTimeoutPeriod, the store MAY cancel 
by sending error ETIMED_OUT (26). 

b. If the store's value for ResponseTimeoutPeriod is less than the customer's value, and the store 
exceeds its limit, then the store MAY cancel the response by sending error ETIMED_OUT (26). 

2. If a customer receives an ETIMED_OUT error, it may indicate that the session has become 
congested or the store has encountered other "abnormal circumstances."  

3.3.2.4 MaxDataObjectSize (Endpoint) 

NOTE: MaxDataObjectSize is also a data object capability and a protocol capability. The REQUIRED BEHAVIOR 

section below, explains how the three types of capabilities work together.  

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

MaxDataObjectSize: (This is also a protocol and data object 

capability.) The maximum size in bytes of a data object allowed in 
a complete multipart message. Size in bytes is the size in bytes of 
the uncompressed string representation of the data object in the 
format in which it is sent or received. 

This capability can be set for an endpoint, a protocol, and/or a data 
object. If set for all three, here is how they generally work:  

 An object-specific value overrides an endpoint-specific value.  

long byte 
<number of 
bytes> 

 

MIN: 100,000 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 43 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

 A protocol-specific value can further lower (but NOT raise) the 
limit for the protocol.  

EXAMPLE: A store may wish to generally support sending and 
receiving any data object that is one megabyte or less with the 
exceptions of Wells that are 100 kilobytes or less and Attachments 
that are 5 megabytes or less.  A store may further wish to limit the 
size of any data object sent as part of a notification in 
StoreNotification (Protocol 5) to 256 kilobytes. 

 

SCOPE: It must be used in the protocols and messages/operations listed in this table. For details, see the 
relevant ETP-sub-protocol-specific chapters.   

Protocols Messages/Operations 

Store (Protocol 4)  Put and get operations 

StoreNotification (Protocol 5)  If sending object data with notifications 

GrowingObject (Protocol 6) Operations on growing data object 
"headers" (i.e., "non-growing portion", 
which are data objects, just informally 
considered/called "headers" in relation 
to their respective parts 

StoreQuery (Protocol 14) FindDataObjectsResponse 

REQUIRED BEHAVIOR:  
1. In requests, a customer MUST limit the size of each data object to the value of the store's relevant 

MaxDataObjectSize protocol, object or endpoint capability.  

a. The limit that applies to a specific data object is the lesser of the global capability limit for that 
data object type, if set, and the protocol capability limit.  

b. The global capability limit for the object is the data object capability limit for the data object type if 
set, or, if not set, the endpoint capability limit. 

2. If any data object in the request exceeds its relevant limit, a store must deny the entire request by 
sending error EMAXSIZE_EXCEEDED (17). 

3. A store MUST limit the size of data objects in responses and notifications to the customer's protocol 
value for MaxDataObjectSize.  

a. If the store is sending the customer a notification about a data object that, when the data object is 
requested and including it in the message would exceed the customer's value for 
MaxDataObjectSize, the Store MUST instead send the notification without the associated data 
object data. 

b. If a data object exceeds the customer's MaxDataObjectSize value (limit), the customer MAY 
notify the store by sending error EMAXSIZE_EXCEEDED (17). 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 44 

3.3.2.5 MaxPartSize (Endpoint) 
 

Name: Description Type Units 

Value Units 

Defaults 

and/or 
MIN/MAX 

MaxPartSize: The maximum size in bytes of each data object part 

allowed in a standalone message or a complete multipart 
message. Size in bytes is the total size in bytes of the 
uncompressed string representation of the data object part in the 
format in which it is sent or received. 

long byte 
<number of 
bytes> 

Min: 10,000 

 

SCOPE: It must be used in the protocols and messages/operations listed in this table. For details, see the 
relevant ETP-sub-protocol-specific chapters. 

Protocols Messages/Operations 

Store (Protocol 4)  Allowed get and put operations on 
growing data and its parts.  

StoreNotification (Protocol 5)  If sending object data with notifications 
(growing object and its parts)  

GrowingObject (Protocol 6) Put and get operations on the parts of a 
growing data object 

GrowingObjectNotification (Protocol 7)  If sending parts data with notifications  

StoreQuery (Protocol 14) FindDataObjectsResponse (if the result 

of the query is a growing object and its 
parts) 

GrowingObjectQuery (Protocol 16) FindPartsResponse (if the result of the 

query is a growing object and its parts) 

REQUIRED BEHAVIOR:  
1. In requests, a customer MUST limit the size of each data object part in requests to the Store's 

relevant MaxPartSize endpoint capability.  

a. If any data object part in the request exceeds its relevant limit, a store MUST deny the entire 
request by sending error EMAXSIZE_EXCEEDED (17). 

2. In responses, a store MUST limit the size of data object parts and notifications to the customer's 
endpoint value for MaxPartSize.  

a. If a data object part exceeds the customer's MaxPartSize value (limit), the customer MAY notify 
the store by sending error EMAXSIZE_EXCEEDED (17). 

3.3.2.6 MaxSessionClientCount (Endpoint) 
For where this capability should be used in the WebSocket connection/ETP session establishment 
process, see Sections 4.3 and 5.2.1.1. 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

MaxSessionClientCount: The maximum count of concurrent ETP 

sessions that may be established for a given endpoint, by a 
specific client. If possible, the determination of whether this limit is 
exceeded should be made at the time of receiving the HTTP 
WebSocket upgrade or connect request based on the authorization 

long count 
<count of 
sessions> 

MIN: 2 sessions 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 45 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

details provided with the request. At the latest, it should be based 
on an authorized RequestSession message. 

 

REQUIRED BEHAVIOR:  

1. If a new connection from a particular client may cause a server to exceed its value for 
MaxSessionClientCount endpoint capability, a server MAY refuse the incoming connection. 

a. If a server chooses to reject an incoming connection because it would exceed this limit: 

i. If it does this during the WebSocket connect or upgrade step, it SHOULD deny the 
connection or upgrade with HTTP 429: Too Many Requests. 

ii. If it does this on receiving a RequestSession message, it SHOULD deny the request by 
sending error ELIMIT_EXCEEDED (12). 

3.3.2.7 MaxSessionGlobalCount (Endpoint) 
For where this is used in the WebSocket connection process, see Section 4.3. 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

MaxSessionGlobalCount: The maximum count of concurrent 

ETP sessions that may be established for a given endpoint across 
all clients. The determination of whether this limit is exceeded 
should be made at the time of receiving the HTTP WebSocket 
upgrade or connect request. NOTE: Exposing this information may 

have security implications, so it should only be exposed if an 
implementation is comfortable with any potential associated risks. 

long count 
<count of 
sessions> 

MIN: 2 sessions 

 

REQUIRED BEHAVIOR:  

1. If a new connection may cause a server to exceed its value for MaxSessionGlobalCount endpoint 
capability, a server MAY refuse the incoming connection. 

a. If a server chooses to reject an incoming connection because it would exceed this limit, it 
SHOULD reject the WebSocket request with HTTP 503: Service Unavailable.  

3.3.2.8 MaxWebSocketFramePayloadSize (Endpoint)  
 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

MaxWebSocketFramePayloadSize: The maximum size in bytes 

allowed for a single WebSocket frame payload. The limit to use 
during a session is the smaller of the client's and the server's value 
for MaxWebSocketFramePayloadSize, which should be 
determined by the limits imposed by the WebSocket library used 
by each endpoint. 

long byte 
<number of 
bytes> 

N/A 

 

SCOPE: All protocols; all request messages.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 46 

REQUIRED BEHAVIOR:  
1. A client MUST NOT send a WebSocket frame that exceeds either its value or the server's value for 

MaxWebSocketFramePayloadSize. 

2. A server MUST NOT send any WebSocket frame that exceeds either its value or the client's value for 
MaxWebSocketFramePayloadSize. 

3. In either case, if the limit is exceeded, ETP behavior is undefined. 

a. The likely behavior is the WebSocket connection will be closed.  

3.3.2.9 MaxWebSocketMessagePayloadSize (Endpoint)  
 

Name: Description Type Units 
Value Units 

Defaults 
and/or 

MIN/MAX 

MaxWebSocketMessagePayloadSize: The maximum size in 

bytes allowed for a complete WebSocket message payload, which 
is composed of one or more WebSocket frames. The limit to use 
during a session is the smaller of the client's and the server's value 
for MaxWebSocketMessagePayloadSize, which should be 
determined by the limits imposed by the WebSocket library used 
by each endpoint. 

long byte 
<number of 
bytes> 

N/A 

 

SCOPE: All protocols; all request messages. 

REQUIRED BEHAVIOR:  
1. A client MUST NOT send a WebSocket message that exceeds either its value or the server's value 

for MaxWebSocketMessagePayloadSize. 

2. A server MUST NOT send a WebSocket message that exceeds its value or the client's value for 
MaxWebSocketMessagePayloadSize. 

3. In either case, if the limit is exceeded, ETP behavior is undefined. 

4. If a store response to a customer request would exceed the limit, the store MUST try to send the 
response as a multipart message, where each message part does not exceed the limit.  

a. If the store cannot do so, it MUST deny the request and send error EMAXSIZE_EXCEEDED. 

5. If a store notification to a customer would exceed the limit, the store MUST try to send the notification 
as separate, stand-alone notifications.  

a. If the store cannot do so, it MUST attempt to remove optional information (such as object data) so 
that the notification can be sent without exceeding the limit.  

6. ETP behavior is undefined if this limit is exceeded. If an endpoint cannot send a message because 
doing so would exceed this limit, the most likely outcome is that the endpoint will drop the connection. 

NOTE: One strategy for overcoming WebSocket limits communicated by this capability is use of Chunk 
messages; for more information, see Section 3.7.3.2. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 47 

3.3.2.10 RequestSessionTimeoutPeriod (Endpoint) 
 

Name: Description Type Units 

Value Units 

Defaults 

and/or 
MIN/MAX 

RequestSessionTimeoutPeriod: The maximum time period in 

seconds a server will wait to receive a RequestSession message 
from a client after the WebSocket connection has been 
established. 

long second 
<number of 
seconds> 

Default: 45 

MIN: 5 

 

REQUIRED BEHAVIOR:  
1. If a server does not receive a RequestSession message within this period, it MAY send error 

ETIMED_OUT (26) and close the WebSocket connection.  

2. The server MUST NOT send the CloseSession message because no attempt was made to establish 
a session. 

3.3.2.11 SessionEstablishmentTimeoutPeriod (Endpoint) 
 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

SessionEstablishmentTimeoutPeriod: The maximum time 

period in seconds a client or server will wait for a valid ETP session 
to be established.  

For a server: 

 A valid session is established when it sends an OpenSession 

message to the client, which indicates a session has been 
successfully established.  

 The time period starts when it receives the initial 
RequestSession message from the client. 

For a client: 

 A valid session is established when it receives an OpenSession 

message from the server.  

 The time period starts when it sends the initial RequestSession 

message to the server.  

long second 
<number of 
seconds> 

Default: 3,600 

MIN: 60 

REQUIRED BEHAVIOR:  
1. If a session is not successfully established within this period, either endpoint MAY send error 

ETIMED_OUT (26) and then close the WebSocket.  

2. The CloseSession message MUST NOT be sent because no session was established. 

3.3.3 Support for ETP Optional Functionality 

The endpoint capabilities listed in this section allow an endpoint to specify if it supports some optional 
ETP functionality.  

Endpoint Capability Description of Use/More Information 

SupportsAlternateRequestUris Energistics specifies canonical URIs (e.g., for data objects, data 
spaces, and data object queries), which MUST be supported. However, 
ETP also supports use of alternate URI formats.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 48 

Endpoint Capability Description of Use/More Information 

For more information about how URIs are used in ETP, see Section 
3.7.4. 

For definitions and information about required and optional URI formats, 

see Appendix: Energistics Identifiers. 

SupportsMessageHeaderExtensions Indicates of if an endpoint supports the use of a 
MessageHeaderExtension, an optional structure that may be sent 
between the ETP MessageHeader and message body. For more 
information, see Section 3.6.2. 

 

3.3.4 Data Object Capabilities: How They Work 

ETP specifies a set of capabilities that let an ETP implementation limit operations or specify capabilities at 
the data object level. For a simple listing of all data object capabilities defined in ETP, see Section 23.3. 

This section:  

 Explains the "basic" data object capabilities and how they work (required behavior) for get, put, and 
delete operations, for all data objects (Section 3.3.4.1).  

 Lists, explains and provides references for the "specialty" data object capabilities, which are those 
caps that apply to particular kinds of data objects or have a more specialized purpose (Section 
3.3.4.2).   

3.3.4.1 Data Object Caps for Get, Put and Delete 
The section lists the main data object capabilities that apply to all data objects and explains the required 
behavior for using them.   

Data Object Capabilities Description of se/More Information 

SupportsGet Indicates whether get operations are supported for the data object type. 

Default: true 

SupportsPut Indicates whether put operations are supported for the data object type. 
If the operation can be technically supported by an endpoint, this 
capability should be true. 

Default: true 

SupportsDelete Indicates whether delete operations are supported for the data object 
type. If the operation can be technically supported by an endpoint, this 
capability should be true. 

Default: true 

 

REQUIRED BEHAVIOR: The required behavior is the same for each of the capabilities listed in the table. 
(In the following instruction, <RequestType> may be get, put or delete and <DataObjectCapability> is one 
the corresponding Data Object Capabilities from the table above.)  

1. A customer MUST NOT send a <RequestType> request for an object type where the 
<DataObjectCapability> value is false. (EXAMPLE: <RequestType>/<DataObjectCapability> = get, 
SupportsGet) 

2. If a Store's <DataObjectCapability> value is false, the store MUST reject any <RequestType> request 
by sending error ENOTSUPPORTED (7).  (EXAMPLE: SupportsPut, put) 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 49 

3.3.4.2 "Specialty" Data Object Capabilities 
This section lists data object capabilities that apply to particular kinds of data objects or have a more 
specialized purpose, with references to sections with more information: 

 ActiveTimeoutPeriod, which is also defined as endpoint and protocol capabilities; see Section 
3.3.2.1. 

 MaxDataObjectSize, which is also defined as endpoint and protocol capabilities, see Section 3.3.2.4. 

 MaxContainedDataObjectCount and OrphanedChildrenPrunedOnDelete, which both are used for 
container/contained data objects and explained in the chapters for the protocols in which they are 
used. For definitions of container and contained data objects, see Section 9.1.3.  

 MaxSecondaryIndexCount limits the number of secondary indexes that a Channel or Channel Set 
data object may have; its use is explained in Store (Protocol 4), where these data objects are created 
and updated. See Section 9.2.1.2.  

3.3.5 ADVISORY: Implication of Capabilities and Required Behavior for Stores 

The minimum required values for the set of endpoint, data object, and protocol capabilities defined by 
ETP essentially defines the minimum required behavior for an ETP store. Implementers are advised to 
look at and evaluate the set of capabilities in their totality and consider them when developing an ETP 
store.  

3.4 ETP Message Approach 

ETP is a collection of messages that are organized into sub-protocols. Endpoints in an ETP session 
exchange messages asynchronously to communicate about and perform actions on data objects, which 
represent real world business objects such as wells, wellbores, logs, channels, earth models (and their 
constituent parts), etc. (For definition of data object, see Section 25.1).  

To support all of the varied functionality required, ETP was designed to support multiple message 
patterns (or styles of message transfer) especially with respect to message size, frequency, and 
complexity. For example, messages used to send channel data differ in design from messages used to 
transfer large files of complex array data. As such, ETP has separate protocols for these tasks (channel 
data and array data), and the message content in the different protocols vary according to the types of 
data they handle.  

 For consistency, each ETP message is defined by an Avro schema and is composed of low-level 
data types, many of which are also defined in ETP (others are defined in Avro). (For more information 
about ETP data types, see Section 3.4.1.1 and Chapter 23.)  

 ETP v1.2 is based on Avro v1.10, but remains compatible with Avro v1.8.2.  

 For an overview of the standard ETP message format, see Section 3.5. 

 To support easier implementation, there are some general types of ETP messages with standard 
naming conventions (see Section 3.4.2).  

 For more information about asynchronous transmission and how related messages are correlated, 
see Section 0. 

NOTE: This practice of segmenting protocols by message types is somewhat in contrast with previous 
Energistics data service specifications, where each domain's related standard (i.e., WITSML, PRODML 
and RESMQL) had service contracts that were unique to the domain objects. With ETP, the goal is to use 
a single set of protocols across multiple domains, with the differences in protocols focused more on the 
communication requirements of particular operations (e.g., real-time streaming vs. querying a store).  

3.4.1 Messages are Defined by Avro Schemas 

Each ETP message is defined by an Avro schema with the file name MessageName.avsc (where 
MessageName is the actual message). When you download ETP from the Energistics website, the 
package contains these schemas, organized by ETP sub-protocol (Figure 3). (NOTE: In the ETP 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 50 

download, the folders for each ETP sub-protocol are alpha ordered, not ordered by ETP sub-protocol 
number.)   

 

Figure 3: ETP download folder structure of ETP protocols (left) and message schemas for Core protocol 
(right). This specification contains a chapter for each published protocol in the current version of ETP; for 
easy reference, each protocol-specific chapter also displays the message schemas for the subject protocol.  

Some general points about the schemas:  
1. All schemas—the ones in the download and those displayed in this specification—are generated from 

the ETP UML model, so they should be identical.  

a. The UML tool is Enterprise Architect; for information about the schema-generation process, see 
Section 3.4.1.2. 

b. If there is a discrepancy between a schema (.avsc file) and the specification, the schema is the 
primary source.  

2. The ETP schema download also includes an .avpr file, which is an aggregation of all .avsc files into a 
single file. The .avpr file is provided as a convenience to support alternate ways of working with these 
schemas.  

3. Energistics.Etp.v12 is the name of the root package, or namespace, for all messages and data types 
in ETP v1.2. It is not expected that this namespace will contain any types or classes directly; it is just 
a container for other namespaces.  

4. For a general explanation of the contents of an Avro message schema, see Section 3.5.5. 

3.4.1.1 Messages are Composed of Data Types and Primitives Defined by Avro and ETP 
For consistent design, ETP leverages Avro primitive data types (long, float, string, etc.) and defines other 
low-level data types (which are specified as Avro records, enumerations, etc.). Figure 4 shows examples 
of some frequently used Avro records defined by ETP and the messages that use those records. For the 
complete list and definitions of data types, see Chapter 23.  

NOTE: The schemas and related documentation reference these data types and links are provided. 
Typically, to completely understand the content of a specific message, you must read the related data 
type documentation, especially for records and enumerations.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 51 

 

Figure 4: Examples of ETP-defined Avro records that are used by multiple messages and other records.  

The following data types are composed of primitives that are defined by Avro or ETP:  

 Record: Specifically, this is an Avro record, which is similar to a C or C++ struct or to a JSON object 
or JavaScript object. The record stereotype is used to designate low-level data types that are 
composed to create messages. EXAMPLE: In the figure above, the SubscriptionInfo record is used 
in several notification messages by different protocols, and the SubscriptionInfo record uses the 
ContextInfo record.  

NOTE: The key components of an ETP message, the header, body and optional header extension, 
are also defined as Avro records, each of which are composed of other Avro primitives and records. 

 Enumeration: Enumerated values are defined in the schemas as a list of literal names and serialized 
on the wire as an integer value. Avro schemas do not allow a bespoke integer to be associated with a 
given enumeration, and so they are order dependent. NOTE: This order-dependency means that, for 
maximum interoperability, the ordering of enumerations must be consistent across ETP versions.  

 Union: Used to represent a type that can be any one of a selected list of types. Union is similar to 
unions in C or C++ and more or less maps to the xsd:choice element in XML schemas. 

3.4.1.2 How the Avro Schemas are Generated 
The Avro schemas, in JSON form, are produced by a code-generation process in Enterprise Architect 
(EA), the tool used by Energistics to design ETP, and some additional custom scripts. This process 
creates one .avsc file per Avro record or enumeration, in a folder structure.  

Another script is used to generate all of the schemas in a single Avro Protocol (.avpr) file. Note that while 
the .avpr format is a convenient way to place all of the schema in a single file, ETP DOES NOT use the 
Avro RPC protocol. 

3.4.2 General Message Types and Naming Conventions 

In general, ETP has these types of messages: request, response, notification, and data. To support 
implementation, ETP uses some general naming conventions for these types of messages, which are 
defined and described in the table below.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 52 

NOTE: Additionally, ETP has two messages that are defined in Protocol 0 but may be used in any of the 
ETP protocols; these include: ProtocolException and Acknowledge messages. For more information 
on these "universal" messages, see Section 3.7.2. 

Message Type Convention Examples 

Request: Ask for specific data 
or action to be performed 

Uses a verb/object construction.  

Verbs used: "get", "find"  

If a message has been designed to request 
and/or respond with/for multiple objects, the 
message name uses the U.S. English 
plural. MOST messages in ETP are plural 
messages. For more information about so-
called plural messages, see Section 3.7.2. 

GetResources (Protocol 3) 

GetDataObjects (Protocol 4) 

FindDataObjects (Protocol 14) 

TruncateChannels (Protocol 22) 

Response: An ETP-defined 
answer to a request message.  

A response message that corresponds to a 
specific type of request message and uses 
this convention: 
<request message name> + the word 
"Response" 

Two exceptions to this general rule:  

 Messages that can be either a response 
OR a notification are named with the 
Notification convention (examples: 
SubscriptionEnded)  

 Requests with multiple possible positive 
responses use a variation of the 
Response convention (examples: 
GetResourcesEdgesResponse, 
GetFrameResponseHeader, 
GetFrameResponseRows) 

NOTE: In ETP v1.2, "success only" 
response messages have been added to 
support more efficient operations of 
customer role software. These messages 
confirm that an operation (e.g., a put or 
delete operation) in a request have been 
completed successfully.  

GetResourcesResponse (Protocol 3) 

GetDataObjectsResponse (Protocol 4) 

FindDataObjectsResponse (Protocol 14) 

TruncateChannelsResponse (Protocol 22) 

Notification: A notice from a 
store that a type of change has 
occurred. Endpoints can 
specify if they want to receive 
the actual data that has 
changed with the notification. 

Begins with a noun (which is typically the 
word "object", "parts", "channels", "range" 
or "subscription" and ends with a verb in the 
past tense, such as "changed", "replaced", 
or "ended".  

ObjectChanged (Protocol 5) 

SubscriptionEnded (Protocol 5)  

PartsDeleted (Protocol 7) 

ChannelsTruncated (Protocol 21)  

ChannelsClosed (Protocol 22) 

Data: Messages sent as part 
of a subscription, which 
typically includes streaming 
data, notifications, and 
unsolicted subscriptions. 

Noun or phrase that describes the kind of 
data or notification. 

ChannelData (Protocol 1), (Protocol 21), 
(Protocol 22) 

 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 53 

3.5 ETP Message Format and Basic Sequence Requirements 

This section explains the format of a standard ETP message and general rules for how to process a 
message. For more information about specific types of messages and message patterns used in ETP, 
see Section 3.7. 

This section includes information for these topics:  

 An overview of an ETP message (Section 3.5.1) 

 General requirements for the message format (Section 3.5.2) 

 A description and requirements for the basic response/request message sequence (Section 3.5.3) 

 Details about the message header, its data fields, how to populate them, and how to process a 
message header (Section 3.5.4) 

 Description of the general characteristics of the message body and the Avro schemas that define 
them (Section 3.5.5) 

 Mechanisms to limit the size of messages (Section 3.5.6) 

 How compression works (Section 3.5.7) 

NOTE: Not all error conditions and usage of related error codes are specified in this document. 
Implementers are encouraged to familiarize themselves with the general behaviors defined in this chapter 
and throughout the document, the available ETP-defined error codes defined (see Section 24.3), and use 
their best judgements for their particular implementation. 

3.5.1 Overview of an ETP Message 

Each ETP message consists of one each: 

 message header  

 message body 

Figure 5 shows the basic format of a standard ETP message. The message header and message body 
are encoded in separate Avro records (see Section 3.8), which are sent sequentially on the wire in a 
single WebSocket message (see Section 3.9). 

ETP 
Message #1  

Header 

ETP 
Message #1 

Body 

ETP 
Message #2 

Header 

ETP 
Message #2 

Body 

Figure 5: ETP standard message format. Each message header and body is encoded in a separate Avro 
record.  

This separate encoding of message header and message body enables the receiver to read and decode 
the ETP message header, independent of the ETP protocol or ETP message body itself. (This design is 
consistent with and supports software design best practices for modularity and efficiency, e.g., protocol-
specific "handlers".)  

NOTE: Unlike earlier Energistics standards based on SOAP and XML (e.g., WITSML v1.x), ETP has no 
concept of an ‘envelope’ schema that contains the entire ETP message. However, the WebSocket 
payload length field plays the same role in terms of defining the extent of the message content; for more 
information, see Section 3.9. 

3.5.2 General Requirements for ETP Message Format 

Each ETP message MUST conform to these requirements:  

1. Each ETP message MUST have one header and one body. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 54 

a. The message header for all ETP-defined messages has a standard format defined by the 
MessageHeader schema, which MUST be used. For details about the content, use, and rules for 
processing the message header, see Section 3.5.4.  

b. Each message body has a unique schema (one for each ETP-defined message). For more 
information about the message body, see Section 3.5.5. 

i. For certain messages, the message body MAY be zero length (which is specified in the 
relevant message schemas).  

ii. The body of any message—except for those explicitly excluded in Core (Protocol 0)—MAY be 
compressed, regardless of role, based on the compression encoding negotiated during 
initialization of the ETP session (see Chapter 5). For more information about compression, see 
Section 3.5.7. 

2. An ETP message—except for those explicitly excluded in Core (Protocol 0)—MAY include an optional 
message header extension (MessageHeaderExtension), which allows the sender to add additional 
contextual/extension data (e.g., such as information for open tracing) to any message.  

a. If used, the message header extension MUST be sent between the message header and the 
message body. For more information about using MessageHeaderExtension, see Section 3.6.2.  

3. ETP provides several mechanisms to limit the size of messages (to respect WebSocket limits and to 
help with throughput and performance); for more information, see Section 3.5.6.  

3.5.3 General Sequence for ETP Request/Response Messages 

This section explains the high-level basic sequence of how request and response messages are 
exchanged between the 2 endpoints in an ETP session. It provides some general rules that apply to 
virtually all message exchanges. (For information on the types of ETP messages and naming 
conventions, see Section 3.4.2.) 

Specific message flows and more complex patterns (such as multipart requests, responses and 
notifications) are described in Section 3.7. Also, each protocol-specific chapter identifies key tasks 
performed in that protocol and the exact messages that must be exchanged to perform the task, and 
includes error scenarios, when to send a ProtocolException message, and which error codes to use.  

The rules for the basic message sequence are as follows: 
1. One endpoint (sender) sends a request message to the other endpoint (receiver).  

a. The message MUST be composed of one MessageHeader and a message body. 

i. For information on the content of and on how to populate the MessageHeader, see 
Section◦3.5.4. 

ii. For information on the content of the message body, see Section 3.5.5. 

b. The message is serialized using Avro; see Section 3.8. 

c. A complete ETP message (header and body) is sent in a single WebSocket message. 

i. For more information about use of WebSocket with ETP, see Section 3.9. 

ii. Each message MUST NOT exceed the MaxWebSocketMessagePayloadSize endpoint 
capability. For more information see Sections 3.3.2.9.  

d. Each endpoint MUST send messages ordered by message ID. (For information on numbering in 
the messageId field, see 3.5.4.1.) 

2. When the receiver receives the message it MUST do the following:  

a. Wait to receive the entire WebSocket message before it begins processing any of the content. 
(That is, the receiver MAY NOT process the incoming message on a frame-by-frame basis.) 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 55 

i. A single WebSocket message is considered the lowest common "unit of work" that must be 
received to begin processing.  

b. After receiving the entire WebSocket message, the receiver MUST first attempt to de-serialize the 
MessageHeader (before the message body): 

i. If deserialization FAILS: The receiver MUST send error EINVALID_MESSAGE (19).The 
MessageHeader of the ProtocolException message (that contains the error code) MUST 
have protocol = 0, and correlationId = 0. (Because the receiver could not de-serialize the 
header, it does not know the protocol or message ID of the errant message. For information 
on the content of and on how to populate the MessageHeader, see Section◦3.5.4.) 

ii. If the deserialization SUCCEEDS, the receiver MUST process the content of the 
MessageHeader, some of which may require the receiver to take action even before 
processing the message body. For details on how to process the content of the 
MessageHeader, see Section◦3.5.4.2. 

c. After de-serializing the header, the receiver MUST de-serialize and process the message body 
and respond to the request.  

i. For requirements unique to Acknowledge and ProtocolException messages, see 
Section◦3.7.2. 

ii. For more information on sequences for more complex ETP message patterns (for example, 
plural and multipart messages), see Section 3.7.3. 

iii. The key tasks and related message sequences—including message-specific processing, 
error scenarios, when to send a ProtocolException message, and which error codes to 
use—are explained in the protocol-specific chapters (Chapters 5 through 22).  

3.5.4 ETP Message Header 

The ETP MessageHeader includes key identifying and usage data for each message; all ETP message 
schemes have a message header. This section explains: 

 The content (data fields) in a message header and requirements for how the sender role populates 
these fields (see Section 3.5.4.1). 

 How the receiver role must process the information in the message header (see Section 3.5.4.2). 

For more information about:  

 The MessageHeader schema with field definitions, see Section 23.25.  

 Any special processing requirements for ProtocolException messages, see Section 3.7.2.1. 

 Any special processing requirements for Acknowledge messages, see Section 3.7.2.2. 

 Using an optional MessageHeaderExtension, see Section 3.6.2. 

3.5.4.1 Required Behavior for Populating a Message Header 
Observe these rules and requirements for a MessageHeader:  

1. The MessageHeader and all of its fields are REQUIRED. 

2. The MessageHeader MUST NOT be compressed. 

The MessageHeader does all of the following:   

3. Identifies by its assigned sub-protocol number (field name = protocol), the ETP sub-protocol in 
which the message is being used (e.g., Core (Protocol 0), ChannelStreaming (Protocol 1), 
ChannelDataFrame (Protocol 2), Discovery (Protocol 3), etc.).  

a. EXCEPTION: ETP messages are used exclusively in the protocol that they are defined in except 
for ETP “universal” messages (which include ProtocolException and Acknowledge messages), 
which may be used in any ETP sub-protocol even though they are defined in Core (Protocol 0). 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 56 

For more information, see Section 3.7.2. 

4. Identifies the type of message being sent (field name = messageType). The combination of the 
protocol and messageType uniquely identifies the message type; that is, it defines the schema for the 
message body.  

b. ETP identifies message types by assigning an integer to each unique message in a sub-protocol. 

i. EXAMPLE: In ChannelStreaming (Protocol 1), messageType 2 is the ChannelData 
message, whose schema is shown in Section 6.3.3.   

5. Identifies the message ID (field name = messageId) of each unique message in an ETP session. 
Message IDs MUST observe these rules: 

a. Message IDs MUST be unique within a session, and for a given endpoint (i.e., client/server). The 
IDs used by a client and a server are completely independent of one another. Put another way, 
the "primary key" of any given message could be thought of as endpointType + messageId. 

b. Message IDs MUST be strictly increasing. 

i. Each endpoint MUST send messages ordered by message ID.  

c. To help with de-bugging and troubleshooting, ETP has adopted this numbering convention for 
message IDs, which endpoints MUST observe: 

i. The client side of the connection MUST use ONLY non-zero even-numbered message IDs. 

ii. The server side of the connection MUST use ONLY non-zero odd-numbered message IDs. 

iii. A message ID of 0 is invalid. 

iv. Message IDs ARE NOT required to be sequential or have any correlation between message 
IDs and any particular sub-protocol. 

6. Correlates related messages. The MessageHeader has a correlation ID (field name = 
correlationId), whose purpose is somewhat context-sensitive, depending on the specific message.  
In general, its purpose is to correlate related messages. (EXAMPLE: In some cases the "related 
message" may be all messages that comprise a complete multipart request or it may be to correlate a 
response to the request message it is responding to.)  
This specification provides a correlation ID usage guideline for each ETP message (see the individual 
messages listed for each protocol). General correlation ID behaviors are: 

a. Not all messages use correlationId; when it is not used by a message, the correlationId MUST be 
ignored and should set to 0. 

b. For a single-message request, the correlationId MUST be set to 0.  

c. For a response message, the correlationId MUST be set to the messageId of the corresponding 
request message (i.e., the request that this response message is replying to).  

d. For usage unique to ProtocolException messages, see Section 3.7.2.1. 

e. For behaviors for correlationId related to plural messages and multipart requests, responses, and 
notifications, see Section 3.7.3. 

7. Has a messageFlags field, which acts as a bit-field and allows multiple Boolean flags to be set 
on a message. These flags are currently defined:  

a. 0X02: Message is the final message (a so-called "FIN bit") for all ETP message types (i.e., 
request, response, notification or data messages).  

i. This flag MUST always be set on the final message of any action—even if the action is 
composed of only a single message.  

ii. EXAMPLES: 1) Each ChannelData message (used in the channel streaming protocols) MUST 
have its FIN bit set; 2) For a multipart request such as ReplaceRange (in ChannelDataLoad 
(Protocol 22), the FIN bit MUST be set on the last message of the multipart request (so if the 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 57 

request is composed of 5 ReplaceRange messages, the FIN bit is set on the fifth message).  

iii. For information on setting the FIN bit on multipart requests, responses and notifications, see 
Section 3.7.3.1. 

b. 0x08: Message body (and optional MessageHeaderExtension, if used) is compressed.  

c. 0x10: Sender is requesting an Acknowledge message. For more information on the 
Acknowledge message, see Section 3.7.2.2. 

d. 0x20: Indicates that this message includes an optional message extension. In this version of 
ETP, the only message extension mechanism is the MessageHeaderExtension. For more 
information on MessageHeaderExtension, see Section 3.6.2. 

e. NOTE: 0X01 and 0X04 (which were used in the previous version of ETP) are currently unused.  

3.5.4.2 Required Behavior for Processing Message Headers 
This section explains requirements for how receiving endpoints (receiver) MUST process message 
headers for each ETP message.  

NOTE: The process below continues from Section 3.5.3 and is the details of step 2.b.ii; if the receiver 
correctly de-serialized the MessageHeader, now it must process it as follows:  

1. The receiver MUST inspect all header fields because these attributes determine processing 
requirements. The receiver MUST use or process the attributes as specified in steps 3 through 5. 

2. The receiver MUST first inspect the messageFlags field to determine if the sender is requesting an 
Acknowledge message (abbreviated as "Ack"):   

a. For detailed information on when and how to send the Acknowledge message, see Section 
3.7.2.2. 

b. The remainder of message flags are explained in Step 5 below. 

3. The receiver MUST use the protocol number and messageType to determine which schema to use to 
interpret the message (or which handler to send the message to for such processing).  

4. The receiver MUST inspect the correlationId to determine if this message is associated with another 
message.  

a. Each message schema section in this specification includes basic information about the 
correlation ID for that message.  

b. For rules on how to use correlation IDs with plural and multipart messages, see Section 3.7.3. 

5. The receiver MUST inspect the messageFlags and it MUST use the provided information for 
processing and/or perform the requested action, as described here:  

a. 0x02: If true, the "FIN bit" indicates the final message of an action. That is, the receiver has all 
messages that comprise this request, response, notification or data. (For more information on 
requirements for setting the FIN bit in multipart requests, responses, and notifications, see 
Section 3.7.3.1.) 

i. The FIN bit MUST always be set to true on the final message, even if an action (a request, 
response, notification or data) is composed of only 1 message. 

b. 0x08: If true, the message body (and optional MessageHeaderExtension, if used) is 
compressed. Before it can inspect the message body for protocol handling, the receiver MUST 
uncompress the remainder of the WebSocket payload, which is the message body (and optional 
MessageHeaderExtension, if used), using the compression algorithm negotiated when the ETP 
session was established. For more information about compression, see Section 3.5.7. 

c. 0x10: If true, it indicates that the sender is requesting an Acknowledge message. Because an 
Ack must be sent first, if requested, behavior for processing this flag is explained in Section 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 58 

3.7.2.2. 

d. 0x20: If true, it indicates that the message has a MessageHeaderExtension (optional header 
between the MessageHeader and MessageBody). (For more information and requirements for 
processing a MessageHeaderExtension, see Section 3.6.2.)  

3.5.5 ETP Message Body 

The ETP message body holds the actual content of a message. The body of any message (except those 
explicitly excluded in Core (Protocol 0)), MAY BE compressed, regardless of role, based on the 
compression encoding negotiated during initialization of the ETP session.  

The specific content of each messageType is defined throughout this specification, in the individual sub-
protocol that defines a particular message. NOTE: For some messages, ETP provides an extension 
mechanism in the message body; for more information, see Section 3.6. 

Figure 6 is an example ETP message body schema (GetDataObjects.avsc).  

The message body schema contains these general types of information:  

1. Avro schema header information, which is completely separate from the ETP MessageHeader 
described in Section 3.5.4. This information is the content that is highlighted by the blue bracket in the 
figure; this content is NOT sent on the wire. Some of the fields on this header are defined and 
required by Avro Schema; other fields are defined by ETP, which are explained below the figure.  

2. Content of the message—the data actually sent on the wire—is shown in the red bracket. 

 
Figure 6: An example ETP message schema (GetDataObjects message from Store (Protocol 4)).  

The Avro Schema header content contains: 

1. Information required by the Avro specification (e.g., type, namespace, name). 

2. Other fields specified by ETP to aid in processing or provide useful context about when and how to 
use this message. The ETP-specific information is defined in the UML model and appears in the 
message body and in this specification document. The ETP-defined information includes:  

a. protocol: the ETP sub-protocol number. 

b. messageType: the integer that uniquely identifies this message within the ETP sub-protocol in 
which it is defined. 

c. senderRole: the ETP endpoint role(s) that actually sends the message.  

d. protocolRoles: the two ETP endpoint roles allowed in this protocol. 

e. multipartFlag: a Boolean that shows whether or not a response, request or notification may be 

This is the data in the 
MessageBody that actually 
gets sent on the wire.  

This is the header of the Avro 
schema (NOT to be confused with 
the ETP MessageHeader). This 
content is NOT sent on the wire.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 59 

implemented as a series of multiple related messages. Only messages where this value is true 
may be implemented as a multipart request or response. 

3.5.6 Mechanisms to Limit Message Size 

ETP has a few mechanisms that allow endpoints to specify limits with a goal of keeping message size as 
small as possible to respect WebSocket limits and to help with throughput and overall performance. The 
individual parameters and how they work are discussed in the context of the individual protocols in which 
they are used or other relevant sections in this specification. This section summarizes the available types 
of parameters and provides links to other relevant sections of this specification.  

The mechanisms place limits on messages and message data, and these limits are communicated using 
the data object, endpoint and protocol capabilities. For more information see Section 3.3.  

Parameter Description For More Information 

WebSocket libraries. The WebSocket protocol is the transport 
mechanism for ETP. People implementing ETP are free to use 
any published WebSocket libraries specifically designed for 
implementing WebSocket, but should be aware that these 
libraries have limits for the WebSocket frame and message 
sizes—some of these limits were found to be as small as 128 kb. 
While ETP does not define these library-specific limits, it does 
provide a way for endpoints to share their WebSocket-related 
size limits.  

EXAMPLES: MaxWebSocketFramePayloadSize and 
MaxWebSocketMessagePayloadSize 

 For information on how WebSocket works with ETP, 
see Section 3.9.  

 

Limits to the size of the data contained in ETP messages. 
ETP defines several capabilities that limit the size of data and 
objects that may be contained within ETP messages.  

EXAMPLES: MaxDataArraySize, MaxDataObjectSize, 
MaxPartSize 

 For more information about ETP data object 
capabilities and how they work, see Section 3.3.4. 

 Some data object capabilities may also be endpoint 
capabilities, see Section 3.3.1. 

Limits to the counts of items contained in ETP messages. 
ETP defines several capabilities that limit the count of items that 
may be contained within ETP messages. Most of the relevant 
capabilities are defined at the protocol level.  

EXAMPLES: MaxResponseCount, 
MaxFrameResponseRowCount 

 Explained in the protocols where they are used.  

Limits related to multipart requests, responses, and 
notifications. ETP provides endpoint capabilities that allow 
endpoints to specify limits on the maximum number of in-flight 
multipart message sequences (i.e., to help constrain maximum 
memory necessary to accumulate all the messages of multipart 
sequences)  

EXAMPLES: MaxConcurrentMultipart 

 For more information, see Section 3.7.3. 

 

3.5.7 Message Compression 

ETP supports use of compression. Endpoints may negotiate a supported compression algorithm when the 
ETP session is established. (For more information, see Chapter 5.) 

Observe these rules for use of compression:  

1. If a client or server supports compression, it MUST support at least gzip.  

2. If the client and server agree to use compression in a session, messages sent in the session MAY 
(but are NOT required to) be compressed. 

3. When a message is compressed:  

a. a MessageHeader is NEVER compressed. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 60 

b. The remainder of the WebSocket payload after the MessageHeader is compressed, which 
includes: 

i. The message body. 

ii. If used, the optional MessageHeaderExtension (see Section 3.6.2).  

iii. The 0x08 flag in its MessageHeader MUST be set to true. 

3.6 ETP Extension Mechanisms 

ETP specifies some extension mechanisms so that organizations have a standard way to add custom or 
proprietary data to ETP. These mechanisms include use of custom protocols and capabilities, message 
header extensions, message extensions, attribute metadata, and extensions to data objects, which are all 
described in this section. All mechanisms explained here are OPTIONAL.  

3.6.1 Custom Protocols and Capabilities 

Organizations may extend ETP by developing additional protocols beyond those defined in this 
specification; these are referred to as "private" protocols. Custom protocols use protocol numbers 2000+. 

Custom protocols MAY require related protocol capabilities; or additional protocol and endpoint 
capabilities MAY BE added to the capabilities defined by ETP for the ETP-defined protocols. For 
information about ETP capabilities, see Section 3.3. 

For more information about creating custom protocols and assigning protocol numbers, contact 
Energistics.  

3.6.2 MessageHeaderExtension 

Use of message header extensions (MessageHeaderExtension) allows additional contextual 
information, about either the MessageHeader or the message body, to be sent with a specific message. 
It can be used by implementers to send system-wide, custom properties and contextual information that 
needs to be passed up and down a call stack. A common use case in cloud-native environments and 
other call stacks such as HTTP/Rest and gRPC is the requirement to pass tracing information (such as 
open tracing) down, and back up through a call stack.  

If used, the sender indicates (using the designated bit in the messageFlags field of the standard 
MessageHeader) that a MessageHeaderExtension is being sent, and then sends the 
MessageHeaderExtension between the standard MessageHeader and the MessageBody.  

WARNING: It is strongly recommended that message header extensions NOT be used with "one-way" 
notification messages or other high-throughput or streaming messages (such as ChannelData 
messages) due to potentially high overhead if their use is abused. 

For the schema for the MessageHeaderExtension, see Section 23.26. 

To use the MessageHeaderExtension, you MUST observe these rules: 
1. To use message header extensions in an ETP session, the endpoints (client and server) MUST 

negotiate their use as part of establishing an ETP session (as described in Chapter 5).  

a. If an endpoint supports use of message header extensions, it MUST set the endpoint capability 
supportsMessageHeaderExtensions to true (this capability can be specified in the 
RequestSession or OpenSession messages, as described in Chapter 5).  

b. To successfully use message header extensions, BOTH endpoints in an ETP session must 
support their use.  

c. If only one endpoint (or no endpoints) in an ETP session supports use of message header 
extensions, then NEITHER endpoint may use them.  

NOTE: The next steps explain how to use a MessageHeaderExtension when exchanging 
messages, including error conditions. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 61 

2. When an endpoint needs to send a MessageHeaderExtension, it MUST do both of the following:  

a. In the MessageHeader, it MUST set the 0x20 bit in the messageFlags field to true (so the 
receiver "knows" a MessageHeaderExtension is being sent).  

b. Before sending the message body, it MUST send the MessageHeaderExtension (so the 
MessageHeaderExtension is sent between the MessageHeader and message body as shown 
in Figure 7). 

ETP 
Message #1 
Header  
(with 0x20 
flag = true) 

Message 
Header  
Extension 
(optional) 

ETP 
Message #1 

Body 

ETP 
Message #2 
Header 
(with 0x20 
flag = true) 

Message 
Header  
Extension 
(optional) 

ETP 
Message #2 

Body 

Figure 7: ETP message format with optional MessageHeaderExtensions. 

3. The endpoint that receives the MessageHeaderExtension MUST do at least one of the following:  

a. If the endpoint supports MessageHeaderExtension, it MUST attempt to process it. 

b. If the MessageHeaderExtension contains keys that the receiver does not understand or is not 
interested it, it MUST ignore them (no error messages).  

c. If the endpoint does NOT support MessageHeaderExtension, it MUST send error 
EINVALID_MESSAGE (19). 

d. If the MessageHeaderExtension flag is set to true AND the MessageHeaderExtension is 
omitted (not just an empty map, but the map is omitted entirely), it MUST send error 
EINVALID_MESSAGE (19). 

i. NOTE: Conditions 3.c and 3.d and 4.a will cause message de-serialization issues, 

4. ETP permits only one MessageHeaderExtension per message. 

a. If an endpoint sends more than 1, the receiver MUST send error EINVALID_MESSAGE (19).   

5. If a message containing a MessageHeaderExtension is compressed, then the 
MessageHeaderExtension MUST be compressed with the message body.  

3.6.3 Data Attribute Metadata 

ETP defines a mechanism that makes it possible to annotate (or "decorate") individual data points in a 
channel or channel frame, for example, with quality, confidence, or audit information. ETP itself does not 
currently define any specific attributes, values, or use, but the mechanism is available for definition and 
use by individual MLs or companies to specify and use.  

The mechanism is a record named DataAttribute and the mechanics of its use are described in in 
relevant protocols, records and chapters where it occurs.  

3.6.4 Message Extension 

Several ETP data structures (EXAMPLES: Resource, ChannelMetadataRecord, etc.) allow an endpoint 
to send custom data in addition to the data in standard fields and records in the ETP schemas. This 
custom data is also informally referred to as "proprietary data or content". 

In all cases, custom data is sent in a field named customData and are key-value pairs of custom key 
names and associated values. Observe these rules for specifying custom data: 

1. The keys MAY BE both well-known (and thus, reserved) names as well as application- and vendor-
specific names.  

2. Keys are case sensitive.  

3. The value MUST be one of the types specified in the Energistics data type DataValue.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 62 

3.6.5 Data Object Extension 

Energistics domain standards MAY be extended similarly to ETP messages by using 
ExtensionNameValue elements on the data objects and specifying key-value pairs, each consisting of a 
custom key name and associated value. For more information, consult the relevant ML documentation.  

3.7 ETP Message Patterns 

To support easier implementation, the ETP design aims to use and re-use consistent messages and 
message patterns. ETP defines: 

 "Universal" messages, which are defined in Core (Protocol 0) but may be used in any ETP protocol.  

 Some specific data structures, messages, and design patterns to support maximum efficiency and 
performance in handling large volumes of data. 

This section defines these constructs and explains how to use them. The section 
includes: 

 Definitions for these terms: universal message, map, Chunk message, multipart requests and 
responses, and plural messages, (see Section 3.7.1). 

 Usage rules for:  

 "Universal" messages, which include ProtocolException and Acknowledge (see Section 3.7.2).  

 Plural messages, which allow multiple requests and/or responses in a single message (see 
Section 3.7.3).  

- Multipart requests, responses, and notifications (which can be thought of as one large virtual 
request, response or notification that has been implemented as a group of related messages) 
(see Section 3.7.3.1).  

IMPORTANT! This specification defines which particular messages are plural (indicated by the message 
name and data structures in the message body) and which response, requests, and notifications MAY be 
implemented as a set of multiple related messages (indicated by the multipartFlag on the message 
schema set to true). 

3.7.1 Message Patterns: Key Concepts and Definitions   

ETP has some concepts and message patterns that have proven to be useful but may not be commonly 
used, so this section defines them and explains how they work together. Related usage rules for these 
constructs are referenced as appropriate.  

3.7.1.1 "Universal" Messages (Definition) 
By design, most message types in ETP are used only in a specific protocol, for a specific purpose. 
However, some messages may be used in any of the ETP protocols; these messages are informally 
referred to as "universal" messages. These universal messages are defined in Core (Protocol 0) (see 
Chapter 5) and they include ProtocolException and Acknowledge messages; rules for using these 
messages are explained in Section 3.7.2.  

3.7.1.2 Plural Message (Definition) 
A plural message is a general term for messages that allow multiple requests and/or responses to be 
included in a single message. Most messages in ETP are plural messages (indicated by message name 
being the U.S. English plural, EXAMPLE: PutDataObjects message). For rules on how to use plural 
messages, see Section 3.7.3. 

The general patterns for plural messages are:  

 A single request message with a multipart response that follows one of these patterns:  

 A single request that allows multiple responses in one or more response messages, depending 
on the protocol and request (EXAMPLE: Get me all the channels associated with a specific 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 63 

wellbore/ Discovery (Protocol 3) one GetResources message may return multiple 
GetResourcesResponse messages, which each contain an array of the channel identifiers.))  

 A single request message that contains a map of requests and allows one or more response 
messages that contain a map of responses. For definition of map, see Section 3.7.1.3. 

 Additionally, Chunk messages are defined in and may be used in several protocols. Chunk 
messages make it possible to sub-divide binary large objects (BLOBs) that are too big to fit in 
WebSocket messages into multiple smaller "chunks" that may be sent as a set of related messages—
along with the standard response message (as specified in each sub-protocol where used). (For 
usage rules for Chunk messages, see Section 3.7.1.4).  

3.7.1.3 Map (Definition) and Use of "Small Keys" 
A map (also known as an associative array) is a data structure that is a collection of key-value pairs. ETP 
makes extensive use of this data structure in request, response, and error (ProtocolException) 
messages.  

One of the main benefits of using the map pattern in ETP is that it allows an endpoint to send a large 
number of requests in a single message, and for the other endpoint to respond to the requests that it can, 
send ProtocolException messages for requests it cannot process, and use the map keys to correctly 
correlate the responses and errors. Essentially maps are a batching mechanism. This pattern is used 
extensively and is explained in detail in Section 3.7.3. 

IMPORTANT: When map keys are assigned, they are only valid for the particular request and any 
associated response messages. In another request, the same values (e.g. URIs or channel IDs) may be 
associated with completely different keys.  

REMINDER: Map keys are always case sensitive.  

When assigning keys, the recommendation is to use the smallest viable identifier (e.g., 1, 2, 3…). 
NOTE:◦However, map keys are strings—not integers—because Avro does not allow integers. The keys 
MUST be unique within a map. 

EXAMPLE: A customer, using an ETP request message with a map, sends 100 unique requests to a 
store and assigns keys 1–100. The store can successfully fulfill 97 of those requests, so it sends a 
positive response message to the customer that contains a map with the 97 requests it could fulfill (each 
identified by its customer-assigned map key) and a ProtocolException message with a map containing 
error codes for the 3 requests in error (each also identified by its unique customer-assigned key). The 
customer can then use those keys to determine further processing (e.g., to process the 97 correct 
responses and/or aim to resolve the 3 errors).  

3.7.1.4 Chunk Message (Definition) 
Some messages in Store (Protocol 4), StoreNotification (Protocol 5), and StoreQuery (Protocol 14) allow 
or require a data object to be sent with a message. If the size of the data object (bytes) is too large for the 
WebSocket message size (which for some WebSocket libraries can be quite small, e.g. 128 kb), you must 
subdivide the data object (binary large object/BLOB) and send it in "chunks" that are small enough for 
your WebSocket library to handle. Send these "chunks" using the Chunk message, which is defined in 
each of the protocols where it is used. For rules on how to use Chunk messages, see Section 3.7.3.2. 

3.7.1.5 Multipart Requests, Responses, and Notifications (Definition) 
Multipart requests, responses and notifications refer to a pattern that makes it possible for an endpoint to 
break up something that is potentially large into a series of related, smaller messages.  

IMPORTANT! Each "part" in a multipart request, response, or notification is a "complete" ETP message 
(i.e., each has a header and body as defined in Section 3.5). To be precise, they are actually "multi-
message" request, response, and notifications. 

A multipart request, response or notification should be considered a single virtual request, response, or 
notification. Observe these rules for using multipart messages:  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 64 

1. Only messages designated as multipart (i.e., in the Avro schema header, multipartFlag: true; see 
Section 3.5) may be implemented as multipart. If multipartFlag=false, the endpoint MUST send only 
one message of that type per request or response. 

2. In the simplest usage, multipart requests, responses, and notifications are composed of 2 or more of 
the same type of message (EXAMPLES: For a multipart request, all ReplaceRange messages; for a 
multipart response, all GetResourcesResponse messages). For general rules on how to use 
multipart messages, see Section 3.7.3.1. 

However, multipart requests, responses, and notifications MAY also be composed of multiple TYPES 
of messages; for example, they may include:  

 One or more positive response messages with one or more ProtocolException message(s). 
This pattern is used with messages that contain a map data structure; for more information on 
how it works, see Section 3.7.3. 

 One or more types of positive responses, as defined by a specific ETP sub-protocol (EXAMPLE: 
In ChannelDataFrame (Protocol 2) the standard positive response behavior to a GetFrame 
request message is to return 1 (one) GetFrameResponseHeader message and 1 to n 
GetFrameResponseRows messages (where n is the number of messages that are needed to 
return all the rows that fulfill the request).  

 For store-related protocols (Protocols 4, 5, and 14) a positive response may have 1 or more 
associated Chunk messages. For rules on how to use Chunk messages, see Section 3.7.3.2.  

Details of protocol-specific behavior are captured in the relevant protocol chapter in this specification. 

3.7.2 ETP "Universal" Messages: Usage Rules 

By design, most message types in ETP are used only in a specific protocol, for a specific purpose. 
However, some messages may be used in any of the ETP protocols; these messages are informally 
referred to as "universal" messages. How these so-called "universal" messages work is explained below 
in this section; the messages are defined Protocol 0 (Chapter 5); they include: 

 ProtocolException message (see Section 3.7.2.1) 

 Acknowledge message (see Section 3.7.2.2) 

3.7.2.1 ProtocolException Message: Usage Rules 
ETP defines a ProtocolException message (see Chapter 5) and a set of error codes (see Chapter 24). 
Follow these rules and guidelines for using and populating attributes in a ProtocolException message: 

1. When errant behavior (as defined in this specification) occurs, you MUST send the 
ProtocolException message with the appropriate error code(s), which are also defined by this 
specification.  

a. For the list of ETP-defined error codes and guidance on their usage, see Chapter 24. 

b. This message should not be used to indicate general failures of low-level protocols (such as 
WebSocket, HTTP, or TCP/IP) on which ETP depends. 

2. In many cases, this specification defines errant behavior/error conditions and specifies the error code 
that MUST be used when specific errant behavior occurs. 

a. In some general cases, not all instances of errant behavior are defined. For example, anytime an 
invalid argument is encountered, use error code EINVALID_ARGUMENT (5). 
RECOMMENDATION: For these general cases, implementers should familiarize themselves with 
the error codes and use their best judgement in using error codes. 

b. An endpoint MUST send only ONE error code per incident. If multiple errors are associated with 
an operation, the implementer must choose one error code only.  

c. Custom error codes MAY be defined but MUST use negative numbers. For more information, see 
Section 24.1. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 65 

3. MessageHeader. Observe these rules for populating attributes in the MessageHeader of a 
ProtocolException message:  

a. In MOST CASES, the protocol attribute MUST be set to the ID of the protocol where the error 
occurred. EXAMPLE: If a ProtocolException message is being sent as a result of an error in 
Discovery (Protocol 3), then the protocol attribute in its MessageHeader is set to 3.  

i. For the EXCEPTIONS to this rule, see 3.c below.   

b. In MOST CASES, the correlationId MUST be set to the messageId of the errant message that 
resulted in the ProtocolException message being sent.   

i. For the EXCEPTIONS to this rule, see 3.c below. 

c. These are the EXCEPTION cases to 3.a and 3.b. The protocol attribute SHOULD be set to 0 and 
the correlationId attribute SHOULD be set to 0:  
i. When a WebSocket message is received and the ETP MessageHeader cannot be de-

serialized. (If the message cannot be de-serialized, the receiver has no way of knowing the 
messageId of the errant message.) The receiver MUST send error 
EINVALID_MESSAGE◦(19).  

ii. When sending a ProtocolException message with error code 
EBACKPRESSURE_WARNING (25) or EBACKPRESSURE_LIMIT_EXCEEDED (24). For 
more information, see Section 3.13.4. 

iii. When sending a ProtocolException message with error 
EAUTHORIZATION_EXPIRING◦(28) or EAUTHORIZATION_EXPIRED (10).  

iv. NOTE: For ii and iii, the errant behavior is not associated with a particular message, so no 
correlationId is required.  

d. Set the messageFlags: 

i. The 0X08 bit MUST NEVER be set to true; a ProtocolException message MUST NOT be 
compressed. 

ii. All other flags follow standard usage (see Section 3.5.4.1).  

4. The ProtocolException message includes two main fields: error and errors.  

a. The error field MUST be populated for a single error code and related message.  

b. The errors field MUST be populated for a map of errors, which MUST be used in response to a 
request message that contains a map. (NOTE: A ProtocolException message may be 
implemented as multipart to accommodate many errors for large map requests.)  

c. In a single instance of a ProtocolException message, you MUST use one of the two error fields 
(either error or errors), but you MUST NOT use both in the same message.  

i. If both error and errors is populated, the behavior is undefined. 

5. For brevity in this specification, the text used for raising an error is "send error Name (N)", where 
Name and N are actual error code names and numbers defined by ETP, such as "send error 
EUNSUPPORTED_PROTOCOL (4)". This text means send the ProtocolException message with 
the named error code. For the example shown, it means send the ProtocolException message with 
error code 4, which is named EUNSUPPORTED_PROTOCOL. 

6. For additional information about using ProtocolException messages with plural and multipart 
messages, see Section 3.7.3. 

3.7.2.2 Acknowledge Message: Usage Rules  
ETP offers the flexibility for an endpoint to request an Acknowledge message (informally referred to as 
an "Ack") for each ETP message sent.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 66 

Use the Acknowledge message (defined in Chapter 5) in any protocol where specific acknowledgement 
of receipt of a message is needed. That is, an Ack is confirmation that a message was received; it does 
NOT indicate that an action was completed.  

An Ack is a logically separate response message from any behavioral responses defined in specific ETP 
sub-protocols. 

In certain cases, use of Acks is prohibited. Rules and requirements are specified in the following list. 
NOTE: This section documents behavior specific to Acks, which fits into the larger message sequence 
documented in Section 3.5.3.  

Follow these rules for requesting and sending Acknowledge messages:  
1. An endpoint MUST send an Acknowledge message ONLY when the other endpoint in an ETP 

session has requested an Ack. 

2. For an endpoint to request an Ack for a given message, it MUST set the 0x10 bit in the 
messageFlags field (bit map of flags in hexadecimal values) in the MessageHeader of the message 
that requires acknowledgement. For more information on available messageFlags and other fields in 
the MessageHeader, see Section 3.5.4. 

a. An Acknowledge message MUST NEVER have its 0x10 bit set (that is, an Ack MUST NOT be 
Acked—this would create an endless loop).  

b. Either endpoint/role MAY request an Acknowledge message. 

3. The endpoint that receives the message (the receiving endpoint) MUST do the following: 

a. The receiver MUST first inspect the messageFlags field in the MessageHeader to determine if 
the sender is requesting an Acknowledge message. BOTH of these conditions must be true, to 
send an Ack:   

i. The 0x10 flag is true, indicating that the other endpoint is requesting an Ack. 

ii. The message is NOT an Acknowledge message. 

b. If both conditions are true, the receiving endpoint MUST immediately send an Acknowledge 
message, before any other processing of the MessageHeader and before any attempt to de-
serialize and/or process an (optional) message header extension or the message body. 

i. This approach means an Acknowledge message always precedes any other messages sent 
in response (to the message that requested the Ack) i.e. Ack will precede any other message 
with the same correlationId as the Ack message, including any ProtocolException 
messages. 

c. The receiving endpoint MUST send the Ack in addition to any response message(s) specified by 
the sub-protocol (which may not be sent until much later, for example, depending on the size and 
complexity of the request).  

d. The endpoint that is sending the Ack MUST populate the Acknowledge message according to 
these rules: 

i. The message body has no content. Any meaning is embodied in the receipt of the Ack itself. 

ii. MessageHeader. Observe these rules for setting values for fields in the MessageHeader: 

1. The protocol field in the MessageHeader of the Acknowledge message MUST be set to 
the protocol ID of the ETP sub-protocol that sent the message to be acknowledged. 
 
EXAMPLE: If an Acknowledge message is being requested for a message in Discovery 
(Protocol 3), then the protocol field in its MessageHeader is set to 3. 
 
NOTE: Because Acknowledge is one of the messages defined in Protocol 0 that may 
be used in any protocol, protocol should only be set to 0 if you are acknowledging a 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 67 

Protocol 0 message.) 

2. The correlationId in the MessageHeader of the Acknowledge message MUST be set to 
the ID of the message (messageId field) that requested the acknowledgement.  
 
NOTE: Each message in ETP MUST have a messageId unique to the endpoint in an 
ETP session; for ETP message ID numbering requirements, see Section 3.5.4. 

3. Set the messageFlags. Observe these details for setting the messageFlags on an 
Acknowledge message:  

 The 0x02 bit (FIN bit) MUST ALWAYS be set to true. That is, an Ack is always only a 
single ETP message. 

 The 0x10 bit MUST NEVER be set to true; an Ack MUST NOT be acked. 

4. Cautions for using Acknowledge messages: 

a. Consider use of Acks carefully. While ETP has no restrictions on their use, overuse of Acks can 
degrade performance. For example, in general it would not be good practice to request Acks for 
every ChannelData message in a streaming protocol (such as ChannelSubscribe (Protocol 21)). 
However, in some cases (for example, poor phone line connection), use of Acks on every part 
could be beneficial.  

b. NOTE: In ETP v1.1, the Acknowledge message was also used with the 0x04 bit to indicate a 
response of "no data" to a specific request. The "no data" responses have been clarified in ETP 
v1.2 and this 0x04 bit is no longer used. 

3.7.3 Usage Rules for "Plural Messages" 

ETP defines a message pattern that allows for multiple requests and responses in a single message; this 
pattern is informally referred to as a "plural message". Request, response and some notification 
messages can be plural. For a complete definition of plural message, see Section 3.7.1.2. 

NOTE: Multipart requests and responses are a specific type of plural messages (explained below). Those 
messages are subject to the design patterns and rules specified here AND the additional patterns and 
rules specified in Section 3.7.3.1. 

Design patterns and rules for plural messages:  

1. Plural messages are indicated by use of plural words in the message names. 
(In U.S. English, plural words are usually indicated by adding the letter "s" to the end of an object 
name, for example, the GetDataObjects and GetDataObjectsResponse messages in Store 
(Protocol 4).)  

a. Both request and response messages MAY be plural. However, in some cases, request 
messages (though having a plural name) may be a single request that allows a plural response.  

2. By definition, a plural request message is one of these: 

a. A Get or Find request WITHOUT a map. These messages represent a single request that 
allows a plural response. In Discovery (Protocol 3) one GetResources message may return 
multiple GetResourcesResponse messages, each of which contains an array of resources. (In 
general, each request message has a corresponding response message indicated by name, e.g., 
GetResources and GetResourcesResponse; for information about types of messages and 
naming conventions, see Section 3.4.2.) 

b. Any request message WITH a map. The map is a collection of key-value pairs, which makes it 
easier to match requests with responses and/or errors. Each item in a map has an assigned map 
key that MUST be unique within the context of that map. RECOMMENDATION: Use the smallest 
viable key (e.g., 1, 2, 3…), which MUST be a string, NOT an integer. For a complete definition of 
map, see Section 3.7.1.3. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 68 

i. The endpoint making the request that contains the map MUST assign the map keys.  

ii. If a map is used in a multipart response or request, the keys MUST be unique across all 
messages of the multipart response/request. EXAMPLE: The OpenChannelsResponse 
messages in ChannelDataLoad (Protocol 22) is a multipart message with a map; it is a 
response that lists the channels a store can accept data for, each channel must be identified 
by a map key unique across all messages that the make up the response.  

iii. As previously specified (in Section 3.5.4), the final message in a request or response MUST 
have its FIN bit set (messageFlags 0x02 in the MessageHeader). For information on setting 
FIN bits on multipart requests, responses, and notifications, see Section 3.7.3.1.  

3. A Get or Find request WITHOUT a map MUST have ONE of the following as a response: a) the 
ETP-defined response message that contains items that the store could return, b) the ETP-defined 
response message with an empty array (no data was found that met the request criteria) or c) a 
ProtocolException message (PE) with the error field populated (i.e., a single error for the entire 
request) with the appropriate error code).  
EXAMPLE: In Discovery (Protocol 3), the possible responses to a GetResources request message 
are: a) one or more GetResourcesResponse message with the array of resources that the store 
could return, b) one GetResourcesResponse message with an empty array (the URI is valid but no 
data meeting the criteria specified in the request was found) or c) a ProtocolException message, 
e.g., if the URI in the request is malformed, the PE would contain in its error field EINVALID_URI (9).  

a. If the response is multipart, it is possible that an endpoint might begin sending response 
messages and THEN encounter an error (e.g., a server exception occurs). In this case, the server 
MUST do all of the following:  

i. Send a ProtocolException message with an appropriate error code. 

ii. Stop processing the request that caused the error.  

iii. Stop sending any additional response messages for that request.  

b. As previously specified (in Section 3.5.4), the final message in a request or response MUST have 
its FIN bit set (messageFlags 0X02 in the MessageHeader). For more information on setting FIN 
bits on multipart requests, responses, and notifications, see Section 3.7.3.1.  

4. A map request MUST have as a response: a) zero or more positive map response messages, b) 
zero or more map ProtocolException errors, and c) zero or one terminating, non-map 
ProtocolException error. 
a. If the response is multipart, it is possible that an endpoint might begin sending response 

messages and THEN encounter an error (e.g., a server exception occurs). In this case, the server 
MUST do all of the following:  

i. Send a terminating, non-map ProtocolException message with an appropriate error code. 

ii. Stop processing the request that caused the error.  

iii. Stop sending any additional response messages for that request. 

b. Otherwise, if no terminating errors are sent: 

i. Each key from the map in a map request MUST appear either as the key in a positive 
response map or as the key in the errors map in a ProtocolException message; that is, 
each request in a map was either successfully completed or results in an error, but not both.  

ii. If a request message results in both positive responses and errors, the number of returned 
positive responses and the number of errors in ProtocolException MUST equal the total 
number of request items.  

c. Terminating ProtocolException messages are intended for store-wide or request-wide failures 
that are unrelated to the success or failure of individual requests within the request message. In 
response to these errors, the customer MAY try the request again later or try to split it into smaller 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 69 

groups of individual requests. These errors will not help the customer correct errors within the 
individual requests. 

i. An example of a store-wide error could be a store losing its database connection. 

ii. Examples of request-wide errors could be an unhandled exception processing the request 
that prevents further processing or exceeding the endpoint's value for the 
MultipartMessageTimeoutPeriod capability. 

d. Map ProtocolException messages are intended to provide specific failure reasons for individual 
requests within the request message. In response to these errors, the customer SHOULD attempt 
to correct the individual requests based on the specific error received. EXAMPLE: For 
EINVALID_OBJECT, the customer SHOULD attempt to fix issues with the object data. 

e. Terminating ProtocolException messages are NOT a substitute for map ProtocolException 
messages. 

i. Customers are likely to simply retry requests that fail with a terminating ProtocolException 
message or send different subsets of the request to try to narrow down the potential problem. 

f. If a store MUST send a terminating ProtocolException message, it SHOULD attempt to send all 
positive responses and all map error responses it is able to before sending the terminating 
ProtocolException message. 

g. A store MUST NOT use a terminating ProtocolException message as a convenience 
mechanism to avoid sending map error responses, even if all map error responses to a request 
are the same. 

5. The ProtocolException message(s) that contain the error responses to a map request MUST have:  

a. protocolId in the MessageHeader set to the protocol number that the request message was 
issued from. EXAMPLE: If the ProtocolException is in response to a GetResources message, 
the protocolId is "3" (for Discovery (Protocol 3).   

b. correlationId in the MessageHeader set to the request message (messageId) that it is a 
response to.  

c. An error code for each item in the errors map.  

6. As previously specified (in Section 3.5.4), the final message in a request or response MUST have its 
FIN bit set (messageFlags 0X02 in the MessageHeader). For more information on setting FIN bits on 
multipart requests, responses, and notifications, see Section 3.7.3.1. 

3.7.3.1 Usage Rules for Multipart Requests, Responses, and Notifications 
Multipart requests, responses, and notifications make it possible for an endpoint to break up something 
that is potentially large into a series of related, smaller messages. This set of messages should be 
considered a single virtual request, response, or notification. For detailed definitions, see Section 3.7.1.5. 

The patterns and rules specified here MUST be followed in addition to the "plural message" rules 
specified just above. 

Design patterns and rules for multipart request, response, and notification messages:  

1. Only ETP messages with multipartFlag = true may be implemented as a series of related messages. 
This flag appears in the header information of the Avro schema that defines each ETP message (see 
Section 3.4.1) and in each section of this specification that defines a message. 

a. How to partition and group data for multipart requests, responses, and notifications is an 
implementation issue; the ETP Specification provides no guidance or recommendations on how 
to do this. Each implementer determines its own approach. 

i. Message sizes MUST honor each endpoint's MaxWebSocketMessagePayloadSize capability 
(see Section 3.3.2.9).  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 70 

b. To protect performance (e.g., throughput), ETP specifies capabilities so that endpoints can 
impose limits to size, concurrency, and duration of multipart requests, responses, and 
notifications. (For more information about capabilities and how they work, see Section 3.3.) The 
capabilities pertaining to multipart messages include those listed here, with links to details of 
required behavior when using them:  

i. ResponseTimeoutPeriod (endpoint) (see Section 4.b below)  

ii. MaxResponseCount (protocol) (see 4.d below) 

iii. MaxConcurrentMultipart (endpoint) (see Section 3.7.3.1.1.1 below) 

iv. MultipartMessageTimeoutPeriod (endpoint) (see Section 3.7.3.1.1.2 below) 

2. By definition, a multipart request, response, or notification MUST be bounded. (That is, a multipart 
request, response, or notification should be considered a single virtual request, response, or 
notification.) 

3. As described in Section 3.5.4, each message in an ETP session MUST be uniquely numbered (using 
the messageId field in the MessageHeader)—this rule applies to each message of a multipart 
response, request, or notification, related Chunk messages (if used, see Section 3.7.3.2) and 
ProtocolException messages (if used, see Section 3.7.2.1).  

a. For messageId requirements, see Section 3.5.4. 

4. A multipart response: 

a. MUST correlate to a specific request message.  

i. For usage rules for correlationIds (included in the MessageHeader of each ETP message), 
see numbers 6 and 7 below. 

b. Data messages (such as ChannelData messages sent in Protocols 1, 21 or 22) ARE NOT 
responses and ARE NOT multipart; they are individual messages containing data that are sent as 
they become available. 

i. For types of messages and naming conventions, see Section 3.4.1.  

c. MUST begin within the customer's ResponseTimeoutPeriod endpoint capability. That is, after 
receiving a request from a customer, a store MUST send the standalone response message or 
the first message in a multipart response no later than the value for the customer's 
ResponseTimeoutPeriod. 

i. If the store cannot respond within the customer's ResponseTimeoutPeriod, the store MAY 
cancel by sending error ETIMED_OUT (26). 

ii. If the store's value for ResponseTimeoutPeriod is less than the customer's value, and the 
store exceeds its limit, then the store MAY cancel the response by sending error 
ETIMED_OUT (26). 

iii. If a customer receives an ETIMED_OUT error, it may indicate that the session has become 
congested or the store has encountered other "abnormal circumstances." 

d. MAY include a combination of valid response messages and errors, which MAY specifically 
include:  

i. Valid designated response messages as defined by each ETP sub-protocol (EXAMPLES: 
in Store (Protocol 4) one or more GetDataObjectsResponse messages may be returned in 
response to a GetDataObjects request message; in ChannelDataFrame (Protocol 2), one 
GetFrameResponseHeader and one or more GetFrameResponseRows are returned in 
response to a GetFrame request message). 

ii. Chunk message. This message is used in 3 store-related protocols (Protocols 4, 5 and 14); it 
makes it possible for the store to attach potentially large data objects (which may be included 
with some request, response, and notification messages) as binary large objects (BLOBs) 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 71 

partitioned into manageable sized "chunks". For more information on how the Chunk message 
works, see Section 3.7.3.2. 

iii. ProtocolException message(s). The map construct makes it possible to submit multiple 
requests in a single message and have some requests pass and some requests fail (instead 
of the entire request failing); in this case, the response is a mix of valid response messages 
(for the requests the store could fulfill) and ProtocolException messages (for requests that 
resulted in errors). 

 Errors MUST be sent in one or more ProtocolException messages, which MAY also be 
a series of multiple related messages. For more rules related to ProtocolException 
messages as part of a multipart response, see numbers 5, 8 and 9 below. 

e. A Store MUST limit the total count of response items it returns in response to one non-map 
request to the customer's MaxResponseCount value. (The MaxResponseCount is an endpoint 
capability; it is the maximum total count of responses allowed in a complete multipart message 
response to a single non-map request.) EXAMPLE: A store must not return more than 
MaxResponseCount Resource records in response to a GetResources request message. 

i. If the store's MaxResponseCount value is smaller than the customer's MaxResponseCount 
value, the store MAY send fewer response items. 

ii. If the store's response exceeds this limit, the customer MAY notify the store by sending error 
ERESPONSECOUNT_EXCEEDED (30). 

iii. If a store cannot send all responses to a request because it would exceed the lower of the 
customer's or the store's MaxResponseCount value, the store: 

1. MUST terminate the multipart response by sending error 
ERESPONSECOUNT_EXCEEDED (30).  

2. MUST NOT terminate the response until it has sent MaxResponseCount responses. 

iv. NOTE: In some protocols, there are additional capabilities that limit the response count to 
specific requests. For example, in ChannelSubscribe (Protocol 21), MaxRangeDataItemCount 
limits the count of DataItem records sent in response to a GetRanges request. These 
capabilities are documented in the relevant protocols, but the behavior for these is as 
described here for MaxResponseCount: if the limit would be exceeded, the store MUST send 
ERESPONSECOUNT_EXCEEDED (30) and the store MUST NOT send this until it has sent 
the maximum number of responses allowed by the capability. 

5. Message Flags/FIN bit. For all ETP messages, the MessageHeader contains a messageFlags 
attribute. This attribute acts as a bit-field and allows multiple Boolean flags to be set on a message 
(for the complete list of flags, see Section 23.25). The 0x02 flag indicates that the message is the last 
message for a request, response or notification (a FIN bit). (NOTE: FIN bit is set for every "action"; 
that is, each message or set of messages that serve as a request, response, notification or data. For 
example: If a request message is composed of only a single message, its FIN bit MUST be set. 
Follow these rules to set the FIN bit for multipart requests, responses or notifications: 

a. For a multipart request, you MUST set the FIN bit on the last message of the request ONLY. 

b. For a multipart response, you MUST set the FIN bit on EITHER: the last message of the multipart 
response OR on a related ProtocolException message (per number 4 above), depending on 
which message is sent last (see also, numbers 8 and 9 below.) 

i. The final message in a multipart response MAY be an "empty" response message with the 
0x02 flag set. 

c. For multipart notifications, you MUST set the FIN bit on the last message of the multipart 
notification. 

6. CorrelationId: For a multipart REQUEST or NOTIFICATION:  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 72 

a. The correlationId of the first message MUST be set to 0 and the correlationId of all successive 
messages in the same multipart request or notification MUST be set to the messageId of the first 
message of the multipart request or notification. 

7. CorrelationId: For a multipart RESPONSE:  

a. The correlationId of each message that comprises the response MUST be set to the messageId 
of the request message.  

b. If the request message is itself multipart, the correlationId of each message of the multipart 
response MUST be set to the messageId of the FIRST message in the multipart request. 

c. When an endpoint receives a response message with the 0x02 flag set (which indicates it is the 
last part), the endpoint will NOT receive any additional response messages with the same 
correlationId. (i.e., after sending a message with the FIN bit set, the sending endpoint MUST NOT 
send any additional messages with the same correlationId).  

d. When an endpoint receives a notification message with the 0x02 flag set (which indicates it is the 
last part), the endpoint will NOT receive any additional notification messages with the same 
correlationId. (i.e., after sending a message with the FIN bit set, the sending endpoint MUST NOT 
send any additional messages with the same correlationId). 

8. ProtocolException messages. If a response includes one or more ProtocolException messages: 

a. Its correlationId must be set to the correlationId of the request message that caused the error.  

b. If the ProtocolException message is the last part in the multipart response, then its 0x02 bit flag 
MUST be set (indicating it is the last part).  

9. If a catastrophic error occurs in the middle of a multipart response:  

a. The sender MUST send a ProtocolException message with a single error 
EMULTIPART_CANCELLED (18) (in the error field) and: 

i. NO map keys are populated. 

ii. The FIN bit is set. 

iii. NOTE: This is the only situation in which a ProtocolException message that is part of a 
multipart response can have an empty map. 

b. The receiver MUST treat this situation as a cancellation of the entire operation (because multipart 
messages are treated as an atomic operation).  

10. Message content. For a multipart request, response, or notification, only the content of the collection 
field (i.e., array or map) may vary between the message parts. The values for all other fields carrying 
metadata MUST be identical for all message parts of a multipart message. EXAMPLES: 

a. For GrowingObject (Protocol 6), a multipart ReplacePartsByRange request MUST contain the 
same values for uri, format, deleteInterval, and includeOverlappingIntervals within all message 
parts; the only data that may change among messages is the content of the objectParts collection. 

11. RECOMMENDATION: To avoid sending more individual messages than necessary when sending 
multipart requests, responses and notifications, group together data, where possible. EXAMPLE: 
Group all error responses to a map request into a single ProtocolException message, if doing so 
does not exceed MaxWebSocketFramePayloadSize. 

12. WARNING: Use of multipart requests, responses, and notifications in data-movement protocols (such 
as PutDataObjects in the Store (Protocol 4) may create mutating or racing conditions. Currently, 
ETP does not attempt to handle these conditions. Identifying and addressing these conditions is up to 
the developer/implementer. The safest thing for client applications to do now is to ensure they do not 
issue concurrent, competing requests to a store.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 73 

3.7.3.1.1 Multipart Message Capabilities 
This section defines and specifies required behavior for endpoint capabilities that apply generally and 
exclusively to multipart messages.  

3.7.3.1.1.1 MaxConcurrentMultipart (Endpoint) 

DEFINITION: The maximum count of multipart messages allowed in parallel, in a single protocol, from 
one endpoint to another. The limit applies separately to each protocol, and separately from client to server 
and from server to client. The limit for an endpoint applies to the multipart messages that the endpoint can 
receive.  

EXAMPLE: If an endpoint's MaxConcurrentMultipart is 5, then it can receive 5 multipart messages—each 
with any number of parts—at one time, in Store (Protocol 4) and another 5 messages in process in 
Discovery (Protocol 3). In Discovery (Protocol 3), this could be the multipart responses to 5 distinct 
GetResources requests. 

Value units: <count of messages> 

Min: 1 

REQUIRED BEHAVIOR:  

1. A customer MUST limit the count of multipart requests that it makes in parallel in a protocol to the 
store's value for MaxConcurrentMultipart. 

a. If the customer exceeds this limit, the store MUST deny multipart requests that exceeds this limit 
by sending error EMULTIPART_CANCELLED (18). 

2. A Store MUST limit the count of multipart responses and notifications that it sends in parallel to the 
customer's value for MaxConcurrentMultipart. 

a. If sending a multipart response to a request would require a store to exceed the customer's limit, 
the store MUST abort the entire multipart response by sending error EMULTIPART_CANCELLED 
(18). 

b. If sending a multipart notification would require a store to exceed the customer's limit, the store 
MUST separate and send the multipart notification message content as distinct, "single" 
messages, with the FIN bit (messageFlags 0x02) set on each message. 

c. When sending notifications in this manner for notifications that would normally require the use of 
Chunk messages (see Section 3.7.3.2) the store MUST NOT send associated object data, even 
if the customer requested the object data. 

3.7.3.1.1.2 MultipartMessageTimeoutPeriod (Endpoint) 

DEFINITION: The maximum time period in seconds—under normal operation on an uncongested 
session—allowed between subsequent messages in the SAME multipart request or response. The period 
is measured as the time between when each message has been fully sent or received via the 
WebSocket. 

Value units: <count of seconds> 

Max: 60 seconds 

REQUIRED BEHAVIOR: This behavior is expected under normal operation on an uncongested session.   

1. A customer MUST send each message in a multipart message no later than the store's value for 
MultipartMessageTimeoutPeriod after the previous message in the same multipart message. 

a. If the store's limit is exceeded, the store MAY cancel multipart requests by sending error 
ETIMED_OUT (26). 

b. If a customer receives error ETIMED_OUT, it may indicate that the session has become 
congested or the store has encountered other abnormal circumstances. 

2. A store SHOULD send each message in a multipart message no later than the customer's value for 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 74 

MultipartMessageTimeoutPeriod after the previous message in the same multipart message. 

a. If the customer's limit is exceeded, the customer MAY cancel the multipart response by sending 
error ETIMED_OUT (26). 

3. If the store's value for MultipartMessageTimeoutPeriod is less than the customer's value and the 
store exceeds its limit, the store MAY cancel the rest of the response with ETIMED_OUT (26). 

3.7.3.2 Sending Binary Large Objects (BLOBs) in ETP 
Some messages in Store (Protocol 4), StoreNotification (Protocol 5), and StoreQuery (Protocol 14) allow 
or require a data object to be sent with the message. If the size of the data object is too large (bytes) for 
an endpoint's MaxWebSocketMessagePayloadSize (an endpoint capability negotiated for an ETP 
session) (NOTE: For some WebSocket libraries, frame and message sizes can be quite small, e.g. 128 
kb), you must subdivide the data object (BLOB) and send it in "chunks" that are small enough for both 
endpoints to handle. Send these "chunks" using a set of related Chunk messages, which is defined in 
each of the protocols in which it appears (for example, in Chapters 9, 10, 16). 

Recommendations for using Chunk messages:  

 Use Chunk messages to overcome data objects that are too large (bytes) for the negotiated 
WebSocket message size limit for an ETP session. This limit—MaxWebSocketMessagePayloadSize 
(and its companion MaxWebSocketFramePayloadSize)—is an endpoint capability negotiated when 
the ETP session is established. For more information, see Section 3.3.2. 

- Use of Chunk messages DOES NOT address data objects that exceed the limits set by the 
MaxDataObjectSize capability (see Section 3.3.2.4).  

 Optimize use of Chunk messages, for example, by making these messages as large as your 
WebSocket limits allow.  

 If not needed, DO NOT use Chunk messages.  

The Chunk message is defined in each of the protocols listed above and it works the same in all cases. 
The Chunk message is implemented as part of a multipart request or response and thus MUST follow the 
rules defined in Section 3.7.3.1. 

Any message that allows or requires a data object to be sent, contains a field called dataObjects, which is 
a map composed of the ETP data type DataObject (which is defined in Section 23.34.5). If the specific 
data object you are sending is too large, do the following:  

1. Assign a BLOB ID to the data object that you want to send and enter it in the blobId field on the 
DataObject record.  

a. The blobId MUST be a UUID, and it MUST be unique within an ETP session.  

b. When you populate the blobId field, the data field (on the DataObject record) MUST be empty.  

c. Populating the blobId field means that the actual data will be sent in a set of Chunk messages 
(not in the DataObject).  

2. Divide the data object into appropriate sized "chunks" (to accommodate the negotiated WebSocket 
message size limit for the session) and send the content in multiple Chunk messages.  

a. Each Chunk message MUST contain the BLOB ID assigned to the data object.  

b. The correlationId for each Chunk message MUST be the messageId of the message that 
resulted in the need to create chunks. (The message varies by ETP sub-protocol; EXAMPLE: In 
Store (Protocol 4) the PutDataObjects message and the GetDataObjectsResponse message 
may result in the need for a set of Chunk messages.  

i. All Chunk messages associated with a given "parent message" belong to the multipart request 
or response. EXAMPLE: If a PutDataObjects operation is putting 3 data objects that all must 
be sent using Chunk messages, then the PutDataObjects message and all Chunk messages 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 75 

(for all 3 data objects) are part of the same multipart request.  

c. The data object MUST be partitioned and each Chunk message MUST be sent in order, as 
indicated by the messageId (described in Section 3.5.4).   

i. The last Chunk message for the data object MUST have the final field set to true. Because a 
Chunk message MUST be sent in the context of another request, response or notification 
message, which may be multipart itself, the Chunk message has its own final flag field (in the 
body of the Chunk message), indicating the last chunk for one data object. 

ii. The receiver of the messages uses the blobId, messageId and final fields to re-assemble the 
data object in its correct order.  

d. Chunk messages for different objects MUST NOT be interleaved within the context of one 
multipart message operation. 

i. If more than one data object must be sent using Chunk messages, you MUST finish sending 
all chunks for each data object before sending the chunks for the next data object. 

3. If a Chunk messages is the last message in a multipart request, response or notification, the sender 
MUST set the FIN bit in the message header. EXAMPLE: In the example on 2.b.i above, the FIN bit 
MUST be set on the last Chunk message of the third data object.  

3.7.4 How and "Where" URIs are Used in ETP (General Usage Rules) 

For information on data objects, resources, and Energistics identifiers, see Appendix: Energistics 
Identifiers.  

IMPORTANT Information About URIs:  
 In most cases, when this document refers to a URI it is referring to the canonical Energistics URI, 

which is explained in Appendix: Energistics Identifiers, Section 25.3.5.  

 For rules on encoding URIs, see Section 3.12.2. 

Most messages in ETP require one or more URIs. However, because of how ETP is designed (use of 
record structures to compose messages as explained in Section 3.4.1.1), WHERE you specify the URI 
may vary. The possible options:  

 In a uri or uris field directly in a message, for example, as the map value in the uris field of the 
GetDataObjects message in Store (Protocol 4). 

 In a Resource record (see Section 23.34.11), which is used to construct several response messages 
in Discovery (Protocol 3) and the query protocols (see Figure 4 above).  

 In the ContextInfo record (see Section 23.34.15), which is referenced from the SubscriptionInfo 
record (Section 23.34.16), which are used to construct several messages in the notification protocols 
(StoreNotification (Protocol 5) and GrowingObjectNotification (Protocol 6)) (see Figure 4 above).  

EXAMPLE: A typical ETP workflow may be as follows:  

1. The customer role, using Discovery (Protocol 3), sends a GetResources message with the default 
dataspace URI eml:/// (which is specified in the ContextInfo record).  

2. The store role responds with the GetResourcesResponse message, which provides an array of 
Resource records, each of which MUST specify a canonical Energistics URI for each resource 
returned.  

a. If the store supports alternate URIs (as defined in Section 25.3.9 with usage rules explained 
below in Section 3.7.4.1), the store MAY also return one or more alternate format URIs in the 
alternateUris field of a Resource record. 

3. The customer can then use one or more of the returned URIs (either the canonical or an alternate 
URI) in other messages for other actions. For example, it can use a returned canonical Energistics 
URI for a resource to get the associated data object form the store, using the GetDataObjects 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 76 

message in Store (Protocol 4).  

3.7.4.1 Rules for Using Alternate URI Formats in ETP 
For flexibility, ETP supports use of alternate URI formats (in addition to the required canonical URI 
format). You MUST observe these rules for using alternate URI formats:  

1. If a server supports alternate URI formats, it MUST indicate that support by setting the endpoint 
capability named SupportsAlternateRequestUris to true.  

a. Endpoint capabilities are discovered in the ServerCapabilities record (when establishing the 
HTTP/WebSocket connection; see Section 4.3) and exchanged in Core (Protocol 0) in the 
RequestSession and OpenSession messages (see Chapter 5). 

b. If a store sets the SupportsAlternateRequestUris to false, a customer MUST only use the 
canonical Energistics URI, else the server MUST send error EINVALID_URI (9). 

2. All alternate URIs MUST follow the rules specified in Section 25.3.9.  

3. If a store supports alternate URIs:  

a. The store MUST return its allowed alternate URIs in Discovery (Protocol 3) in the 
GetResourcesResponse message (Resource record) (see Section 23.34.11).  

b. The store is expected to support these alternate URIs in all protocols that the store supports 
where alternate URIs are allowed. 

c. There is no expectation that alternate URIs can be used in a different store. 

4. A customer SHOULD only send/use alternate URIs (e.g., in other protocols/messages) that it 
received from the store (i.e., an alternate URI that the store returned in Discovery (Protocol 3) in the 
GetResourcesResponse message).  

3.7.4.2 Rules for when Alternate URIs MAY Be Used and when Canonical URIs MUST Be Used 
Canonical Energistics URIs must be used in some messages even when the use of alternate URIs has 
been negotiated for a session. In the following messages, canonical Energistics URIs MUST ALWAYS be 
used: 

1. All Discovery (Protocol 3) requests (i.e., GetResources and GetDeletedResources). 

2. All GetSupportedTypes (Protocol 25) requests (i.e., GetSupportedTypes). 

3. All Put and Delete operations in Store (Protocol 4) and Dataspace (Protocol 24) (e.g., 
PutDataObjects in Store (Protocol 4) and DeleteDataspaces in Dataspace (Protocol 24). 

4. All query protocol requests (e.g., FindResources in DiscoveryQuery (Protocol 13). 

5. All response messages. EXCEPTION: Store-supported alternate URIs in the alternateUris field on 
Resource records. 

6. All notification messages. EXCEPTION: Store-supported alternate URIs in the alternateUris field on 
Resource records. 

In all other request messages, if use of alternate URIs has been negotiated for the session, then alternate 
URIs MAY be used. 

For the specific rules for individual message, see the documentation for each message that uses URIs. 

3.8 Avro Serialization 

The serialization of messages in ETP follows a subset of the Apache Avro specification 
(http://avro.apache.org/docs/current/spec.html). Avro is a system for defining schemas and serializing 
data objects according to those schemas. It was developed as a part of the Hadoop® project to provide a 
flexible, high-speed serialization mechanism for processing big data. Avro was selected for ETP after a 
review of several similar serialization systems.  

http://avro.apache.org/docs/current/spec.html
http://avro.apache.org/docs/current/spec.html


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 77 

NOTE: Unlike XML, Avro has no concept of a well-formed vs. valid document or a generic document 
node model; thus, it is not possible to de-serialize an Avro document without knowledge of the schema of 
that document. As such, ETP provides capabilities for a client to discover which versions of ETP a server 
supports, and clients request a specific ETP version, with associated schemas, when establishing the 
WebSocket connection. 

ETP v1.2 is based on Avro v1.10 but remains compatible with Avro v1.8.2. 

ETP uses only this subset of the Avro functionality: 

1. ETP does define all messages using the Avro schema file format. The formal definitions of these 
schemas are defined in UML class models using Enterprise Architect (EA). The Avro schema files are 
generated from this UML model. 

2. ETP does serialize all messages on the wire in accordance with the Avro serialization rules. 

3. ETP does not use the Avro RPC facility. 

4. ETP does not use the Avro container file facility. 

5. ETP does use the additional schema attributes (permissible in Avro) to define message and protocol 
metadata (as described in Section 3.5.5).  

6. ETP makes minimal use of Avro logical types. Similar ETP types predate the equivalent Avro logical 
type and/or were considered better suited to ETP use cases. 

3.8.1 Supported Data Encoding 

The Avro specification supports the use of both binary and JSON (JavaScript Object Notation) encoding 
of data. ETP also supports the use of both, with the following caveats: 

1. ETP production implementations MUST use binary encoding.  

2. JSON encoding of ETP messages is for internal testing and debugging only; JSON encoding MUST 
NOT be used for ETP production implementations.  

a. JSON has significant limitations with encoding some data (for example, NaN in doubles) and 
does not meet wire-size or performance requirements for ETP. 

b. Avro has certain conventions on how to construct JSON messages; however, these conventions 
are not commonly supported by Avro libraries or commonly used JSON libraries. This lack of 
support has proven problematic to interoperability; therefore, you cannot expect consistent JSON 
representation of messages across different implementations. 

3. JSON support is not required for ETP compliance, and its presence MUST NOT be relied on. 

4. For more information about encoding rules in ETP, see Section 3.12.1. 

3.9 WebSocket Transport 

ETP is designed to use the WebSocket protocol for transport. The WebSocket protocol was selected 
because it guarantees reliable, in-order delivery of messages.  

A full description of WebSocket is beyond the scope of this document. In brief, WebSocket is a protocol, 
standardized by the Internet Engineering Task Force (IETF) as RFC 6455 
(http:/tools.ietf.org/html/rfc6455), which allows for high-speed, full-duplex, binary communication between 
endpoints (primarily Web servers and browsers) using TCP and the standard HTTP(s) ports 80/443. This 
approach allows communications to easily and safely cross many corporate firewalls.  

Like WebSocket, ETP communication is strictly between two parties, with no allowance for 
multicast messages. 

3.9.1 How ETP is Bound to WebSocket 

ETP is bound to WebSocket in these main ways: 

http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc6455


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 78 

1. ETP is considered a sub-protocol of WebSocket as defined in Sections 1.9 and 11.5 of RFC 6455. 

2. ETP sessions start with and may use optional headers in the WebSocket opening handshake. 

3. An ETP message (the message header, optional message header extension (if used), and message 
body) maps directly to a WebSocket message (Figure 8), which in turn is composed of the 
“application data” sections of WebSocket data frames. As shown in the figure, both the header and 
body of an ETP message are sent in the same WebSocket message. In most cases, these details are 
invisible to developers, because developers use a vendor-supplied library to interface with 
WebSocket. 

ETP 
Message #1  

Header 

ETP 
Message #1 

Body 

ETP 
Message #2 

Header 

ETP 
Message #2 

Body 

WebSocket Message #1 WebSocket Message #2 

Message #1 
Data Frame #1 

Opcode = 1 or 2 
FIN = 1 

Message #2 
Data Frame #1 

Opcode = 1 or 2 
FIN = 0 

Message #2 
Data Frame # 

Opcode = 0 
FIN = 0 

Message #2 
Data Frame #N 

Opcode = 0 
FIN = 1 

Figure 8: ETP standard message layout mapped to WebSocket message layout.  

NOTE: Unlike earlier Energistics standards based on SOAP and XML (e.g., WITSML v1.x), ETP has no 
concept of an ‘envelope’ schema that contains the entire ETP message (however, the WebSocket 
payload length field plays the same role in terms of defining the extent of the message content).   

3.9.1.1 WebSocket Message Fragmentation 
The WebSocket message itself may be fragmented into multiple WebSocket data frames per the 
WebSocket protocol (See "Message #2" in Figure 8). At the WebSocket layer, a WebSocket message 
does not have its own header, but each WebSocket frame that comprises a WebSocket message does 
have its own WebSocket frame header. The WebSocket frame header is described in RFC 6455 
(https://tools.ietf.org/html/rfc6455). 

You MUST use a WebSocket library that handles fragmentation or do the fragmentation yourself. Some 
WebSocket libraries implement fragmentation and some do not. Some libraries do fragmentation but 
leave you to reassemble the message yourself.  

3.9.1.2 Limits to WebSocket Message Sizes 
WebSocket libraries set their own limits for message size and some can be relatively small (e.g., 128 kb). 
ETP protocols and messages have been designed to work with these limits, for example, ETP requests 
and responses can be composed of multiple related messages, to keep individual message sizes small.  

Additionally, ETP provides a mechanism for endpoints to convey their WebSocket-related limits; these 
limits include these endpoint capabilities:  

 MaxWebSocketFramePayloadSize, for detailed definition and required behavior, see Section◦3.3.2.8. 

 MaxWebSocketMessagePayloadSize, for detailed definition and required behavior, see 
Section◦3.3.2.8. 

Server endpoint limits can be discovered via pre-session discovery (see Section 4.3.1). A server may be 
informed of the client limits via query parameters when establishing a WebSocket connection (see 
Section 4.3).The limits established for the WebSocket connection are also exchanged when establishing 
the ETP session in Core (Protocol 0) (see Chapter 5). For general information about ETP-defined 
capabilities and how they are used, see Section 3.3. 

https://tools.ietf.org/html/rfc6455#section-1.9
https://tools.ietf.org/html/rfc6455#section-11.5
https://tools.ietf.org/html/rfc6455


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 79 

3.9.2 ETP Uses Asynchronous Exchange of Messages 

All ETP communication is carried out through the asynchronous exchange of messages. This approach is 
distinct from the request/response pattern normally associated with HTTP, and the “RPC style” 
associated with many SOAP implementations (including all WITSML versions before v2.0). Of course, 
many use cases still require a request on the part of one endpoint and expect a response of some sort 
from the other.  

The ETP design includes specific response messages to support specific uses cases. Additionally, for 
most ETP messages (except as noted in this specification), an endpoint can optionally request an 
Acknowledge message by setting a flag in the message header (for more information on how to request 
an Acknowledge message, see Section 3.7.2.2).  

NOTE: Implementers should always consider message sending and receipt to be happening 
asynchronously. RECOMMENDATION: Handle processing using state machines that model the various 
timings of message exchange that could occur.  

3.9.2.1 How ETP Ensures Messages are Correctly Correlated 
The WebSocket protocol guarantees the delivery of messages in the same order that they were 
dispatched. To ensure messages are correlated correctly, ETP uses several mechanisms, which include: 

1. All messages within a session MUST be numbered (messageId in the MessageHeader Avro record). 
Message numbers MUST be integers, MUST be unique for each endpoint within an ETP session, and 
MUST be increasing. For all message numbering requirements, see Section 3.5.4. 

2. A correlationId is included in each message header, which designates relationships between 
messages (for example, the response that correlates to a request or the multiple "part" messages that 
comprise a multipart request message).  

a. CorrelationId is not required in all cases; the individual schemas and this specification indicate 
correlationId usage requirements. For more information, see Section 3.5.4. 

3. In some cases, mechanisms other than correlationId are used to correlate messages and are 
explained accordingly in this specification. These mechanisms include: 

a. UUID in the original message and later correlated messages (EXAMPLES: requestUuid and 
blobId). 

b. Map keys for messages that use maps.  

4. Various ETP sub-protocols may impose specific ordering and numbering of certain messages, which 
is specified in the required behavior section of each protocol-specific chapter. 

3.10 URI Query String Syntax with OData 

For query functionality, ETP uses an OData-like syntax based on a subset of the Open Data Protocol 
(OData) query string syntax, specifically OData v4.0. OData is an OASIS standard (https://www.oasis-
open.org/standards#odatav4.0).  

OData was selected because it is a widely known (introduced in 2007) and maturing standard. Many 
client and server libraries are available for all major platforms. Its URL conventions also work well with 
ETP URIs. 

OData resources:  

 OASIS URL Conventions: http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-
conventions.html 

 OData.net libraries: http://www.odata.org/libraries/ 

 Linq to Querystring features: http://linqtoquerystring.net/features.html 

For more information on query capabilities used in ETP, see Chapter 14 and the individual protocols that 
include query behavior (which include the word "query" in their name).  

https://www.oasis-open.org/standards#odatav4.0
https://www.oasis-open.org/standards#odatav4.0
file:///C:/Users/Donna%20Marcotte/Documents/Energistics%202017/2017/ETP%202017-2018/2018/OASIS%20URL%20Conventions
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html
http://www.odata.org/libraries/
http://linqtoquerystring.net/features.html


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 80 

3.11 Tracking and Detecting Changes in an ETP Store 

ETP provides several mechanisms for applications to track and detect changes to data in an ETP store. 
These mechanisms are described in detail in other parts of the specification, but this section summarizes 
them. Appendix: Data Replication and Outage Recovery Workflows provides an overview of how 
these features can be used to support eventual consistency between two data stores. 

The main change detection features are: 

 Timestamps: ETP requires stores to provide current timestamps and timestamps associated with 
data changes. Various messages allow customers to query for data that has changed since a given 
timestamp, which allows customers to discover relevant data changes they are interested in using 
timestamps from the store’s clock. For more information, see Section 3.12.5. 

 Store-Managed Fields: ETP requires stores to track certain fields for every data object: 
storeLastWrite, storeCreated, and, for certain data objects, activeStatus. Stores must update these 
fields in response to data changes and ETP store operations. Customers can use these fields to 
query or filter for data objects of interest. For more information, see Section 3.12.4. 

 Notifications: ETP provides protocols that allow customers to subscribe to change notifications to 
data objects, channel data and growing data object parts. Once subscribed, customers automatically 
receive notifications of new, modified or deleted data. For more information about notifications, see 
Chapter 10, StoreNotification (Protocol 5), Chapter 12, GrowingObjectNotification (Protocol 7), 
and Chapter 19, ChannelSubscribe (Protocol 21). 

 Tombstones: ETP requires stores to retain minimal information about deleted data objects after they 
have been deleted. Stores must track these so-called tombstones for a period of time specified by the 
ChangeRetentionPeriod endpoint capability. These tombstones allow customers to discover which 
data objects have been deleted recently. For more information about tombstones, see Section 
8.2.1.2. 

 Change Annotations: ETP requires stores to track which data intervals have changed in channels 
and growing data objects. Stores must track this information for a period of time specified by the 
ChangeRetentionPeriod endpoint capability. Customers can request the change annotations for 
channels and growing data objects to determine if there are changes they may be interested in. For 
more information about change annotations, see Section 11.1.4. 

3.11.1 Benefits of Change Tracking and Detection Features 

These features are designed to: 

1. Minimize the effort a customer must put into getting new data, 

2. Minimize the latency before a customer receives new data, and 

3. Minimize the amount of data a customer needs to request if it is only interested in new data. 

As such, stores are strongly encouraged to retain any change information (especially store-managed 
fields, tombstones, and change annotations) for as long as is feasible. 

3.11.2 "Relaxed" Change Tracking and Detection Behavior for Some Stores 

However, not all stores can track these changes accurately over a long period of time. EXAMPLE: Some 
stores are end-user applications without a persistent data store for ETP information, and other stores are 
implemented as an API over an existing, legacy data store. To support these types of stores, ETP allows 
some change detection behavior to be "relaxed"; EXAMPLES: Provided a store meets certain 
requirements when doing so, the store may retain changes for shorter periods and/or set change times on 
a best endeavors basis. The specific ways this "relaxed behavior" is allowed is documented in the 
relevant sections of the specifications. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 81 

3.11.3 Some Important Points About Change Detection 

 Implementing “relaxed” change detection behavior WILL result in additional queries from customers, 
higher latency in getting new data to customers, and more data being requested from customers. 
Relaxed change detection should only be done where it is unavoidable. 

 When implementing “relaxed” change detection behavior, stores MUST still correctly retain (subject to 
where appropriate to the ChangeRetentionPeriod capability) all relevant change information (store-
managed fields, change annotations, and tombstones) as long as there is at least one session 
connected. 

 If a store loses track of relevant change information when no sessions are connected (e.g., the store 
application is restarted and there is no persistent store for the information), the store MUST track the 
“start” timestamp from which it is able to provide relevant change information. This may be the 
timestamp when the application started. Stores MUST provide this timestamp in the RequestSession 
or OpenSession to allow customers to make informed decisions when connecting to the store. For 
more information, see Chapter 5. 

3.12 How to Handle Commonly Used Types of Data in ETP 

Software applications for upstream oil and gas have common types of data that are used extensively, for 
example, variations of time (e.g., time stamps, elapsed time), units of measure (UOM) and 
ranges/intervals. This section explains how ETP handles these types of data.  

3.12.1 Data Model as a Graph 

Data objects in an ETP store are connected to each other through relationships forming a graph. A graph 
is a mathematical structure used to model pairwise relations between objects 
(https://en.m.wikipedia.org/wiki/Graph_theory). In this context, a graph is made up of nodes (which are 
also called points or vertices) and the lines (also called links or edges) that connect the nodes (Figure 9).  

 
Figure 9: Examples of simple graphs: left image is an undirected graph and right image is a directed graph.  

ETP has been designed to navigate Energistics data models as graphs where: 

 Nodes represent data objects in a data model (WITSML, RESQML, PRODML or EML (i.e., 
Energistics common) (For the definition of data object, see Section 25.1).  

 Lines (directed links between nodes) represent relationships between those data objects. A data 
object can have multiple distinct references to other data objects (as specified in the various domain 
models).  

For a complete explanation of graphs and how they work in ETP, see Section 8.1.1. 

3.12.1.1 Benefit of Graphs in ETP  
Discovery (Protocol 3), StoreNotification (Protocol 5) and the query and other notification protocols have 
been designed to work with these graphs of data objects. These protocols use as key inputs graph 
concepts that allow a customer endpoint to precisely specify—in a single request—the desired subset of 
data objects from the graph for operations in an ETP session. This ability significantly reduces traffic on 
the wire. Conversely, if the graph concepts are not understood and related inputs not used properly, 
related operations will be highly inefficient. 

https://en.m.wikipedia.org/wiki/Graph_theory


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 82 

RECOMMENDATION: Read Section 8.1.1 and make sure you understand the related inputs as specified 
in the respective messages where they are used.  

3.12.2 Encoding Rules for ETP 

Observe these rules:  

1. Strings in Avro must be UTF-8 encoded. 

2. Any XML, JSON or other text-based content included with an ETP message must be UTF-8 encoded.  

3. For UUIDs: 

a. For use in ETP messages—with the exception of string representation of data objects that may 
be conveyed with a message (see next bullet)—ETP uses the Uuid datatype (Section 23.6) to 
send UUIDs. The Uuid data type is encoded as an array of 16 bytes in big-endian format.  
EXAMPLE: The UUID “00112233-4455-6677-8899-aabbccddeeff” is encoded as the byte array  
[ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff 
] in the Uuid data type. 

b. For use in Energistics domain standards, for string representation of a data object, a UUID MUST 
be serialized using Microsoft Registry Format; that is, with dashes inside the UUID and without 
curly braces.  

3.12.3 Serialization of URIs 

As mentioned in Section 3.7.4, URIs are an important and frequently used identification mechanism in 
ETP. Of particular note for the serialization of URIs in Avro/ETP: 

1. Sending endpoints MUST URL encode (i.e., percent encode, as per section 2 of RFC 3986) any 
components that contain reserved characters for the URI scheme. 

2. Receiving endpoints MUST decode all incoming URIs. 

3.12.4 "Store-Managed" Fields 

ETP has several data fields that are referred to as "store managed", which means only a store can update 
these fields. Operations performed by the customer role can require that the store update these fields. 
The behaviors for when the store must update these fields is specified in the relevant protocol-specific 
chapters. EXAMPLES:  

 storeCreated and storeLastWrite (For more information, see Section 3.12.5.2.)  

 activeStatus (For more information, see Section 3.3.2.1.)  

Sometimes these fields are elements on data objects such as a WITSML 2.0 Channel’s GrowingStatus 
element, and sometimes these are fields on ETP records such as storeLastWrite on a Resource record. 
In some cases, the field on ETP records maps to elements on data objects, and the ETP store manages 
both, such as activeStatus on Resource and GrowingStatus on a WITSML 2.0 Channel. 

3.12.5 Time 

Time and timestamps are important component of data acquisition and transfer related to oil and gas 
operations and in ETP.  

3.12.5.1 Time Data Types 
Time/date is often used as both an index and a filter. This table lists and explain various types of time and 
how they are handled in ETP.  

Type of Time How Handled in ETP Examples in ETP 

Timestamp Must be a UTC dateTime value, serialized as a long, using the 
Avro logical type timestamp-micros (microseconds from the 
Unix Epoch, 1 January 1970 00:00:00.000000 UTC). 

Most times in ETP use a 
timestamp with this format. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 83 

Elapsed Time MUST be the number of microseconds from 0 and serialized as 
an Avro long. 

ChannelIndexKind in 
ChannelMetadata 

 

3.12.5.2 New in ETP v1.2: storeCreated and storeLastWrite 
ETP workflows to "catch up" or "recover" after unplanned disconnects and for eventual consistency 
between stores are based on times designated by the endpoint with the store role in the relevant 
protocols. For more information, see Section 3.11, Tracking and Detecting Changes in an ETP Store, 
and Appendix: Data Replication and Outage Recovery Workflows. 

To implement these workflows, ETP defines 2 timestamp fields—storeCreated and storeLastWrite—which 
both are on the ETP Resource, Dataspace, and DataArrayMetadata records only (NOT on the data 
object, dataspace or data array in an underlying store). By carrying this data on these records only (not 
the data object, dataspace or data array), it separates transport properties from data object properties. 

Field Name Definition 

storeCreated The time that the data object, dataspace or data array (that the Resource, Dataspace, or 
DataArrayMetadata represents) was created in the store, which IS NOT the same as the 
creation field in the Citation in Energistics common. 

Its main purpose is for use in workflows for eventual consistency between 2 stores. 
Specifically, this field helps with an important edge case: on reconnect, an endpoint can 
more easily determine if while disconnected a data object, dataspace or data array was 
modified OR deleted and recreated. (Each of these scenarios would require different 
actions.) 

It is a timestamp as defined in Section 3.12.5.1 above. 

storeLastWrite The last time the data object, dataspace or data array was written in a particular store, 
which IS NOT the same as the lastChanged element on a data object's Citation 
element.  

This storeLastWrite field may be the last time the data object, dataspace or data array 
was saved to a database or the last time a file was written (depending on the store).  

 For ANY CHANGES to a data object or its data (E.g., parts of a growing data object or 
channel data in a channel data object) a store MUST update storeLastWrite. 

 Put operations using Store (Protocol 4).  

 Part additions or updates using GrowingObject (Protocol 5)  

 Channel data updates using ChannelStreaming (Protocol 1) or 
ChannelDataLoad (Protocol 22) 

- Updates to values in a data object's associate data array(s) using DataArray 
(Protocol 9) 

 It is a timestamp as defined in Section 3.12.5.1 above. 

 

Important usage points about these timestamp fields: 
1. Times used should be from the “store” role. In many operations in ETP, the customer role sends 

request messages, which contain timestamps (e.g., as a filter, "send me resources for objects that 
have changed since time X"). To ensure no data is "missed" (e.g., when reconnecting after a 
disconnect, because customer and store clocks may be different), a time in a customer request 
SHOULD be based on a time it received from the store (e.g., in a resource or metadata record or a 
notification message). This approach of using the source time eliminates the need to synchronize 
clocks between endpoints. 

a. In ETP, the customer is sometimes “pulling” data from a store and may send requests to the store 
to see what created or modified data needs to be pulled. In other situations, the customer is 
“pushing” data to a store and may send requests to the store to see what data is missing or 
outdated that still needs to be pushed. In both situations, the timestamps in the request 
messages should be based on timestamps previously received from the store.  

2. To determine if the sender's clock has changed: Though ETP has no need to synchronize clocks, 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 84 

an endpoint's clock time can change. When this happens, it may disrupt ongoing data transfer 
operations. ETP does not provide explicit features to recover from this scenario, but it is possible in 
some cases to detect when this has happened by using the Ping and Pong messages. Ping and 
Pong are defined in Core (Protocol 0) and can be used at any time during an ETP session. For more 
information, see 26 Appendix: Data Replication and Outage Recovery Workflows. 

3. On reconnect, request changes for a time a bit earlier than the latest known timestamp. 
Because ETP is asynchronous and multiple messages can be sent in response to an action or 
operation, there is no guarantee to timing on when you will receive a particular response. 
RECOMMENDATION: On reconnecting after a session was disconnected, a customer should use 
the store’s value for ChangePropagationPeriod endpoint capability (which is in seconds) to request 
changes that many seconds before the last store change time the customer knew about before it was 
disconnected (e.g., if a store's value for ChangePropagation Period is 300 seconds, the customer 
should request changes 300 seconds before the last store change time the customer knew about 
before it was disconnected).  
EXAMPLE: If a container data object is deleted, and it requires pruning of orphan data objects, that 
operation might trigger multiple messages with the same change timestamp, which may not all be 
sent at exactly the same time. If the session disconnects in the middle of receiving these messages 
(e.g., the receiving endpoint sees only the first 2 of 3 generated messages) won't be aware of all of 
the changes that happened at that timestamp. By adding requesting changes a bit earlier than the 
latest timestamp it has, an endpoint can account for this possibility and ensure greater probability that 
it doesn't "miss" any data.   

4. Not every store will be able to accurately track creation and modification time over a long period of 
time. The minimum requirements to enable eventual consistency workflows are that: 

a. When a data object, dataspace or data array is created in a store, the store MUST set both 
storeCreated and storeLastWrite (for creation) to the same timestamp, which is equal to or more 
recent than the actual time the data object, dataspace or data array was created or modified. This 
requirement applies even when a data object, dataspace or data array was created or modified 
by something other than an ETP store operation. 

b. When a data object, dataspace or data array is created or modified in a store, the store MUST set 
storeLastWrite equal to or more recent than the actual time the data object, dataspace or data 
array was created or modified. This requirement applies even when a data object, dataspace or 
data array was created or modified by something other than an ETP store operation. 

c. When the creation or modification happens through ETP store operation, the store MUST set 
the timestamps equal to the actual creation or modification time as part of the store operation. 

d. storeCreated MUST always be equal to or more recent than the actual time the data object, 
dataspace or data array was created. 

e. storeLastWrite MUST always be equal to or more recent than the actual time the data object, 
dataspace or data array was modified. 

f. storeLastWrite MUST always be equal to or more recent than storeCreated for any given data 
object, dataspace or data array. 

With these rules, stores MAY use a more recent time for storeLastWrite and storeCreated if 
necessary under certain circumstances. EXAMPLE: If a store application is restarted and it loses 
track of previously known storeCreated and storeLastWrite timestamps, it may choose to initialize 
all storeCreated and storeLastWrite timestamps to the time at which the store application started. 

However, for optimal support of eventual consistency workflows, both storeCreated and 
storeLastWrite SHOULD always be equal to the actual creation or modification time. Choosing a 
different time may lead customers to request more data that would otherwise not be necessary. 

IMPORTANT: The store MUST send appropriate ObjectChanged notifications in response to 
ANY change to storeLastWrite and storeCreated, including those changes that are not in 
response to an ETP store operation. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 85 

3.12.6 Units of Measure (UOM) 

Accurate use, exchange, and conversion of units of measure (UOM) in upstream oil and gas software are 
crucial. EXAMPLE: Errors in units of measure can cause serious problems for the accuracy and integrity 
of earth and reservoir models and the decisions that are based on those models. This table lists how units 
of measure are handled in ETP.  

Object Type Where to get the UOMs Usage in ETP 

Channel Units of measure for channel data and channel indexes are 
sent in the channel protocols using the 
ChannelMetadataRecord (see Section 23.33.7) and 
IndexMetadataRecord (see Section 23.33.6) records within 
ChannelMetadata and OpenChannelResponse 
messages. 

ChannelStreaming (Protocol 1)  

ChannelSubscribe (Protocol 21)  

ChannelDataLoad (Protocol 22)  

Data Object Energistics has a Unit of Measure (UOM) standard, which is 
used by all Energistics domain standards. When data 
objects are included in an ETP message, applicable units of 
measure must be sent with that data in accordance with the 
ML that defines the data object and the UOM standard. 

Any protocol in ETP where data 
objects may be sent or received, 
which include:  

Store (Protocol 4) 

StoreNotification (Protocol 5) 

GrowingObject (Protocol 6)  

DataArray (Protocol 9) 

StoreQuery (Protocol 13)' 

Part or Range Growing data objects contain parts, which have indexes and 
other content. Units for part indexes are sent using the 
PartsMetadataInfo record (see Section 23.34.17). 

Units for growing object part content and indexes are also 
included directly in the part data, which is handled in the 
same way as data object content described above. 

When working with growing object parts and channels, it is 
common to be interested in a range of it (instead of 
individual parts or data points). When defining a range, the 
units of measure MUST also be specified in the 
IndexInterval record (see Section 23.34.8). 

Any protocol in ETP where parts of 
growing data objects may be sent or 
received, which include: 

GrowingObject (Protocol 6)  

GrowingObjectNotification (Protocol 7) 

GrowingObjectQuery (Protocol 16)   

 

3.12.7 Use of PWLS 

The Practical Well Log Standard (PWLS), which is stewarded for the industry by Energistics, categorizes 
the marketing names for logging tools and the obscure mnemonics used for the measurements, using 
plain English. PWLS provides an industry-agreed list of logging tool classes and a hierarchy of 
measurement properties and applies all known mnemonics to them.  

In general, the main goal of PWLS is to support the classification of well log property measurement 
data—usually referred to as curves or channels—that are commonly used by oil and gas companies, and 
to use this classification as a tool to support general queries over large populations of channels. 

With this type of classification, PWLS makes it possible to do queries such as "give me all the gamma ray 
logs" and have a store return all gamma ray logs (channels), from all vendors, regardless of the variety of 
vendor mnemonics used to identify gamma ray data.  

For more information about PWLS and to download a copy of it, go to the Energistics website: 
https://www.energistics.org/download-standards/ 

PWLS is implemented in the Energistics domain data models (version 2.0+)—WITSML, RESQML and 
PRODML—through the Property Kind Dictionary (PropertyKindDictionary data object), which contains all 
known property kinds (element name = PropertyKind). The PropertyKindDictionary is published as part of 
Energistics common (namespace = EML), which itself is versioned and published with each of the domain 
standards.  

https://www.energistics.org/download-standards/


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 86 

EXAMPLE: WITSML v2.0 requires that if a WITSML implementation supports the Channel data object, 
that WITSML implementation MUST support the PropertyKind data object (i.e. the contents of the 
PropertyKindDictionary). Messages in ETP that handle the Channel data object have a field that MUST 
reference a PropertyKind data object, by specifying a URI to the specific property. For WITSML v2.0, the 
PropertyKindDictionary is in the Energistics common v2.1 ancillary folder. 

For ETP, the Properties in the Property Kind Dictionary are used as follows:  

1. Discovery (Protocol 3): Because relevant PropertyKind data objects must be available for an ETP 
store that supports Channel objects, endpoints can discover the available PropertyKind data objects, 
and then use the discovered/desired values to do discovery or query operations on the ETP store, 
EXAMPLE: Give me all the channels with property equal to property kind "gamma ray".  

2. ChannelSubscribe (Protocol 21): When getting metadata about a channel from a store, the store 
MUST populate the channelClassUri field (in the ChannelMetadataRecord; see Section 23.33.7) 
with the URI for the appropriate PropertyKind data object.  

a. NOTE: In ETP v1.2, the IndexMetadataRecord and AttributeMetadataRecord also provide 
fields where the URI of a property kind MAY be entered. The field is optional in this version of 
ETP because the current published domain model (WITSML v2.0) does not have this field. In 
future versions of ETP (and WITSML) this field may be required.  

3. DiscoveryQuery (Protocol 13) and StoreQuery (Protocol 14), see item 1 in this list.  

NOTE: Version PWLS v3.0 was published in March 2021. At the time ETP v1.2 was published, the 
current published version of the PropertyKindDictionary published in Energistics common was based on 
earlier drafts of PWLS v3.0. The PropertyKindDictionary based on PWLS v3.0 will be updated and 
published in the next version of Energistics common.  

3.12.8 Value and Range Endpoint Comparisons in Requests 

Value comparisons are used in ETP in these main contexts: 

 Range requests, which are request messages that operate on an index range (typically time or depth) 
of channel data or growing object parts. 

 Requests that filter results based on storeLastWrite or storeCreated values. 

 OData queries against values in data objects. 

The value comparisons used in these contexts are sometimes inclusive (e.g., greater than or equal) and 
sometimes exclusive (e.g., strictly greater than). The specific comparison used depends on the context 
and the specific ETP request message.  

The following table explains the general rules for how value comparisons are handled. The chapters for 
the relevant individual protocols also specify this information. 

ETP Protocol or Use Case Inclusive or Exclusive Comparison 

The storeLastWriteFilter, which is 
available in Discovery (Protocol 3), 
Dataspaces (Protocol 24), and relevant 
query protocols 

EXCLUSIVE (this is a "greater than" (GT) operation) 

Range Request: Growing data object 
(Protocol 6)  

Specific overlap/inclusive behavior is defined in the 
protocol (see Chapter 11)  

Range Requests: ChannelSubscribe 
(Protocol 21) and ChannelDataLoad 
(Protocol 22), where the ranges are 
specified in the  

INCLUSIVE (this is a "greater than or equal" (GTE) 
operation).  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 87 

ETP Protocol or Use Case Inclusive or Exclusive Comparison 

Query Protocols As specified by the subset of OData operators that ETP 
uses.  

 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 88 

3.12.9 Nullable Values 

In the ETP Avro schemas, nullable types are specified as an Avro union with "null" and the type, e.g., a 
nullable long is defined like this (schema truncated for clarity):  

{  

    "type": "record",  

    "namespace": "Energistics.Etp.v12.Datatypes.ChannelData",    

    "name": "ChannelMetadataRecord",  

    "fields":  

    [  

 

        { "name": "startIndex", "type": ["null", "long"] },  

        { "name": "endIndex", "type": ["null", "long"] },  

 

 

NOTE: Arrays, maps, strings and the bytes data type are NOT nullable unless they are in an Avro union 
that includes “null”. When these data types are not in such a union, to send a “null” value for these data 
types, you MUST send: 

 for arrays, a zero length array 

 for maps, an empty map  

 for strings, an empty string  

 for bytes, a zero length array 

Binary encoding of nullable types is specified in the Avro Specification chapter “Data Serialization”, sub-
heading “Unions”. For example, the “startIndex” in the example above with the value “16” must be 
encoded like: 02, 20, (hex). The value 0x02 is the zig-zag encoded value 1 representing the “long” type in 
the union, followed by the zig-zag encoded value. 

3.13 Troubleshooting 

Data acquisition and transfer related to oil and gas operations presents many, frequently occurring 
challenges. ETP has been designed to help address many of these challenges. This section highlights 
commonly occurring problems and ways to deal with them. In some cases, the method to address an 
issue is quite specific (EXAMPLE: Section 3.13.4) in other cases more of a heuristic (EXAMPLE: Section 
3.13.3).  

3.13.1 ETP-defined Capabilities 

One of the ways that ETP helps to address challenges associated with data transfer in oil and gas 
operations is by setting limits with capabilities—endpoint, data object, and protocol capabilities—which 
are explained in Section 3.3.  

How these capabilities are used and defined behavior when the limits they specify are violated are 
explained in the individual protocol chapters where they are used. This is the general approach in this 
document for including behavior related to capabilities: 

 Endpoint and data object capabilities that have global or widespread usage are documented Section 
3.3 with some references in protocol-specific chapters. RECOMMENDATION:◦Implementers should 
learn these high-level capabilities and all cases where they may apply.  

- Each protocol-specific chapter has a Section x.2.3, which lists the capabilities most relevant for 
that chapter and links to other information.  

 Protocol capabilities are explained in their protocol-specific chapters. Generally, the capabilities are 
explained in Section x.2.1 (message sequence for main tasks, so in the context of where they are 
used) and/or Section x.2.2 (general requirements for more general behavior within a protocol).  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 89 

 The complete list and definitions of endpoint, data object and protocol capabilities are included in 
Chapter 23. 

3.13.2 Trying to Do Too Many Operations at the Same Time 

Multipart requests, responses and notifications require dedicated pools of resources to handle correctly. 
To limit the number of these messages that can be done in parallel to keep the resources necessary to 
handle them bounded, ETP allows endpoints to use endpoint capabilities notifications as described in 
Section 3.7.3.1.1.1. 

WARNING: Use of multipart requests, responses, and notifications in data-movement protocols may 
create mutating or racing conditions. Currently, ETP does not attempt to handle these conditions. 
Identifying and addressing these conditions is up to the developer/implementer. The safest thing for client 
applications to do now is to ensure they do not issue concurrent, competing requests to a store. 

"Stop Operation" Messages. For potentially large, long-running, or complex operations (e.g., streaming 
channel data), ETP sub-protocols define "stop", "cancel" or "unsubscribe" messages. These messages 
typically allow either endpoint to stop an operation for any reason. To terminate long-running operations 
that exceed limits defined in endpoint or protocol capabilities, endpoints may also send appropriate errors 
as defined elsewhere in this specification. 

3.13.3 Always an Option: Drop the Connection 

While more "elegant' options have been designed in ETP, if operations aren't proceeding as expected, an 
ETP endpoint always has the option to simply drop the connection.   

If this happens, the other endpoint SHOULD do its best to treat the dropped connection as a shutdown of 
the ETP session (as described in Section 5.2.1.2). If needed, endpoints should then use processes 
describe elsewhere in this document, to reconnect and catch up on data that may have been missed 
while disconnected. For more information, see Appendix: Data Replication and Outage Recovery 
Workflows. 

3.13.4 Receiver not Receiving Messages Fast Enough 

ISSUE: The receiver is not reading data fast enough from the session, so the sender is not able to send 
data at the expected frequency. The sender SHOULD do the following:  

1. If the sender starts to detect sending backpressure (e.g., its queues of outgoing messages are 
starting to fill up), the sender MAY send error EBACKRESSURE_WARNING (25). 

a. This error code is one of the few cases when sending a ProtocolException message, where the 
correlationId in the MessageHeader MUST be set to 0. For more information, see Section 3.7.2.1. 

2. If the sender’s sending queue capacity is exhausted and it is imminently unable to send a message to 
the receiver, the sender MUST do the following:  

a. Attempt to send error EBACKPRESSURE_LIMIT_EXCEEDED (24). 

b. Attempt to send the CloseSession message (from Core (Protocol 0).   

c. Close the connection, regardless of whether the ProtocolException or the CloseSession 
messages could actually be sent. 

3. To resume data transmission, the connection and ETP session must be re-established and any ETP 
sub-protocol-specific outage recovery processes followed (to catch up on missed data). (All of these 
processes are documented in other parts of this specification.)  

a. Before reconnecting, any receiver issues that caused the previous congestion SHOULD be 
addressed. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 90 

3.13.5 Authorization Expiring 

ETP specifies an authorization scheme based on adaptation of existing security IT standards. (For 
information, see Chapter 4 Securing an ETP Session and Establishing a WebSocket Connection.) 
ETP specifies the following:  

1. An endpoint SHOULD remain authorized with the other endpoint (as required by the respective 
endpoints when the ETP session was established) for the duration of the ETP session.  

a. An endpoint MUST re-authorize with the other endpoint BEFORE the current authorization 
expires. 

i. For the high-level workflow on how an endpoint gets a bearer token, see Section 4.1.2. 

b. As needed, either endpoint CAN send the Authorize message (as described in Section 5.2.1.1) 
at any time, to remain authorized for the duration of the session.  

c. After the initial authorization, the authorization method and security principal MUST not change 
and the scope MUST not be reduced. 

d. The authorization for each endpoint may have very different expirations, so each endpoint may 
re-authorize to the other at different times. 

2. If an endpoint's authorization will expire "soon", the other endpoint MAY send error 
EAUTHORIZATION_EXPIRING (28).  

a. For more information, see the detailed text on the error code in Section 24.3. 

3. During an ETP session, if an endpoint's authorization expires, the other endpoint MUST: 

a. Send error EAUTHORIZATION_EXPIRED (10).  

b. Send the CloseSession message. 

 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 91 

4 Securing an ETP Session and Establishing a 
WebSocket Connection  

This chapter explains: 

 ETP security (authorization) requirements, schemes, and workflows—which have changed 
significantly in ETP v1.2 (Section 4.1).  

 Pre-requisites for establishing a WebSocket connection (Section 4.2).  

 How a client does the following (Section 4.3):  

 Establishes a WebSocket connection.  

- "Pre-discovers" information about the server (e.g., version(s) of ETP it supports, how and where 
to get authorization information, functionality within ETP, and payload limits for WebSocket 
frames and messages), information that is helpful to the client in creating the WebSocket 
connection and ETP session. 

After establishing a WebSocket connection, a client can establish an ETP session, which is explained in 
Chapter 5 Core (Protocol 0): Establishing and Authorizing an ETP Session. 

4.1 ETP Security 

In any communication protocol—especially one carrying sensitive or proprietary data—security is a major 
concern. Implementers are encourage to follow best practices appropriate for oil and gas operations, the 
industry, and specific implementations. Basic Authentication is NOT recommended for production 
implementations. 

The previous version of ETP supported 2 security schemes: Basic Authentication and basic support for 
JSON Web Tokens (JWT). The Energistics community has since determined that these schemes were 
not sufficient.    

As in previous version of ETP, the focus for "security" is on authorization of connections. ETP also 
continues to leverage and adapt existing security standards and best practices (not invent its own). 

Beginning with ETP v1.2, ETP has new security schemes. This section explains the new security 
approach and how it works. (NOTE: For background information including the list of requirements and 
how and why this approach was selected, see Appendix: Security Requirements and Rationale for 
the Current Approach.) 

Based on requirements, security for ETP v1.2 had these design goals:  
 Use common mechanisms for HTTP resources and ETP resources. 

 Some HTTP resources may be protected, for example, the well-known endpoint for pre-session 
discovery. We did not want to use 2 different mechanisms.  

 Adopt and re-use HTTP Auth schemes. 

 Allow for flexible extensibility as security protocols evolve. 

 Allow any type of bearer token to be used (NOT just JWT) 

 To better allow for end-to-end scenarios, allow authorization to happen at the ETP application layer, 
not just the HTTP transport layer. 

 As in WITSML, ETP v1.2 specifies auth schemes that MUST be implemented by all servers for 
interoperability, but allows for additional schemes (client certificates, for example) to be used by 
agreement between specific parties. 

4.1.1 Overview of the Approach 

Security for ETP leverages relevant parts of existing security standards to specify an approach that is 
based on existing best practices and can provide minimum standard requirements. The approach also 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 92 

allows for implementers to develop custom enhanced functionality now, and for ETP to expand its 
functionality and requirements in the future.  

Some basic concepts used in this security scheme are introduced here and explained further below in this 
section:  

 A "bearer token" is a general term for a mechanism that if the "bearer" presents the token, it can gain 
access to a resource. In the context of IT security there are many types of bearer tokens. The term 
"access token" refers specifically to a bearer token issued by an authorization service that authorizes 
access to a specific resource. The bearer does not know the contents of the access token, nor does it 
need to; the bearer only needs to know how to get the access token and present it to the resource it 
needs access to. The required ETP workflow uses access tokens.  

 This security scheme requires an authorization server, which issues access tokens for an ETP 
endpoint. An authorization server may be separate from the ETP endpoint and may have a different 
authority, or it may be a relative URI to the ETP endpoint.  

Security in ETP v1.2 has these requirements and characteristics: 

These items are numbered for easy reference.  

1. Leverages existing security standards, which includes those listed below. NOTE: Implementers are 
responsible for reading and understanding these existing standards.  

a. If the ETP server is supporting TLS, it MUST support v1.2 or greater (https://www.rfc-
editor.org/rfc/rfc8996) for authentication, confidentiality, and integrity. 

i. Implementers SHOULD use TLS to secure as much of the network traffic as possible. It is 
highly recommended that all production ETP servers use the secure WebSocket protocol 
(i.e., wss). 

b. ETP servers MUST support the usage of OAuth 2.0 bearer tokens (https://rfc-
editor.org/rfc/rfc6750).  

c. Authorization servers MUST support OpenID Connect Discovery v1.0 
(https://openid.net/connect/). 

d. Authorization servers MUST support the client_secret_basic token_endpoint_auth_method as 
required by https://www.rfc-editor.org/rfc/rfc6749#section-2.3.1. 

e. Authorization servers MUST support the OAuth 2.0 client credentials grant type (https://www.rfc-
editor.org/rfc/rfc6749.html#section-4.4). 

f. Authorization servers SHOULD provide the expires_in property with successful token responses 
(https://www.rfc-editor.org/rfc/rfc6749#section-5.1). 

g. Also, some aspects of ETP v1.2 security are modeled on those present in Third-Party Token-
Based Authentication and Authorization for Session Initiation Protocol (SIP) (https://www.rfc-
editor.org/rfc/rfc8898) and the generic HTTP Authentication framework it is based on 
(https://www.rfc-editor.org/rfc/rfc7235). 

2. Focus is only on authorizing the connections between ETP applications (not necessarily a device), 
and NOT the domain objects within a store. 
GOAL: A client endpoint can connect to and establish a session with an ETP server endpoint. 

a. Authorization of fine-grained resources (e.g., a well, project, etc.) is NOT in scope for this 
specification.   

b. Because ETP supports the use case for an ETP store to connect as a client with the customer 
role to another ETP store, ETP security DOES allow for a both a client to authorize to a server 
AND for the server to authorize to the client (which is explained in relevant sections of this 
specification).  

3. Uses OAuth 2.0 and OpenID Connect 1.0 to define behaviors for non-interactive acquisition and 

https://www.rfc-editor.org/rfc/rfc8996
https://www.rfc-editor.org/rfc/rfc8996
https://rfc-editor.org/rfc/rfc6750
https://rfc-editor.org/rfc/rfc6750
https://openid.net/connect/
https://www.rfc-editor.org/rfc/rfc6749#section-2.3.1
https://www.rfc-editor.org/rfc/rfc6749.html#section-4.4
https://www.rfc-editor.org/rfc/rfc6749.html#section-4.4
https://www.rfc-editor.org/rfc/rfc6749#section-5.1
https://www.rfc-editor.org/rfc/rfc8898
https://www.rfc-editor.org/rfc/rfc8898
https://www.rfc-editor.org/rfc/rfc7235


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 93 

usage of bearer tokens for application authorization. 

a. Focus on non-interactive authorization ONLY. (NOTE: Some security schemes also allow for 
interactive authentication and authorization; however, interactive workflows are NOT in scope for 
ETP v1.2). 

4. Now allows any type of bearer token (not just JWT as in ETP v1.1). 

a. Tokens are typically opaque to clients. They are issued by authorization servers and presented to 
endpoints. 

b. A server MUST support the workflow to get a bearer token as specified in Section 4.1.2. 

c. NOTE: Some usage profiles of bearer tokens (e.g., JWT) can self-generate tokens without an 
authorization server (which is the reason they were used for ETP v1.1). However, JWTs were 
determined to be too restrictive and not sufficiently extensible, so now ETP v1.2 can be used with 
any type of bearer token.   

5. Allows implementers to add custom behavior now and future extensibility by using constructs similar 
to the HTTP generic challenge and response authentication framework from RFC 7235, which include 
these: 

a. The AuthorizeResponse message in Core (Protocol 0) acts as an extensible equivalent to the 
HTTP WWW-Authenticate challenge. 

b. The Authorize message in Core (Protocol 0) acts as an extensible equivalent to the HTTP 
Authorization response. 

c. ETP adopts authz_server and scope params specified in RFC 8898 to convey bearer token 
issuer discovery of an ETP application’s bearer token requirements and configured authorization 
server(s).  

i. However, discovery of an authorization server’s configuration uses OpenID Connect 
Discovery 1.0.  

ii. ETP defines the following methods for how an endpoint MAY specify its authz_server and 
scope params: 

1. In the AuthorizationDetails endpoint capability (see Section 4.1.3), which an endpoint 
MAY discover as part of the establishing the WebSocket connection (see Sections 4.3 
and 4.3.1) or MAY be exchanged in the endpointCapabilities field (e.g., in the 
RequestSession message). 

2. In the AuthorizeResponse message, as part of establishing the ETP session (see 
Section 5.2.1.1).  

4.1.1.1 Authorization Options: Transport Layer or Application Layer 
ETP allows and provides the functionality to authorize as follows:  

 At the HTTP transport layer, as part of creating the WebSocket connection (see Section 4.3).  

 At the ETP application layer, as part of establishing the ETP session (see Section 5.2.1.1).  

IMPORTANT! Individual ETP implementations MAY choose to authorize at one or both layers. 

For example, the application layer may choose to accept the transport layer authorization and not require 
additional authorization at the application layer, or it may choose to still require application layer 
authorization in addition to the transport level authorization. 

However, if using transport layer authorization exclusively, there is no mechanism to update the 
authorization to extend the lifetime of the connection. The ETP design does not prevent an 
implementation from accepting transport layer authorization on initial connection and application layer 
authorization at later points, but when doing so care must be taken to maintain equivalent levels of 
security. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 94 

Implementations should be guided in the approach they take by any requirements or limitations of any 
middleware they want to participate in handling incoming connections. 

4.1.1.2 Changes to ETP to Implement this New Approach 
The following changes have been made to ETP: 

 Added new endpoint capability (AuthorizationDetails) that allows a server to identify its authorization 
server(s) and required scope parameters. The client uses this information to get a bearer token as 
described in Section 4.1.2. For more information on the AuthorizationDetails capability, see Section 
4.1.3.  

 Revised and added messages in Core (Protocol 0) to allow endpoints to exchange authorization 
information as part of ETP session negotiation workflow. The RenewSecurityToken was renamed to 
Authorize and the AuthorizeResponse message was added. See Chapter 5. 

 In ETP v1.2, Basic Authentication is no longer recommended for use. Basic Authentication is as 
described in RFC-7617 (https://www.rfc-editor.org/rfc/rfc7617) for HTTP connections. As in HTTP, 
basic authentication has many security issues, especially when used on an insecure connection (i.e., 
not TLS). 

4.1.2 High-Level Workflow for Getting a Bearer Token 

This section explains the high-level workflow for getting a bearer token. ETP servers MUST support 
authorization with a bearer token using this workflow (i.e., client connecting to a server). If a client 
requires authorization, it MUST support this workflow. 

NOTES: 

 The provisioning of endpoints with an authorization server is outside the scope of this specification, 
but it is a prerequisite that both a resource server and confidential client must be provisioned 
beforehand. 

 The steps below are written so they can be used by either the client or server. The "endpoint" is 
working to be authorized to the "peer endpoint".  

Follow these steps to get a bearer token: 
1. An endpoint gets a peer endpoint's capabilities as described in Section 4.3.1.  

2. The endpointCapabilities field MUST contain an endpoint capability named AuthorizationDetails, 
which contains this information: 

a. (REQUIRED) The URI of the authorization server (authz_server) that the endpoint uses to 
construct a well-known OpenID Connect Discovery URI.  

i. An authorization server may be separate from the peer’s ETP endpoint and may have a 
different authority, or it may be a relative URI to the peer’s ETP endpoint. 

b. (OPTIONAL, as required by the authz_server) Any additional scope or other parameters required 
for the endpoint to get what it needs to make a token request from the peer endpoint’s 
authorization server.   

i. An endpoint SHOULD include the peer endpoint-provided parameters when making a token 
request to the corresponding authorization server. Some parameters may be dynamic or not 
cacheable. 

c. For details of the AuthorizationDetails endpoint capability, see Section 4.1.3. 

3. An endpoint performs OpenID Connection Discovery on the authorization server that it wishes to 
make a token request to. 

4. An endpoint uses the token_endpoint property from the discovered OpenID Provider Configuration 
Document to perform a client credentials grant to acquire an access token.  

a. For details, see https://www.rfc-editor.org/rfc/rfc6749.html#section-4.4.  

https://www.rfc-editor.org/rfc/rfc6749.html#section-4.4


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 95 

b. The access token is an opaque bearer token (i.e., the client does not know its content nor does it 
need to).  

c. An endpoint MUST acquire the bearer token from one of the peer endpoint’s authorization 
servers. 

5. An endpoint then presents the bearer token to the peer ETP endpoint as described in Section 4.3.  

4.1.3 Contents of the AuthorizationDetails Capability and How it is Used 

AuthorizationDetails is an endpoint capability that works like all endpoint capabilities in ETP (i.e., it may 
be discovered during pre-session discovery in the ServerCapabilities and is also provided in the 
endpointCapabilities field on the RequestSession and OpenSession messages (for more information 
about endpoint capabilities, see Section 3.3). 

This section provides details of the AuthorizationDetails endpoint capability and its content.  

1. The AuthorizationDetails endpoint capability contains an ArrayOfString with WWW-Authenticate style 
challenges. NOTE: The AuthorizeResponse message also contains a similar array of string with 
WWW-Authenticate style challenges.   

2. To support the required authorization workflow (to enable an endpoint to acquire an access token 
with the necessary scope from the designated authorization server), the AuthorizationDetails endpoint 
capability MUST include at least one challenge with the Bearer scheme which must include the 
‘authz_server' and ‘scope’ parameters.   

a. The 'authz_server' parameter MUST be a URI for an authorization server to enable the endpoint 
to acquire any other needed metadata about the authorization server using OpenID Connect 
Discovery. 

b. Here are 2 example AuthorizationDetails endpoint capabilities: 

Example with 1 challenge: JSON style string escaping, they are array of strings so they are Avro 
strings 

["Bearer authz_server=\"https://YourAuthServer/Path\"] 

Example with 3 challenges:  

["Basic", 

"Bearer authz_server=\"https://YourAuthServer/Path\" scope=\"openid\",  

"Bearer authz_server=\"https://YourOtherAuthServer/SomePath\" 

scope=\"yourRequiredScopes\""] 

3. An ETP server MUST have the AuthorizationDetails endpoint capability, which must meet the 
requirements of Point 2 above.  

4. If an ETP client does NOT need to authorize ETP servers, it MAY omit the AuthorizationDetails. 

4.1.4 ETP Security Requirements for Establishing a WebSocket Connection 

All servers and clients that implement ETP MUST observe these rules:  

1. Specific vendors, service companies, and operators MAY also implement any other appropriate 
security mechanisms (such as SAML tokens), but they are not required by ETP and may lead to 
interoperability issues. 

2. In all cases, the client MUST use the authorization request header defined by RFC 7235 
(https://tools.ietf.org/html/rfc7235). Servers MUST support this method. 

https://tools.ietf.org/html/rfc7235


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 96 

4.1.4.1 Authorization for Browser-Based Clients ONLY 
Because the HTML5 WebSocket API definition does not allow access to the request headers, it is not 
possible for browser-based clients to add request headers when they make a WebSocket connection (as 
specified in Section 4.3, Step 4). Therefore, ETP defines these additional rules for authorization: 

1. Browser-based clients MUST use ETP application layer authorization. 

4.2 Prerequisites for Establishing a WebSocket Connection 

A client application needs the following information for the ETP server it is trying to connect to—this 
information is typically sent out of band of this connection process, for example, as part of a contract or 
statement of work:  

1. URL of the ETP endpoint. 

2. Authentication details for an ETP endpoint’s Authorization Server. 

a. The provisioning of endpoints with authorization servers is outside the scope of this specification, 
but it is a prerequisite that any confidential clients must be provisioned for the respective resource 
servers of the endpoints beforehand.  
EXAMPLE: An OAuth 2.0 client_id and client_secret for the ETP client to an Authorization Server 
of the ETP server and if required a similar set of credentials for the ETP server to an 
Authorization Server of the ETP client. 

3. OPTIONAL: The version(s) of ETP that the server supports. ETP provides a way to query the 
endpoint for this information as part of the process of establishing the WebSocket connection; see 
Section 4.3. 

4. OPTIONAL: The payload size limitations of the WebSocket of ETP that the server supports. ETP 
provides a way to query the endpoint for this information as part of the process of establishing the 
WebSocket connection; see Section 4.3. 

4.3 How a Client Establishes a WebSocket Connection to an ETP Server 

Before a client and server application can establish an ETP session, the client MUST create a WebSocket 
connection. 

The basic process—including optional and required steps—is listed here:   

1. OPTIONAL: Client gets the server's ServerCapabilities for the version of ETP that it wants to use. 
(For information on how to do this and available options, see Section 4.3.1).   

a. The first time a client connects to a server it SHOULD get the server's ServerCapabilities, which 
provides information about the version(s) of ETP it supports as well as the specific protocols, 
object types, encoding and formats, etc. IMPORTANT: The ServerCapabilities also provides 
information about the WebSocket payload size limits—which cannot be changed once the 
WebSocket connection is established.  

b. Beginning with v1.2:  

i. ETP requires support of the ServerCapabilities; if a client requests the ServerCapabilities, 
then a server MUST provide it. 

ii. The ServerCapabilities contains the endpoint capability AuthorizationDetails. If a server 
requires authorization during this WebSocket connection process, the client MUST get the 
AuthorizationDetails capability because it contains the information and requirements the 
client needs to get an authorization token. For more information, see Sections 4.1.2 and 
4.1.3. 

c. Each supported version of ETP has its own requirements. For a version other than ETP v1.2, see 
the appropriate version of the specification.  

2. If the client received a ServerCapabilities, it MUST use the information received to inform the 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 97 

WebSocket connection request and "prepare" the ETP session request. EXAMPLES:  

a. The AuthorizationDetails endpoint capability has the information the client needs to find the 
authorization server and get a bearer token. For the high-level workflow for how to get the bearer 
token, see Section 4.1.2. 

b. For endpoint capabilities MaxWebSocketFramePayloadSize and 
MaxWebSocketMessagePayloadSize, the client can compare these values to its own max 
payload limits and then use them in the WebSocket connection request as described in step 4. 

3. Client connects to the ETP server using WebSocket.   

a. ETP servers MUST support HTTP/1.1 and RFC6455 (https://tools.ietf.org/html/rfc6455) and MAY 
support HTTP/2 and RFC8441 (https://tools.ietf.org/html/rfc8441). 

b. If the server requires transport layer authorization, it must use RFC6750. 

4. Establish the WebSocket connection. To do this, the client begins with the standard WebSocket 
handshake, and specifies the necessary attributes listed in the table below. This list of attributes 
includes both standard and ETP-custom ones. 

a. Some of the attributes are REQUIRED (RQD) as indicated in the table.  

b. Some of the attributes MAY be specified as EITHER a header property (HP) or a query string 
(QSP) but SHOULD not be specified as both in a WebSocket request. 

i. If the same attribute is specified as both a header property and a query string parameter, the 
server MUST process ONLY the header property. 

ii. HTML5 Web browser clients cannot currently add custom headers to a WebSocket request, 
so they MUST include these options as query string parameters. (For more information, see 
Section 4.3.2.) 

c. All protocol header names and values MUST be lower case. 

Attributes Specified for use by ETP in WebSocket Handshake 

Attribute and Description RQD HP or 
QSP 

Values 
and 
Description 

sec-websocket-protocol 

List the versions of ETP that the client 
wants to use, ordered by the client's use 
preference. This is a standard header 
property defined by the WebSocket 
specification. 

NOTE: Unlike custom headers, HTML5 
browser-based clients CAN set this 
header property. 

Yes HP etp12.energistics.org, 
energistics-tp 

Indicates that ETP v1.2 is the 
client's first choice, but it will 
accept ETP v1.1. 

 

etp-encoding 

Specifies the Avro encoding style to be 
used for the life of the connection. This is 
an ETP custom header property. 

NOTE: If a browser-based client uses 
this option; it MUST be set it as a query 
string parameter; see Section 4.3.2. 

No HP or 
QSP 

binary or json 

The default is binary, which 
MUST be used for ETP 
production implementations. 
JSON is for internal testing and 
debugging only.  

https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc8441


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 98 

Attributes Specified for use by ETP in WebSocket Handshake 

Attribute and Description RQD HP or 
QSP 

Values 
and 
Description 

MaxWebSocketFramePayloadSize 

Maximum number of bytes allowed for a 
WebSocket frame payload (which is 
determined by the library you use to 
implement WebSocket). 

NOTE: To determine appropriate values 
for these payload query string 
parameters, a client should compare its 
own maximum values with those of the 
server (which the client gets in the 
ServerCapabilities) and use the smaller 
of the two values. 

NOTE: If a browser-based client uses 
this option; it MUST be set it as a query 
string parameter; see Section 4.3.2. 

No HP or 
QSP 

Type: integer 

Default: 4194304 

MaxWebSocketMessagePayloadSize 

Maximum number of bytes allowed for a 
WebSocket message payload (which is 
composed of multiple WebSocket 
frames, which is determined by the 
library you use to implement 
WebSocket). 

NOTE: To determine appropriate values 
for these payload query string 
parameters, a client should compare its 
own maximum values with those of the 
server (which the client gets in the 
ServerCapabilities) and use the smaller 
of the two values. 

NOTE: If a browser-based client uses 
this option; it MUST be set it as a query 
string parameter; see Section 4.3.2. 

No HP or 
QSP 

Type: integer 

Default: 16777216 

 

 

5. The server establishes the WebSocket (ws/wss) connection by responding to the client's WebSocket 
handshake with the latest version of ETP that it supports (based on the clients preference list). 

a. If the sec-websocket-protocol header value is not present or does not match any version that the 
server supports, then the server must send error HTTP status code 400 (Bad Request). 

b. For the custom header of etp-encoding:  

i. If this header is not present, the encoding is assumed to be binary. 

ii. For HTML5 Web browser clients that send etp-encoding as a query string parameter, servers 
MUST accept and process this value.  

c. If the server does not support the requested etp-encoding, it MUST reject the connection 
request with HTTP status code 400 (Bad Request). The client can try again (if it wishes) with the 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 99 

alternate etp-encoding value. 

6. Possible errors:  

a. If a new connection may cause the server to exceed its value for MaxSessionGlobalCount 
endpoint capability (for definition, see Section 3.3.2.7), then the Server MAY refuse any incoming 
connections.  

i. If a server chooses to reject an incoming connection because it would exceed this limit, it 
SHOULD reject the WebSocket request with HTTP 503: Service Unavailable. 

b. If a new connection may cause the server to exceed its value for MaxSessionClientCount 
endpoint capability (for definition, see Section 3.3.2.6), then the Server MAY refuse any incoming 
connections.  

i. If a server chooses to reject an incoming connection because it would exceed this limit, it 
SHOULD reject the WebSocket request with HTTP 429: Too Many Requests. 

7. For information on how to establish the ETP session, see Chapter 5. 

4.3.1 Requirements for Getting and Using an ETP ServerCapabilities 

The ServerCapabilities is the ETP mechanism—which may be a binary or a JSON object—that clients 
use to “pre-discover” the capabilities of a server out-of-band of the WebSocket connection, using a simple 
HTTP GET of this object. The information received is used to inform the WebSocket upgrade request and 
"prepare" for the ETP session request.   

For the definition of ServerCapabilities and related capabilities it may contain, see Section 3.3.  

Here are the requirements for getting and using the ServerCapabilities: 

1. Beginning with v1.2, ETP requires support of the ServerCapabilities; if a client requests the 
ServerCapabilities record, then a server MUST provide it.  

2. The URL for a server's capabilities is derived by appending the string ‘.well-known/etp-server-
capabilities’ to the HTTP-equivalent URL of the ETP WebSocket endpoint.  

EXAMPLE: If you have an ETP server listening at wss://etp.sample.org:8080, then the server 
capabilities document is retrieved with an HTTP GET from https://etp.sample.org:8080/.well-
known/etp-server-capabilities.  

a. The URL scheme of the ServerCapabilities MUST match the "TLS-ness" of the WebSocket 
connection. That is: 

i. If the WebSocket address is at ws://, then the document MUST be at http://.  

ii. If the WebSocket is at wss://, then the document MUST be at https://. 

3. ETP provides the query parameters listed here, which may be appended to the .well-known/etp-
server-capabilities endpoint. If more than one is used they must be separated by an ampersand.  

EXAMPLE: A client might use GetVersions to determine which versions of ETP a server supports, 
then use GetVersion to request the ServerCapabilities for the specific version of ETP that it wants to 
use.  

a. Query parameter for a list of supported ETP versions: 

paths: 

/.well-known/etp-server-capabilities: 

parameters: 

in: query 

name: GetVersions 

type: boolean 

required: false 

default: false 

https://etp.sample.org:8080/.well-known/etp-server-capabilities
https://etp.sample.org:8080/.well-known/etp-server-capabilities


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 100 

description: If GetVersions=true, return a JSON array of strings 

containing the supported ETP versions of this server. The possible 

string values are the same as those that are used with the Sec-

WebSocket-Protocol header when performing the WebSocket handshake (see 

Section 4.3, Step 4). 

A server supporting ETP v1.1 and ETP v1.2 would return this response:  

 [ 

  "energistics-tp", 

  "etp12.energistics.org" 

] 

b. Query parameter for the specific capabilities of each version of ETP: 

in: query 

name: GetVersion 

type: string 

required: false 

default: energistics-tp 

description: If GetVersions=false, return a JSON object encoded using 

the requested ETP version's ServerCapabilities schema. The 

supportedProtocols field must only contain entries for the requested ETP 

version. The string parameter is one of the values that are used with 

the Sec-WebSocket-Protocol header when performing the WebSocket 

handshake (see Step 4 in Section 4.2). 

get: 

summary: Get the server capabilities of this ETP server. 

 
c. Query parameter for the format of specific capabilities of each version of ETP: 

in: query 

name: $format 

type: string 

required: false 

default: binary 

description: This controls the format used in the response when 

GetVersions=false. The Avro binary encoding of the requested ETP 

version's ServerCapabilities schema is used when $format=binary and a 

Avro JSON encoding is used when $format=json. An ETP Server MUST support 

the binary format and may support the JSON format. NOTE: The $format 

query parameter does not apply when GetVersion=energistics-tp.   

 

d. Examples of Valid Query Parameters Appended to the ServerCapabilities Endpoint: 

Query parameter to determine which versions of ETP a server supports: 

/.well-known/etp-server-capabilities?GetVersions=true 

NOTE: If a GetVersion query parameter is included when GetVersions=true, it must be ignored. 

Query parameter for an ETP v1.1 server capabilities: 

/.well-known/etp-server-capabilities 

/.well-known/etp-server-capabilities?GetVersions=false 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 101 

/.well-known/etp-server-capabilities?GetVersion=energistics-tp 

/.well-known/etp-server-capabilities?GetVersions=false&GetVersion=energistics-tp 

NOTE: The above for ETP v1.1 are all technically equivalent due to the way the default query 
parameter values are defined to be backwards compatible with ETP v1.1. The version with query 
string omitted is what ETP v1.1 clients should issue. 

Query parameter for an ETP v1.2 server capabilities: 

/.well-known/etp-server-capabilities?GetVersion=etp12.energistics.org&$format=binary 

/.well-known/etp-server-capabilities?GetVersions=false&GetVersion=etp12.energistics.org 

NOTE: The above for ETP v1.2 are both technically equivalent due to the default for the 
GetVersions query parameter being GetVersions=false and the default for the $format parameter 
being $format=binary. 

e. If these query string parameters are omitted: 

i. Then the .well-known endpoint MUST fallback to ETP 1.1 behavior (i.e., return the 
ServerCapabilities for ETP v1.1).  

ii. If the server supports ONLY ETP v1.2, then the server MUST throw error HTTP 400. 
RECOMMENDATION: Provide a brief, but appropriate explanation such as: This server 
supports only ETP v1.2+. 

4. The returned ServerCapabilities:  

a. MUST have one of these content types: 

i. avro/binary (This is the default and MUST be supported.)  

ii. application/json (i.e., must be a JSON document, if 'json' specified in $format query 
parameter; see Paragraph 3.c, above). The content MUST match an Avro JSON serialization 
of the Energistics.Etp.v12.Datatypes.ServerCapabilities structure defined in Section 23.19.  

NOTE: Additional endpoint capabilities, protocol capabilities and data object capabilities MAY be 
present in the ServerCapabilities, but they are not part of the ETP specification. If an Energistics 
domain standard has particular requirements, they are documented in that domain standard's 
ETP implementation specification (which is a companion to this main ETP specification). A client 
MUST ignore any capabilities it does not understand. 

b. MAY be a protected resource, but it is not required to be so. 

i. If the ServerCapabilities is a protected resource the HTTP Auth MUST provide a WWW-
Authenticate challenge in its 401 response, subject to the same requirements as Section 
4.1.3. 

5. Resources are ETP endpoints and subject to normal HTTP behavior (for details, see the HTTP 
specification), for example: 

a. The server capabilities request or response MAY be compressed as per the HTTP standard for 
any HTTP resource.   

b. Redirects are allowed and MUST be observed.  

6. Optionally, a server MAY provide an additional, human-readable and non-standardized endpoint to 
provide custom information about an ETP server.  

a. The URL for this endpoint is derived by appending the string ‘.well-known/etp-server-info’ to the 
HTTP-equivalent URL of the ETP WebSocket end point. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 102 

i. The content of this endpoint is likely to be a branded HTML page with marketing or support 
information about the server and is intended to be accessible by an end user from a Web 
browser.  

4.3.2 How Browser-based Clients use Query Parameters Instead of Header Properties 

Because the HTML5 WebSocket API definition does not allow access to the request headers, it is not 
possible for browser-based clients to add request headers when they make a WebSocket connection 
request (as specified in Section 4.3, step 4). Therefore, if a browser-based client wants/needs to use 
these header properties, it MUST specify them as query string parameters.  

ETP defines these additional rules, which browser-based clients MUST observe and all servers MUST 
support: 

1. The client MAY provide the header property information (e.g., etp-encoding) in the query string 
parameter of the WebSocket upgrade request.  

2. All parameters provided on the query string must be URL-encoded. 

EXAMPLE:  

etp-encoding: binary 

would appear in the query string as: 

&etp-encoding=binary 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 103 

5 Core (Protocol 0): Establishing and 
Authorizing an ETP Session 

ProtocolID: 0 

Defined Roles: client, server 

ETP includes the notion of a session, which is an established connection between a client and server that 
is open for a period of time. Use Core (Protocol 0) to create, authorize, and manage an ETP session. 

Before establishing an ETP session, a client must establish a WebSocket connection to an ETP server 
(see Section 4.3). When the WebSocket connection has been made, then the client can use Core 
(Protocol 0) to authorize (optionally) and establish the ETP session.  

NOTE: A client may also optionally discover information about the server, before ever connecting to it. All 
of this pre-session discovery behavior is explained in Chapter 4. Section 4.1 also provides an overview of 
security and authorization used in ETP. Beginning in ETP v1.2, authorization may occur as part of 
establishing the ETP session, which is explained in this chapter.  

Core (Protocol 0) has these responsibilities: 

 Authorizes endpoint(s) (if required).  

 Establishes and closes the ETP session. 

 Negotiates the sub-protocols, data objects, compression type, message encoding and object formats 
to be used in a session.  

 Allows endpoints in the session to inform each other of capabilities (limits) and endpoint-specific 
values for endpoints, data objects, and protocols that will be used during a session.  

 Allows endpoints to exchange timestamps from their respective local clocks. 

 Defines messages that may be used in any of the ETP sub-protocols. These so-called "universal" 
messages include ProtocolException and Acknowledge messages.  

This chapter includes main sections for:  
 Key ETP concepts that are important to understanding how this protocol is intended to work (see 

Section 5.1).   

 Required behavior, which includes: 

 Description of the message sequence for main tasks, along with required behavior, use of 
capabilities, and possible errors (see Section 5.2.1).  

 Other functional requirements (not covered in the message sequence) including use of endpoint 
and protocol capabilities for preventing and protecting against aberrant behavior (see Section 
5.2.2). 

- Definitions of the endpoint and protocol capabilities used in this protocol (see Section 5.2.3). 

 Sample schemas of the messages defined in this protocol (which are identical to the Avro schemas 
published with this version of ETP). However, only the schema content in this specification includes 
definitions of each field in a schema (see Section 5.3).  

5.1 Core: Key Concepts  

This section explains concepts that are important to understanding how this protocol works. 

5.1.1 ETP Session 

ETP includes the notion of a session, which is a negotiated context within a WebSocket connection 
between a client and server that is open for a period of time. Each endpoint maintains information for the 
life of the session (as explained in other sections of this specification).  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 104 

ETP uniquely identifies each session by assigning a UUID. However, the session identification is only to 
help with debugging and troubleshooting. ETP does NOT maintain session state between WebSocket 
connections or provide any means to resume a prior session (i.e., there is no session survivability).   

For important facts about ETP sessions, see Section 3.2. 

5.1.2 Security and Authorization 

For information about requirements and approaches for security and authorization in ETP, see Chapter 4. 

5.2 Core: Required Behavior 

This section contains functional and non-functional requirements for this protocol. It is organized in these 
sub-sections: 

 Message Sequence. Summarizes all messages defined by this protocol, and identifies main tasks 
that can be done with this protocol and describes the response/request pattern for the messages 
needed to perform the task, including error scenarios and resulting error codes.  

 General Requirements. Identifies high-level and/or protocol-wide general behavior that must be 
observed (in addition to behavior specified in Message Sequence), including usage of relevant 
endpoint capabilities.  

 Capabilities. Lists and defines the relevant parameters that set necessary limits to help prevent 
aberrant behavior (e.g., sending oversized messages or sending more messages than an endpoint 
can handle).  

Prerequisites for using this protocol:  
 Both endpoints have a common version of ETP implemented, because both endpoints in an ETP 

session must use the same version of ETP. 

 Client must have credentials for the ETP server endpoint it wants to connect and must have created a 
WebSocket connection as described in Section 4.3. 

5.2.1 Core: Message Sequences 

This section explains the basic message sequence for main tasks to be done using this protocol and 
includes related key behaviors and possible errors. The following General Requirements section provides 
additional requirements and rules for how this protocol works.   

The following table lists all messages defined in this sub-protocol, the basic request/response usage 
patterns per ETP role, and whether it may be multipart. The detailed content of each message is 
explained in the Message Schema section. 

Core (Protocol 0): 
Basic Message-Response flow by ETP Role 

Messages (sent by Client) Response Message (from Server) 

RequestSession: Request for a new ETP session 

This and OpenSession serve as a negotiation or 
protocols, roles, data objects, etc. to be used in the 
session. 

OpenSession: Positive response to OpenSession 

This and OpenSession serve as a negotiation or protocols, 
roles, data objects, etc. to be used in the session. 

CloseSession 

(May be sent by either role.) 

CloseSession 

(May be sent by either role.) 

ProtocolException (multipart) 

(May be used in any protocol, and sent by either role.) 

ProtocolException (multipart) 

(May be used in any protocol, and sent by either role.) 

Acknowledge 

(May be used in any protocol, and sent by either role.) 

Acknowledge 

(May be used in any protocol, and sent by either role.) 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 105 

Core (Protocol 0): 
Basic Message-Response flow by ETP Role 

Messages (sent by Client) Response Message (from Server) 

Authorize: Used to provide authorization information or 
to exchange with the other endpoint to learn how to get 
authorization information. May be sent by either role.  

AuthorizeResponse: Used to convey information about how 
to get authorizations information or that the receiving 
endpoint has been authorized. May be sent by either role. 

Ping (optional): "Heartbeat" message to re-establish the 
latest times between a customer and a store, in support 
of data synchronization workflows. 

NOTE: Either endpoint can send a Ping message. The 
other endpoint MUST respond with a Pong message. 

Pong (required): Response "heartbeat" message to re-
establish the latest times between a customer and a store, in 
support of data synchronization workflows. 

 

5.2.1.1 To establish and (optionally) authorize an ETP session: 

Requirements  

1. If a server requires authorization, it MAY be done at the transport layer (as part of establishing the 
WebSocket connection, which is explained in Section 4.3), at the application layer, or both layers 
(depending on requirements of individual implementations). Instructions for authorizing in the 
application layer are included in the procedure below.  

2. An ETP session MUST be established within the client's and server's respective values for their 
SessionEstablishmentTimeoutPeriod endpoint capability (for definition, see Section 5.2.3). 

a. If a session is not successfully established within this period, either endpoint may send error 
ETIMED_OUT (26) and then close the WebSocket. The CloseSession message MUST NOT be 
sent because no session was established. 

b. The SessionEstablishmentTimeoutPeriod begins with the first RequestSession message. 

Process steps 
1. After the WebSocket connection has been established (as described in Section 4.3), the client MUST 

send a RequestSession message (Section 5.3.1) to the store. 
a. The client MUST send a RequestSession message within the server's value for the 

RequestSessionTimeoutPeriod endpoint capability (for definition, see Section 5.2.3).  

i. If a server does not receive a RequestSession message within this period, it MAY send 
error ETIMED_OUT (26) and close the WebSocket connection. The CloseSession message 
MUST NOT be sent, because no attempt was made to establish a session. 

b. The field names on the RequestSession message are listed here for easy reference and context 
in this message sequence. For complete definitions, purposes and usage requirements, see 
Section 5.3.1.   
i. applicationName 

ii. applicationVersion 

iii. clientInstanceId 

iv. requestedProtocols is the list of protocols that the client wants to use in this ETP session. For 
each protocol being requested, this field includes the protocol number, version, the role that 
the client wants the server to take in the session, and protocol capabilities with the client's 
values for them. The roles MUST be consistent. That is, if a client requests one role in one 
protocol, it MAY NOT request the other role in another protocol. EXAMPLE: The client may 
not request the store role in Store (Protocol 4) and the customer role in StoreNotification 
(Protocol 5). If the client requests inconsistent roles, the server MUST reject the request with 
EINVALID_OPERATION (32). 
NOTE: Core (Protocol 0) MUST NOT be listed in this field.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 106 

v. supportedDataObjects, which includes for each data object being requested, its qualifiedType 
and dataObjectCapabilities with the client's values for them. For more information about data 
object capabilities, see Section 3.3.4. 

vi. supportedCompression 

vii. supportedFormats 

viii. currentDateTime 

ix. earliestRetainedChangeTime 

x. endpointCapabilities, with the client values specified. NOTE: If the client requires the server to 
authorize to it (serverAuthorizationRequired field = true) this field should include the client's 
AuthorizationDetails endpoint capability (for definition, see Section 5.2.3).  

xi. serverAuthorizationRequired. A flag that if set to true means the client is indicating that the 
server MUST authorize with the client. NOTE: This field is intended for clients that are ETP 
stores. Clients MAY use this in other scenarios, but servers are not required to support use of 
this field in all cases. 

c. This request MUST NOT exceed the server's value for MaxSessionClientCount endpoint 
capability.  

i. A server SHOULD check for this limit at the time of the WebSocket connection request (see 
Section 4.3). However, it's possible that the server may not be able to determine if it must 
reject a specific client until the client has been authorized and it receives a RequestSession 
message with the client's client instance ID (clientInstanceId). 

ii. A server MAY refuse any incoming connections if a new connection from a particular client 
may cause it to exceed its value for MaxSessionClientCount endpoint capability. 

iii. If a server chooses to reject an incoming connection because it would exceed this limit, it 
SHOULD reject the request with ELIMIT_EXCEEDED (12). 

2. The server MUST respond with one of the following:  

a. If the client already authorized (when it created the WebSocket connection) and the server 
requires no additional authorization, continue with Step 9. 

b. If the server requires the client to authorize, then it MUST send error 
EAUTHORIZATION_REQUIRED (28). 

i. For the client to authorize to the server it MUST send the Authorize message (see Section 
5.3.4) with the authorization field populated with an equivalent HTTP Authorization header 
value (i.e., bearer token) issued by the server's authorization server.  

ii. Steps 3 and 4 explain the possible scenarios (CASE 1 and CASE 2) and steps for the client 
to get the bearer token.  

3. CASE 1: The client got a token during the WebSocket connection process (described in Section 
4.3):  
a. The client MUST send the Authorize message with the authorization field populated with the 

token. 
b. If the server accepts that token, (i.e., the client has satisfied all requirements for authorization), 

go to Step 5. 
c. If the server DOES NOT accept the token, then it MUST send error 

EAUTHORIZATION_REQUIRED (28). 

i. The client MUST continue with step 4. 

4. CASE 2: The client DOES NOT have a token. In this case, the client and server MUST exchange 
Authorize and AuthorizeResponse messages so the client can get the information needed to get a 
valid token, which is explained in steps a – d.  
a. The client MUST send the Authorize message with the authorization field blank (empty string).  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 107 

b. The server MUST send the AuthorizeResponse message with the success flag set to false and 
the challenges field MUST contain the challenges needed and the metadata with the location of 
the authorization server. (NOTE: This MUST be the same information that is specified in an 
endpoint's AuthorizationDetails endpoint capability, as described in Section 4.1.3.)  

i. Depending on the specific details of the authorization requirements, the client and server 
MAY require several exchanges before the client has the information needed to get a valid 
authorization.  

c. The client uses the information in the AuthorizeResponse message to get a bearer token using 
the workflow described in Section 4.1.2.  

d. After the client has acquired the bearer token, the client MUST send the Authorize message 
with the authorization field populated with a valid equivalent HTTP Authorization header value 
(i.e., a bearer token) accepted by the server.  

e. If the server receives too many unsuccessful attempts and there is no other valid authorization 
for connection, the server MAY send error EAUTHORIZATION_EXPIRED (10) and disconnect 
the WebSocket. 

5. When the server receives the Authorize message with valid authorization information from the client, 
it MUST send the AuthorizeResponse message with the success flag set to true. 

6. The client MUST re-send the RequestSession message.    

a. The client MUST send the RequestSession message within the server's value for the 
SessionEstablishmentTimeoutPeriod endpoint capability.  

i. If a server does not receive a RequestSession message within this period, it MAY send 
error ETIMED_OUT (26) and close the WebSocket connection. The CloseSession message 
MUST NOT be sent, because no attempt was made to establish a session. 

b. If the serverAuthorizationRequired flag is set to false, continue with Step 9. 

c. If the serverAuthorizationRequired flag is set to true, then the client is requiring that the server 
authorize.  

i. For the server to authorize to the client, the server MUST send the Authorize message (see 
Section 5.3.4) with the authorization field populated with an equivalent HTTP Authorization 
header value (i.e., bearer token) issued by the client's authorization server. 

1. If BOTH the server and the client require authorization, the client MUST authorize to the 
server first, then the server MUST authorize to the client. These MUST be sequential 
(NOT concurrent) operations. 

ii. The client MUST provide the metadata and challenges that comprise the AuthorizationDetails 
(as defined in Section 4.1.3) to the server.  

iii. ETP specifies the 2 methods below for the client to provide the metadata and challenges to 
the server; endpoints MUST support BOTH methods, but use ONLY ONE method in this 
workflow: 

1. METHOD A: Populate the AuthorizationDetails endpoint capability (in the 
RequestSession message's endpointCapabilities field) with the metadata and 
challenges. Continue with Step 7.  

2. METHOD B: Use the Authorize and AuthorizeResponse messages to iterate and 
provide the metadata and challenges (as described in Step 4 above, where the client is 
authorizing to the server). Continue with Step 8.  

7. For METHOD A: The server MUST use the metadata and challenges to get a valid HTTP 
Authorization header (i.e., a bearer token), as described in Section 4.1.2.  

a. After the server has acquired the bearer token, the server MUST send an Authorize message 
with the authorization field populated with an equivalent HTTP Authorization header value (i.e., 
bearer token) accepted by the client.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 108 

b. The client MUST respond with the AuthorizeResponse message with the success flag set to 
true. 

c. Continue with Step 9.  

8. For METHOD B: The server MUST use the same process described above (in Step 4, for the client) 
to exchange Authorize and AuthorizeResponse messages to get the information needed to get a 
valid HTTP Authorization header and then use that information to get a bearer token as described in 
Section 4.1.2.  

a. After the server has acquired the bearer token, the server MUST send an Authorize message 
with the authorization field populated with an equivalent HTTP Authorization header value (i.e., 
bearer token) accepted by the client.  

b. The client MUST respond with the AuthorizeResponse message, with the success flag set to 
true.  

c. Continue with Step 9. 

9. If the server supports at least one of the requested protocols, then the server MUST respond with the 
OpenSession message, indicating which of the requested protocols and roles it can support.  

a. When the server has sent the OpenSession message, the session is established and authorized 
(per the requirements of the two endpoints in a particular session). 

b. The field names on the OpenSession message are listed here for easy reference and context in 
this message sequence. For complete definitions, purposes and usage requirements, see Section 
0. 
i. applicationName 

ii. applicationVersion 

iii. serverInstanceId 

iv. supportedProtocols NOTE: Core (Protocol 0) MUST NOT be listed in this field. 

v. supportedDataObjects 

vi. supportedCompression 

vii. supportedFormats 

viii. sessionId 

ix. currentDateTime 

x. earliestRetainedChangeTime 

xi. endpointCapabilities 

c. Possible errors: 

i. If the server supports NONE of the requested protocols, it MUST send error 
ENOSUPPORTEDPROTOCOLS (2) and drop the connection.  

ii. If the server supports NONE of the roles for each protocol that the client requested, it MUST 
send error ENOROLE (1) and drop the connection.  

iii. If the server supports NONE of the formats for data objects that the client requested, the 
server MUST send error ENOSUPPORTEDFORMATS (28) and drop the connection.  

iv. For additional requirements and information, see Section 5.2.2, Rows 5 and 6 of the table.  

10. Based on the information in the OpenSession message, the client "decides" whether to terminate the 
session or proceed with operations that it connected to the server to perform. 

a. If the client required authorization but the server fails to do so (but sends the OpenSession 
message anyways) the client MUST: 

i. Send error EAUTHORIZATION_EXPIRED (10).  

ii. Send the CloseSession message (Section 5.3.3). 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 109 

b. If a client cannot correctly process an OpenSession message, it MUST do the following: 

i. Send error EREQUEST_DENIED (6).  

ii. Send the CloseSession message. 

c. If the client wants to terminate the session for any reason, it MUST send the CloseSession 
message. 

i. If an error condition causes the client to close the session, it MUST first send a 
ProtocolException message (Section 5.3.8), with an appropriate error code (for the list of 
codes see Section 24.3) and then send the CloseSession message.  

ii. The CloseSession message also contains a reason field that SHOULD include a brief 
reason for why the client is closing the session. 

iii. The server MUST respond by terminating the ETP session and doing a clean shutdown of 
the WebSocket connection. 

d. If the client wants to proceed, it begins operations by sending a message from the ETP sub-
protocols that was agreed upon (supportedProtocols), for operations on one or more of the data 
objects agreed on in supportedDataObjects, etc.   

5.2.1.2 To end an ETP session:  
1. Either role can terminate an ETP session for any reason by sending a CloseSession message 

(Section 5.3.3), which has an optional reason field to indicate why the session is being closed.  

a. If an error condition causes an endpoint to close the session, then the endpoint MUST first send 
an associated ProtocolException message (Section 5.3.8) with an appropriate error code (see 
Section 24.3) before sending the CloseSession message. 

2. The receiver of the CloseSession message MUST respond by terminating the ETP session and 
doing a clean shutdown of the WebSocket connection. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 110 

5.2.2 Core: General Requirements 

In addition to the basic message sequence described in the previous section, this protocol has the 
additional requirements listed in the table below. For easy reference, the rows and behaviors in this table 
are numbered. 

NOTE: This table has been organized to reduce redundancy but also to help developers more easily 
locate specific requirements. EXAMPLE: There are rows with general requirements that apply to all 
protocols (e.g., Rows 1–2), rows for general requirements for this protocol, and (possibly) some rows with 
additional requirements for specific types of operations.  

Row# Requirement Behavior 

1.  ETP-wide behavior that MUST be 
observed in all protocols 

1. Requirements for general behavior consistent across all of ETP are defined 
in Chapter 3. This behavior includes information such as: all details of 
message handling (such as message headers, handling compression, use of 
message IDs and correlation IDs, requirements for plural and multipart 
message patterns) use of acknowledgements, general rules for sending 
ProtocolException messages, URI encoding, serialization and more. 
RECOMMENDATION: Read Chapter 3 first. 

2. For information about Energistics identifiers and prescribed ETP URI format, 
see Appendix: Energistics Identifiers. 

a. In MOST cases, endpoints performing operations in this protocol MUST 
use the canonical Energistics URI. For more information, see Section 
3.7.4.  

3. For the complete list of error codes defined by ETP, see Chapter 24. 

4. ALL operations in an ETP session are performed on the set of supported 
data object types that were negotiated to be used when the session 
was initiated and established. 

a. The client and server exchange the list of data object types in the 
supportedDataObjects field of the RequestSession and OpenSession 
messages in Core (Protocol 0). For more information, see Section 
5.2.1.1.   

b. In general, the list of supported data objects for a session will most 
likely be the intersection of the data objects that the server supports and 
the data objects that the client requested for the ETP session. 

c. A store MUST support all messages (in each supported ETP sub-
protocol) for each supported data object, whether the data object is 
supported explicitly or by wild card. 

d. An endpoint MUST only send messages with the URI of a data object 
that is a type supported by the other endpoint for this ETP session.  

i. If an endpoint sends a URI for an unsupported type of data object, 
the other endpoint MUST send error 
EDATAOBJECTTYPE_NOTSUPPORTED (16). 

2.  ETP Session 1. To establish an ETP session, a client MUST connect to a server as 
described in Section 4.3 and Section 5.2.1.1.  

a. The process described in Section 5.2.1.1 is somewhat of a negotiation 
between the client and server (based on the types of information 
exchanged in the RequestSession and OpenSession messages) to 
determine key factors for the operations that can take place in the 
session. Rows 5–6 in this table explains some of those key negotiations 
and rules for them.  

b. Other "negotiations" are explained in the context of the field definitions 
on those messages.  

2. Both endpoints in an ETP session MUST use the same version of ETP. 

3. A server MUST assign a unique ID (a UUID) to an ETP session (in the 
sessionId field of the OpenSession message).  

4. The main purpose of the sessionId is to help in debugging and 
troubleshooting. 

5. ETP has no session survivability. If the underlying WebSocket connection is 
dropped, the ETP session ends.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 111 

Row# Requirement Behavior 

a. Clients MUST establish new connections using the process described 
in Section 4.3 and Section 5.2.1.1. 

3.  Capabilities-related behavior 1. Relevant ETP-defined endpoint, data object, and/or protocol capabilities 
MUST be specified when the ETP session is established (see Chapter 5) 
and MUST be used/honored as defined in the relevant ETP sub-protocol.  

2. For an explanation of endpoint, data object, and protocol capabilities, see 
Section 3.3. 

a. For the list of global capabilities and related behavior, see Section 
3.3.2. 

3. The capabilities listed in Section 5.2.3 MUST BE used in this ETP sub-
protocol. Additional details for how to use the protocol capabilities are 
included below in this table and in Section 5.2.1 Core: Message 
Sequences.  

4.  Use of clocks in ETP endpoints  1. ETP endpoints MUST have a clock. 

2. As part of establishing an ETP session, a client and server exchange their 
respective currentDateTime.  

a. The purpose of this field is part of the behavior for eventual consistency 
between 2 stores. For more information, see Appendix: Data 
Replication and Outage Recovery Workflows. 

3. Optionally, an endpoint can send a Ping, a messages used to re-establish 
the latest times between a customer and a store, in support of data 
synchronization workflows. 

a. If an endpoint sends a Ping message, the other endpoint in the ETP 
session MUST respond with a Pong message. 

4. For more information about timestamps, see Section 3.12.5. 

5.  Protocol Negotiation 1. A client and server determine which protocols they will use in an ETP 
session using the requestedProtocols and supportedProtocols fields (on the 
RequestSession and OpenSession messages, respectively), which for 
each protocol includes protocol number, version, client-requested role, and 
protocol capabilities. 

a. The negotiated protocols are essentially the intersection of 
requestedProtocols and supportedProtocols. 

b. These fields MUST NOT list Core (Protocol 0).  

2. In addition to the rules specified in Section 5.2.1.1, the server in its 
OpenSession response message: 

a. MUST NOT change the version of a requested protocol. If the server 
cannot support the exact version requested, then the server MUST treat 
the requested protocol(s) as 'unsupported'.   

b. MAY offer to support only some of the requested protocols.  

c. MUST NOT offer to support any additional protocols. 

d. MUST NOT change the requested role for each protocol and MUST fill 
only one role (the one specified by the client).  

3. If the server response does not provide adequate functionality, then the 
client MAY send the CloseSession message immediately. 

4. During the ETP session, endpoints MUST use only the supported protocols 
that were negotiated. 

a. If a client tries to use a protocol not included in the supportedProtocols, 
field, the server MUST send error EUNSUPPORTED_PROTOCOL (4). 

6.  Negotiation of supported data objects 
and related capabilities 

1. A client and server determine which data objects they will use in an ETP 
session using the supportedDataObjects fields (same name on the 
RequestSession and OpenSession messages). The negotiated supported 
data objects are essentially the intersection of the two fields. 

2. For each data object in these fields, each endpoint MUST list its supported 
data objects, and for each MUST include: 

a. A qualifiedType  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 112 

Row# Requirement Behavior 

b. DataObjectCapabilities, which indicates the operations permitted on a 
particular data object during that ETP session. (For more information 
about dataObjectCapabilities, see Section 3.3.4.) 

3. During the ETP session, endpoints MUST use only the supported data 
objects that were negotiated and MUST only perform operations (i.e., get, 
delete, and put) and honor limits specified on the capabilities for each data 
object type.  

a. If the intersection between the client's requested list of data objects and 
server's supported list of data objects is empty, the server MUST send 
error ENOSUPPORTEDDATAOBJECTTYPES (29). 

7.  Messages that MUST NEVER be 
compressed. 

1. If in the MessageHeader record, the protocoI field = 0, the message MUST 
NEVER be compressed.  

a. NOTE: ProtocolException and Acknowledge messages are defined 
in Core (Protocol 0); however, they may be used in any protocol, so 
their protocol field is rarely 0.  

2. If an endpoint receives a message with protocol=0 that is compressed, it 
MUST send error ECOMPRESSION_NOTSUPPORTED (13). 

8.  Authorization renewal and expiration  4. An endpoint SHOULD remain authorized with the other endpoint (as required 
by the respective endpoints when the ETP session was established) for the 
duration of the ETP session.  

a. An endpoint MUST re-authorize with the other endpoint BEFORE the 
current authorization expires. 

i. For the high-level workflow on how an endpoint gets a bearer 
token, see Section 4.1.2. 

b. As needed, either endpoint CAN send the Authorize message (as 
described in Section 5.2.1.1) at any time, to remain authorized for the 
duration of the session.  

c. After the initial authorization, the authorization method and security 
principal MUST not change and the scope MUST not be reduced. 

d. The authorization for each endpoint may have very different expirations, 
so each endpoint may re-authorize to the other at different times. 

5. If an endpoint's authorization will expire "soon", the other endpoint MAY send 
error EAUTHORIZATION_EXPIRING (28).  

a. For more information, see the detailed text on the error code in Section 
24.3. 

6. During an ETP session, if an endpoint's authorization expires, the other 
endpoint MUST: 

a. Send error EAUTHORIZATION_EXPIRED (10).  

b. Send the CloseSession message.  

 

5.2.3 Core: Capabilities 

The table below lists key capabilities for this protocol.  

 For protocol-specific behavior for using these capabilities in this protocol, see Section 5.2.1 Core: 
Message Sequences.   

 For definitions of endpoint and data object capabilities, see the links in the table. 

 For general information about the types of capabilities and how they may be used, see Section 3.3. 

Core (Protocol 0): Capabilities 

Name: Description Type Units 
Value Units 

Defaults 
and/or 

MIN/MAX 

Endpoint Capabilities  

(For definitions of each endpoint capability, see Section 3.3.) 

   



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 113 

Core (Protocol 0): Capabilities 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

NOTE: Many endpoint capabilities are "universal", used in all or most 
of the ETP protocols. For more information, see Section 3.3.2. 

Behavior associated with other endpoint capabilities are 
defined in relevant chapters.  
EXAMPLE: The capabilities defined for limiting ETP sessions 
between 2 endpoints are discussed in 
Section 4.3, How a Client Establishes a WebSocket Connection 

to an ETP Server. 

   

RequestSessionTimeoutPeriod: The maximum time period in 

seconds a server will wait to receive a RequestSession message 
from a client after the WebSocket connection has been established. 

long seconds 
<number of 
seconds> 

Default: 45 

Min: 5 

SessionEstablishmentTimeoutPeriod: The maximum time period 

in seconds a client or server will wait for a valid ETP session to be 
established.  

For a server: 

 A valid session is established when it sends an OpenSession 

message to the client, which indicates a session has been 
successfully established.  

 The time period starts on receiving the initial RequestSession 

message from the client. 

For a client: 

 A valid session is established when it receives an OpenSession 
message from the server.  

 The time period starts when it sends the initial RequestSession 
message to the server. 

long seconds 
<number of 
seconds> 

Default: 60 

Min: 5 

AuthorizationDetails:  

1. Contains an ArrayOfString with WWW-Authenticate style 
challenges. 

2. To support the required authorization workflow (to enable an 
endpoint to acquire an access token with the necessary scope 
from the designated authorization server), the 
AuthorizationDetails endpoint capability MUST include at least 
one challenge with the Bearer scheme which must include the 
‘authz_server' and ‘scope’ parameters.   

a. The 'authz_server' parameter MUST be a URI for an 
authorization server to enable the endpoint to acquire any 
other needed metadata about the authorization server using 
OpenID Connect Discovery. 

3. An ETP server MUST have the AuthorizationDetails endpoint 
capability, which must meet the requirements of Point 2 above.  

4. If an ETP client does NOT need to authorize ETP servers, it 
MAY omit the AuthorizationDetails. 

   

Protocol Capabilities    

NONE    



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 114 

 

5.3 Core: Message Schemas 

This section provides a figure that displays all messages in Core (Protocol 0). Subsequent sub-sections 
provide an example schema for each message and definitions of the data fields contained in each  

 
Figure 10: Core message schemas 

class Core

«Message»
RequestSession

+ appl icationName: s tring
+ appl icationVers ion: s tring
+ cl ientInstanceId: Uuid
+ currentDateTime: long
+ earl iestReta inedChangeTime: long
+ endpointCapabi l i ties : DataValue [0..*] (map) = EmptyMap
+ requestedProtocols : SupportedProtocol  [1..*] (array)
+ serverAuthorizationRequired: boolean = fa lse
+ supportedCompress ion: s tring [0..*] (array) = EmptyArray
+ supportedDataObjects : SupportedDataObject [1..*] (array)
+ supportedFormats : s tring [1..*] (array) = ["xml"]

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 1
MultiPart = Fa lse
SenderRole = cl ient

notes
A client sends this RequestSession message to a server to request a
new ETP session with the server. In general, this message and the
server's response message to it (OpenSession) serve as a negotiation
of what will be done in the ETP session: What ETP-defined protocols,
data objects, capabilities, etc. will be used during the ETP session.
The message includes important identifying information about the
client (application name and version, an instance ID) and other
important information about the client's requirements for the session,
such as supported protocols (including any protocol capabilities and
their values), data objects, compression type, available serialization
encoding, data formats, and endpoint capabilities.
This message MUST NEVER be compressed and NEVER use a
MessageHeaderExtension.

«Message»
OpenSession

+ appl icationName: s tring
+ appl icationVers ion: s tring
+ currentDateTime: long
+ earl iestReta inedChangeTime: long
+ endpointCapabi l i ties : DataValue [0..*] (map) = EmptyMap
+ serverInstanceId: Uuid
+ sess ionId: Uuid
+ supportedCompress ion: s tring = EmptyString
+ supportedDataObjects : SupportedDataObject [1..*] (array)
+ supportedFormats : s tring [1..*] (array) = ["xml"]
+ supportedProtocols : SupportedProtocol  [1..*] (array)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 2
MultiPart = Fa lse
SenderRole = server

notes
A server sends this OpenSession as a response to a client's
RequestSession message. In general, this initial message exchange
serves as a negotiation of what will be done in the ETP session: What
ETP-defined protocols, data objects, capabilities, etc. will be used
during the ETP session.

This message includes important identifying information about the
server (application name and version, an instance ID) and sends other
important information that the client and server use to establish the
ETP session, such as supported protocols, roles, data objects,
compression type, encoding formats, and other capabilities.
This message MUST NEVER be compressed and NEVER use a
MessageHeaderExtension.

«Message»
CloseSession

+ reason: s tring [0..1]

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 5
MultiPart = Fa lse
SenderRole = cl ient,server

notes
Either a client or server sends this message to close the current
session. The receiver of this message MUST respond by doing a clean
shutdown of the WebSocket connection.
In general, CloseSession can be sent at any time after the OpenSession
message has been sent by the server, for any reason, by either the
client or the server.
If an error condition causes an endpoint to close the session, then the
endpoint MUST first send an associated ProtocolException message
before sending the CloseSession message.

«Message»
Acknowledge

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 1001
MultiPart = Fa lse
SenderRole = *

notes
Can be sent by either role in an ETP session to the other role to
acknowledge receipt of a message.
An endpoint/role MUST ONLY send this message when the other
endpoint/role requests it.
For usage requirements and rules for this message, see Section 3.7.2.2.

Common Messages

These messages  can 
be sent with any 
protocol  Id.

«Message»
Authorize

+ authorization: s tring
+ supplementalAuthorization: s tring [0..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 6
MultiPart = Fa lse
SenderRole = cl ient,server

notes
Either endpoint role sends this message to the other endpoint role to
provide an updated security authorization for the WebSocket
connection either before or after an ETP session is established.
Additionally, this message may be used during the session-initiation
process for an endpoint to inquire about authorization information, by
setting the authorization field as an empty string. For more
information, see Section 5.2.1.1.
The response to this message is the AuthorizeResponse  message.

«Message»
ProtocolException

+ error: ErrorInfo [0..1]
+ errors : ErrorInfo [0..*] (map) = EmptyMap

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 1000
MultiPart = True
SenderRole = *

notes
Used to indicate one or more error conditions in a protocol.

1. This message MUST NOT be used to indicate general failures of low-level protocols (such as
WebSocket, HTTP, or TCP/IP) on which the Energistics Transfer Protocol depends.
2. For general usage rules, see Section 3.7.2.1.
3. This message MUST NEVER be compressed.
4. The message contains two fields: error (a single error) and errors (a map of errors used in response
to a map request). In a single instance of a ProtocolException message, you MUST use one of the two
error fields (either error or errors) but NOT BOTH in the same message.
5. For a list of ETP-defined error codes, see Chapter 24.
6. The correlationId in the message header MUST be set to the ID of the message that generated the
exception and the protocol in the header MUST be the protocol of that message, which is not necessarily 0
(because ProtocolException is one of the messages defined in Protocol 0 that may be used in any
protocol).
7. The ProtocolException MAY be:
a) a single response to a request (in which case the error field) is used.
b) Part of a multipart response, which may be a combination of errors (in which case the errors field is
used) and valid responses (returned in a message's ETP-designated response message). For more
information about using ProtocolException messages as part of a multipart response, see Section 3.7.3.

«Message»
Pong

+ currentDateTime: long

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 9
MultiPart = Fa lse
SenderRole = cl ient,server

notes
This required Pong message is the response to the optional Ping
message. These so-called  "high-water mark" messages re-establish
the latest times between a customer and a store, in support of data
synchronization workflows. (Current times are initially established
when the ETP session is created.)

«Message»
Ping

+ currentDateTime: long

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 8
MultiPart = Fa lse
SenderRole = cl ient,server

notes
This optional Ping message and its required response Pong message,
are so-called "high-water mark" messages to re-establish the latest
times between a customer and a store, in support of data
synchronization workflows. (Current times are initially established
when the ETP session is created.)

«Message»
AuthorizeResponse

+ chal lenges : s tring [0..*] (array)
+ success : boolean

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 7
MultiPart = Fa lse
SenderRole = cl ient,server

notes
An endpoint MUST send this message in response to an  Authorize
message.
- If the success flag is set to true, this message indicates that the
sending endpoint has accepted the provided authorization for the
receiving endpoint on the WebSocket connection.
- If the success flag is set to false, this message indicates that the
sending endpoint has NOT accepted the provided authorization for
the receiving endpoint on the WebSocket connection but may have
included challenges that a receiver may use to send another
Authorize message. This approach allows for discovery of
authorization methods as well as authorization methods that may
require additional challenge response exchanges.



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 115 

5.3.1 Message: RequestSession 

A client sends this RequestSession message to a server to request a new ETP session with the server. In 
general, this message and the server's response message to it (OpenSession) serve as a negotiation of 
what will be done in the ETP session: What ETP-defined protocols, data objects, capabilities, etc. will be 
used during the ETP session.  

The message includes important identifying information about the client (application name and version, an 
instance ID) and other important information about the client's requirements for the session, such as 
supported protocols (including any protocol capabilities and their values), data objects, compression type, 
available serialization encoding, data formats, and endpoint capabilities.  

This message MUST NEVER be compressed and NEVER use a MessageHeaderExtension.  

Message Type ID: 1 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: client 

  

Field Name Description Data Type Min Max 

applicationName The string by which the client identifies itself, normally a 
software product or system name. The format is entirely 
application dependent. Vendors are encouraged to identify 
their company name as part of this string. 

string 1 1 

applicationVersion The version of the application identified in 
applicationName. 

string 1 1 

clientInstanceId A UUID that a client assigns itself to uniquely identify this 
instance of the client in an ETP session. It must be of the 
type Uuid. 

See also, serverInstanceId and sessionId (in the 
OpenSession message).  

Uuid 1 1 

requestedProtocols The ETP sub-protocol(s) and associated information for 
each sub-protocol that the client expects to communicate 
on for the ETP session.  

It is an array of SupportedProtocol records, each of which 
identifies a sub-protocol ID, the role for the sub-protocol it 
expects the server to fill, and name-value pairs of protocol 
capabilities.  

NOTES:  

1. An ETP sub-protocol MUST appear only once in this 
array. 

2. Each sub-protocol MUST specify only one role (for 
the server). 

3. Core (Protocol 0) MUST NOT be included in this list. 

4. Requested roles MUST be consistent across 
protocols in an ETP session. EXAMPLE: An endpoint 
CANNOT request to be customer in one protocol and 
store in another, in the same ETP session. 

SupportedProtocol 1 * 

supportedDataObjects The data objects that the client wants to use in this session 
and the information for each. It is an array of 
SupportedDataObject records. 

This field MUST be populated. Client and server use this 
field (in RequestSession and OpenSession messages 
respectively) to negotiate the objects that will be used 
during the session and determine the data object 
capabilities for each.  

SupportedDataObject 1 * 

supportedCompression An array of compression algorithms supported by the 
client, in order of preference. An empty array indicates 
compression is not supported.  

string 0 * 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 116 

Field Name Description Data Type Min Max 

 If a client or server supports compression, it MUST 
support at least gzip. 

 If compression is used during an ETP session, a 
MessageHeader is NEVER compressed. Only 
content following the MessageHeader (the message 
body and optional MessageHeaderExtension, if 
used) are compressed. 

supportedFormats An array of data formats supported by the client, in order of 
preference. 

The format(s) are used when sending data objects or 
growing data object parts in ETP messages, so the 
receiver of messages knows how to deserialize the array 
of bytes representing the data object or growing data 
object part in the message.  

Currently, ETP MAY support "xml" and "json". Other 
formats may be supported in the future, and endpoints may 
agree to use custom formats. 

Default: xml 

NOTE: An endpoint indicates in the message, per request 
and response, which format it wants to use or is being 
used. 

string 1 * 

currentDateTime The current date and time of the endpoint's system clock. 
When establishing an ETP session, each endpoint 
indicates its current date and time.  

The purpose of this field is part of the behavior for eventual 
consistency between 2 stores.  

It must be a UTC dateTime value, serialized as a long, 
using the Avro logical type timestamp-micros 
(microseconds from the Unix Epoch, 1 January 1970 
00:00:00.000000 UTC). 

long 1 1 

earliestRetainedChangeTime When the endpoint is a store, the endpoint MUST set this 
to the earliest timestamp that customers may use to 
request retained change information, such as deleted 
resources and change annotations. For some stores, if the 
store has not yet been running longer than its value for the 
ChangeRetentionPeriod capability, the value in this field 
MAY be more recent than the value for 
ChangeRetentionPeriod. Customers should not request 
and stores will not provide retained change information 
from before this timestamp. 

long 1 1 

endpointCapabilities A map of key-value pairs of endpoint-specific capability 
data (i.e., constraints, limitations). The names, defaults, 
optionality, and expected data types are defined by this 
specification. These endpoint capabilities are exchanged in 
this and the OpenSession message between the 2 
endpoints for use in applicable protocols as defined in 
relevant chapters in this specification.  

 Map keys are capability names, which are case-
sensitive strings. For ETP-defined capabilities, the 
name must spelled exactly as listed in 
EndpointCapabilityKind. 

 Map values are of type DataValue. 

 For more information about capabilities and rules for 
using them, see Section 3.3. 

DataValue 0 * 

serverAuthorizationRequired A flag that if set to true means the client is indicating that 
the server MUST authorize with the client. 

NOTE: This field is intended for clients that are ETP 
stores. Clients MAY use this in other scenarios, but servers 
are not required to support use of this field in all cases. 

boolean 1 1 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 117 

  
  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Core", 
     "name": "RequestSession", 
     "protocol": "0", 
     "messageType": "1", 
     "senderRole": "client", 
     "protocolRoles": "client, server", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "applicationName", "type": "string" }, 
         { "name": "applicationVersion", "type": "string" }, 
         { "name": "clientInstanceId", "type": "Energistics.Etp.v12.Datatypes.Uuid" }, 
         {  
             "name": "requestedProtocols", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.SupportedProtocol" } 
         }, 
         {  
             "name": "supportedDataObjects", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.SupportedDataObject" } 
         }, 
         { 
             "name": "supportedCompression", 
             "type": { "type": "array", "items": "string" }, "default": [] 
         }, 
         { 
             "name": "supportedFormats", 
             "type": { "type": "array", "items": "string" }, "default": ["xml"] 
         }, 
         { "name": "currentDateTime", "type": "long" }, 
         { "name": "earliestRetainedChangeTime", "type": "long" }, 
         { "name": "serverAuthorizationRequired", "type": "boolean", "default": false }, 
         { 
             "name": "endpointCapabilities", 
             "type": { "type": "map", "values": "Energistics.Etp.v12.Datatypes.DataValue" }, 
"default": {} 
         } 
     ] 
} 

5.3.2 Message: OpenSession 

A server sends this OpenSession as a response to a client's RequestSession message. In general, this 
initial message exchange serves as a negotiation of what will be done in the ETP session: What ETP-
defined protocols, data objects, capabilities, etc. will be used during the ETP session.  

This message includes important identifying information about the server (application name and version, 
an instance ID) and sends other important information that the client and server use to establish the ETP 
session, such as supported protocols, roles, data objects, compression type, encoding formats, and other 
capabilities. 

This message MUST NEVER be compressed and NEVER use a MessageHeaderExtension.  

Message Type ID: 2 

Correlation Id Usage: MUST be set to the messageId of the RequestSession message that initiated the 
creation of the session. 

Multi-part: False 

Sent by: server 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 118 

Field Name Description Data Type Min Max 

applicationName The string by which the server identifies itself, 
normally a software product or system name. The 
name may or may not include a version. The format is 
entirely application dependent. Vendors are 
encouraged to identify their company name as part of 
this string.  

string 1 1 

applicationVersion The version of the application identified in 
applicationName. 

string 1 1 

serverInstanceId A UUID that a server assigns itself to uniquely identify 
the instance of the server in an ETP session. It must 
be of the type Uuid. 

See also: sessionId and clientInstanceId (in the 
RequestSession message).  

Uuid 1 1 

supportedProtocols The ETP sub-protocols and associated information for 
each sub-protocol that the server will support in 
response to the client's request.  

It is an array of SupportedProtocol records , each of 
which identifies the protocol IDs that the server will 
support for this session, the role it will use for each 
protocol (as assigned by the client in the 
RequestSession message), and key-value pairs of 
related capabilities. 

NOTES:  

1. This array MUST be all or a subset of the 
protocols that the client requested in the 
supportedProtocols field of the RequestSession 
message. 

2. A server may be capable of supporting both 
roles in an ETP sub-protocol, but in any given 
session it MUST fill only one role (the one 
requested by the client in the RequestSession 
message). 

3. Core (Protocol 0) MUST NOT be included in this 
list. 

SupportedProtocol 1 * 

supportedDataObjects A list of the data objects that the client wants to use in 
this session and the information for each as specified 
in SupportedDataObject. 

This field MUST be populated. Client and server use 
this field (in RequestSession and OpenSession 
messages respectively) to negotiate the objects that 
will be used during the session and determine the 
"capabilities" for each (get, put, del).  

SupportedDataObject 1 * 

supportedCompression The compression algorithm supported by both client 
and server with the highest preference specified by 
the client (in the RequestSession message). An 
empty string indicates there were no mutually 
supported compression options. 

EXAMPLE: "gzip" 

 If a client or server supports compression, it 
MUST support at least gzip. 

 If compression is used during an ETP session, a 
MessageHeader is NEVER compressed. Only 
content following the MessageHeader (the 
message body and optional 
MessageHeaderExtension, if used) are 
compressed. 

string 1 1 

supportedFormats An array of data formats supported by the client, in 
order of preference. 

The format(s) are used when sending data objects or 
growing data object parts in ETP messages, so the 
receiver of messages knows how to deserialize the 

string 1 * 

file:///C:/Users/Donna%20Marcotte/Documents/Energistics%202017/2017/ETP%202017-2018/2020/ETP%20Spec/%7b320804213%7d%20/o%20%7deaDocX%20Cross%20ref%7d')


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 119 

Field Name Description Data Type Min Max 

array of bytes representing the data object or growing 
data object part in the message.  

Currently, ETP MAY support "xml" and "json". Other 
formats may be supported in the future, and 
endpoints may agree to use custom formats. 

Default: xml 

NOTE: An endpoint indicates in the message, per 
request and response, which format it wants to use or 
is being used. 

currentDateTime The current date and time of the endpoint's system 
clock. When establishing an ETP session, each 
endpoint indicates its current date and time.  

The purpose of this field is part of the behavior for 
eventual consistency between 2 stores. 

It must be a UTC dateTime value, serialized as a 
long, using the Avro logical type timestamp-micros 
(microseconds from the Unix Epoch, 1 January 1970 
00:00:00.000000 UTC).  

long 1 1 

earliestRetainedChangeTime When the endpoint is a store, the endpoint MUST set 
this to the earliest timestamp that customers may use 
to request retained change information, such as 
deleted resources and change annotations. For some 
stores, if the store has not yet been running longer 
than its value for the ChangeRetentionPeriod 
capability, the value in this field MAY be more recent 
than the value for ChangeRetentionPeriod. 
Customers should not request and stores will not 
provide retained change information from before this 
timestamp. 

long 1 1 

sessionId An ID (UUID) that the server assigns to uniquely 
identify an ETP session; It must be of the type Uuid.  

The sessionId is only to help with debugging and 
troubleshooting. ETP does NOT maintain session 
state (i.e., there is no session survivability). 

Uuid 1 1 

endpointCapabilities A map of key-value pairs of endpoint-specific 
capability data (i.e., constraints, limitations). The 
names, defaults, optionality, and expected data types 
are defined by this specification. These endpoint 
capabilities are exchanged in this and the 
RequestSession message between the 2 endpoints 
for use in applicable protocols as defined in relevant 
chapters in this specification.  

 Map keys are capability names, which are case-
sensitive strings. For ETP-defined capabilities, 
the name must spelled exactly as listed in 
EndpointCapabilityKind. 

 Map values are of type DataValue. 

 For more information about capabilities and rules 
for using them, see Section 3.3. 

Additionally, the ServerCapabilities may list a server's 
endpoint capabilities, though they may vary from the 
ones listed here for various reasons. 

DataValue 0 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Core", 
     "name": "OpenSession", 
     "protocol": "0", 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 120 

     "messageType": "2", 
     "senderRole": "server", 
     "protocolRoles": "client, server", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "applicationName", "type": "string" }, 
         { "name": "applicationVersion", "type": "string" }, 
         { "name": "serverInstanceId", "type": "Energistics.Etp.v12.Datatypes.Uuid" }, 
         {  
             "name": "supportedProtocols", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.SupportedProtocol" } 
         }, 
         {  
             "name": "supportedDataObjects", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.SupportedDataObject" } 
         }, 
         { "name": "supportedCompression", "type": "string", "default": "" }, 
         { 
             "name": "supportedFormats", 
             "type": { "type": "array", "items": "string" }, "default": ["xml"] 
         }, 
         { "name": "currentDateTime", "type": "long" }, 
         { "name": "earliestRetainedChangeTime", "type": "long" }, 
         { "name": "sessionId", "type": "Energistics.Etp.v12.Datatypes.Uuid" }, 
         { 
             "name": "endpointCapabilities", 
             "type": { "type": "map", "values": "Energistics.Etp.v12.Datatypes.DataValue" }, 
"default": {} 
         } 
     ] 
} 

 

5.3.3 Message: CloseSession 

Either a client or server sends this message to close the current session. The receiver of this message 
MUST respond by doing a clean shutdown of the WebSocket connection. 

In general, CloseSession can be sent at any time after OpenSession message has been sent by the 
server, for any reason, by either the client or the server.  

If an error condition causes an endpoint to close the session, then the endpoint MUST first send an 
associated ProtocolException message before sending the CloseSession message. 

Message Type ID: 5 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: client,server 

Field Name Description Data Type Min Max 

reason The reason for requesting the session be closed. string 0 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Core", 
     "name": "CloseSession", 
     "protocol": "0", 
     "messageType": "5", 
     "senderRole": "client,server", 
     "protocolRoles": "client, server", 
     "multipartFlag": false, 
    
     "fields": 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 121 

     [ 
         { "name": "reason", "type": "string", "default": "" } 
     ] 
} 

  

5.3.4 Message: Authorize 

Either endpoint role sends this message to the other endpoint role to provide an updated security 
authorization for the WebSocket connection either before or after an ETP session is established. 

Additionally, this message may be used during the session-initiation process for an endpoint to inquire 
about authorization information, by setting the authorization field as an empty string. For more 
information, see Section 5.2.1.1.  

The response to this message is the AuthorizeResponse message.  

Message Type ID: 6 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: client,server 

Field Name Description Data Type Min Max 

authorization  If providing authorization information to an 
endpoint, this field MUST be populated with 
the content of the equivalent HTTP 
Authorization header (NOT just a token). 
EXAMPLES:  

o bearer {TOKEN} 

o bearer cn389ncoiwuencr 

 If this message is being used to inquire 
about an endpoint’s supported authorization 
mechanisms, this field MUST be empty. 

string 1 1 

supplementalAuthorization A map of strings for additional authorization 
information that may be required in the future for 
new authorization mechanisms.  

string 0 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Core", 
     "name": "Authorize", 
     "protocol": "0", 
     "messageType": "6", 
     "senderRole": "client,server", 
     "protocolRoles": "client, server", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "authorization", "type": "string" }, 
         { 
             "name": "supplementalAuthorization", 
             "type": { "type": "map", "values": "string" } 
         } 
     ] 
} 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 122 

5.3.5 Message: Ping 

This optional Ping message and its required response Pong message, are so-called "high-water mark" 
messages to re-establish the latest times between a customer and a store, in support of data 
synchronization workflows. (Current times are initially established when the ETP session is created.)  

Message Type ID: 8 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: client,server 

Field Name Description Data Type Min Max 

currentDateTime The current date and time of the endpoint's 
system clock. When establishing an ETP session, 
each endpoint indicates its current date and time. 
If there has been no activity (messages 
exchanged), this establishes a new current time 
for the endpoints.  

The purpose of this field is part of the behavior for 
eventual consistency between 2 stores. 

It must be a UTC dateTime value, serialized as a 
long, using the Avro logical type timestamp-micros 
(microseconds from the Unix Epoch, 1 January 
1970 00:00:00.000000 UTC). 

long 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Core", 
     "name": "Ping", 
     "protocol": "0", 
     "messageType": "8", 
     "senderRole": "client,server", 
     "protocolRoles": "client, server", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "currentDateTime", "type": "long" } 
     ] 
} 

  

5.3.6 Message: Pong 

This required Pong message is the response to the optional Ping message. These so-called "high-water 
mark" messages re-establish the latest times between a customer and a store, in support of data 
synchronization workflows. (Current times are initially established when the ETP session is created.)  

Message Type ID: 9 

Correlation Id Usage: MUST be set to the messageId of the Ping message that this is a response to. 

Multi-part: False 

Sent by: client,server 

Field Name Description Data Type Min Max 

currentDateTime The current date and time of the endpoint's 
system clock. When establishing an ETP session, 
each endpoint indicates its current date and time. 
If there has been no activity (messages 

long 1 1 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 123 

Field Name Description Data Type Min Max 

exchanged), this establishes a new current time 
for the endpoints.  

The purpose of this field is part of the behavior for 
eventual consistency between 2 stores. 

It must be a UTC dateTime value, serialized as a 
long, using the Avro logical type timestamp-micros 
(microseconds from the Unix Epoch, 1 January 
1970 00:00:00.000000 UTC). 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Core", 
     "name": "Pong", 
     "protocol": "0", 
     "messageType": "9", 
     "senderRole": "client,server", 
     "protocolRoles": "client, server", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "currentDateTime", "type": "long" } 
     ] 
} 

  

5.3.7 Message: AuthorizeResponse 

An endpoint MUST send this message in response to an Authorize message.  

 If the success flag is set to true, this message indicates that the sending endpoint has accepted the 
provided authorization for the receiving endpoint on the WebSocket connection.  

 If the success flag is set to false, this message indicates that the sending endpoint has NOT accepted 
the provided authorization for the receiving endpoint on the WebSocket connection but may have 
included challenges that a receiver may use to send another Authorize message. This approach 
allows for discovery of authorization methods as well as authorization methods that may require 
additional challenge response exchanges.  

Message Type ID: 7 

Correlation Id Usage: MUST be set to the messageId of the Authorize message that this is a response 
to. 

Multi-part: False 

Sent by: client,server 

Field Name Description Data Type Min Max 

success If the success flag is set to true, this message 
indicates that the receiving endpoint has been 
successfully authorized (to the endpoint that is 
sending the message).  

boolean 1 1 

challenges Contains the challenge needed and possibly 
metadata on where to get authorization 
information. This field MUST only be non-empty 
when the success attribute is false. 

string 0 * 

  

Avro Source 

{ 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 124 

     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Core", 
     "name": "AuthorizeResponse", 
     "protocol": "0", 
     "messageType": "7", 
     "senderRole": "client,server", 
     "protocolRoles": "client, server", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "success", "type": "boolean" }, 
         {  
             "name": "challenges", 
             "type": { "type": "array", "items": "string" } 
         } 
     ] 
} 

  

5.3.8 Message: ProtocolException 

Used to indicate one or more error conditions in a protocol.  

1. This message MUST NOT be used to indicate general failures of low-level protocols (such as 
WebSocket, HTTP, or TCP/IP) on which the Energistics Transfer Protocol depends. 

2. For general usage rules, see Section 3.7.2.1. 

3. This message MUST NEVER be compressed. 

4. The message contains two fields: error (a single error) and errors (a map of errors used in response 
to a map request). In a single instance of a ProtocolException message, you MUST use one of the 
two error fields (either error or errors) but NOT BOTH in the same message. 

5. For a list of ETP-defined error codes, see Chapter 24. 

6. The correlationId in the message header MUST be set to the ID of the message that generated the 
exception and the protocol in the header MUST be the protocol of that message, which is not 
necessarily 0 (because ProtocolException is one of the messages defined in Protocol 0 that may be 
used in any protocol). 

7. The ProtocolException MAY be:  

a. A single response to a request (in which case the error field is used).  

b. Part of a multipart response, which may be a combination of errors (in which case the errors field 
is used) and valid responses (returned in a message's ETP-designated response message). For 
more information about using ProtocolException messages as part of a multipart response, see 
Sections 3.7.3. 

Message Type ID: 1000 

Correlation Id Usage: MUST be set to the messageId of the message that caused the exception to be 
raised. 

Multi-part: True 

Sent by: * 

Field Name Description Data Type Min Max 

error Field for use for a single error code and related 
message.  

In a single instance of a ProtocolException 
message, you MUST use one of the two error 
fields (either error or errors), but you MUST NOT 
use both in the same message. 

ErrorInfo 0 1 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 125 

Field Name Description Data Type Min Max 

If both fields are populated, the behavior is 
undefined.  

errors A map of errors, which MUST be used in 
response to a request message that contains a 
map.  

In a single instance of a ProtocolException 
message, you MUST use one of the two error 
fields (either error or errors), but you MUST NOT 
use both in the same message. 

If both fields are populated, the behavior is 
undefined.  

ErrorInfo 0 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Core", 
     "name": "ProtocolException", 
     "protocol": "0", 
     "messageType": "1000", 
     "senderRole": "*", 
     "protocolRoles": "client, server", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { "name": "error", "type": ["null", "Energistics.Etp.v12.Datatypes.ErrorInfo"] }, 
         { 
             "name": "errors", 
             "type": { "type": "map", "values": "Energistics.Etp.v12.Datatypes.ErrorInfo" }, 
"default": {} 
         } 
     ] 
} 

  

5.3.9 Message: Acknowledge 

Can be sent by either role in an ETP session to the other role to acknowledge receipt of a message.  

An endpoint/role MUST ONLY send this message when the other endpoint/role requests it.  

For usage requirements and rules for this message, see Section 3.7.2.2.  

Message Type ID: 1001 

Correlation Id Usage: MUST be set to the messageId of the message whose receipt is being 
acknowledged. 

Multi-part: False 

Sent by: * 

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Core", 
     "name": "Acknowledge", 
     "protocol": "0", 
     "messageType": "1001", 
     "senderRole": "*", 
     "protocolRoles": "client, server", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
      
     ] 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 126 

} 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 127 

6 ChannelStreaming (Protocol 1) 
ProtocolID: 1 

Defined Roles: producer, consumer 

Use ChannelStreaming (Protocol 1) to stream channel-oriented data from an endpoint that is a "simple" 
producer (i.e., a sensor) to a consumer endpoint. Beginning in ETP v1.2, Protocol 1 is used only for so-
called "simple streamers" (in previous versions of ETP, Protocol 1 included all channel streaming 
behavior).  

The main use case that this protocol supports is basic "WITS-like", one-way data streaming from a sensor 
or other relatively "dumb" device. There is no real "back and forth" between the endpoints—that is, the 
consumer cannot discover available channels nor specify which channels it wants; the producer simply 
sends any data it has. Also, there is no flow control—except for "stop". In its simplest form, this protocol 
supports a workflow of connect and begin receiving data. Reliability (data transmission without loss) 
cannot be guaranteed. 

Other ETP sub-protocols that may be used with or instead of 
ChannelStreaming◦(Protocol 1): 
 ChannelSubscribe (Protocol 21) (see Chapter 19): Has the "get/read" behavior for channel data, 

allowing a customer to connect to a store and to "listen" for changes in channel data that require a 
notification (or data updates) to be sent while connected. Functionality includes standard 
publish/subscribe behavior that was previously included in Protocol 1, though has been enhanced in 
the current version of ETP.  

 ChannelDataLoad (Protocol 22) (see Chapter 20): New in ETP v1.2, this protocol provides the 
"put/write" behavior for channel data. Protocol 22 "pushes" data from the customer role endpoint to 
the store role endpoint. Main use cases include rig acquisition systems or any case in which you want 
to load a lot of data to a system or store. 

 ChannelDataFrame (Protocol 2) (see Chapter 7) allows a customer endpoint to get channel data 
from a store in a row-orientated 'frame' or 'table' of data. In oil and gas jargon, the general use case 
that Protocol 2 supports is typically referred to as getting a "historical log". (In ETP jargon you are 
actually getting a frame of data from a ChannelSet data object; for more information, see Section 
7.1.1). 

This chapter includes main sections for:  
 Key ETP concepts that are important to understanding how this protocol is intended to work, 

specifically definitions of channels and related constructs in ETP (see Section 6.1).   

 Required behavior, which includes: 

 Description of the message sequence for main tasks, along with required behavior and possible 
errors (see Section 6.2.1).  

 Other functional requirements not covered in the message sequence (see Section 6.2.2). 

- Definitions of the endpoint capabilities used in this protocol (see Section 6.2.3). For this basic 
protocol, there are no protocol capabilities.  

 Sample schemas of the messages defined in this protocol (which are identical to the Avro schemas 
published with this version of ETP). However, only the schema content in this specification includes 
documentation for each field in a schema (see Section 6.3).  

6.1 Channels: Key Concepts 

This section explains concepts that are important to understanding how ETP channel streaming protocols 
work, which includes ChannelStreaming (Protocol 1), ChannelSubscribe (Protocol 21), and 
ChannelDataLoad (Protocol 22). Unless otherwise specified, you can assume the information below 
applies to all channel streaming protocols.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 128 

6.1.1 Channel Definition and its Design in Energistics Standards 

In oil and gas jargon, a channel (in its simplest form) is series of indexes, each with an associated value. 
The index is traditionally time or depth and the "associated value" is often a measurement (of something 
other than time or depth, e.g., pressure, porosity, etc.) at a particular index. (Though channel values can 
also be other kinds of data, such as comments, which can also be streamed.)  

In Energistics domain standards (WITSML, RESQML and PRODML) and ETP a channel is described by 
a named data object in the system, identified by a URI. The Channel data object includes the identifying 
information about the channel, such as its name/mnemonic, and some metadata about the channel like 
when it was created and last updated, status, etc., which is much of the information that is defined for all 
Energistics data objects. As a data object, operations such as adding, deleting, and updating are done 
using Store (Protocol 4), and a customer can subscribe to receive notifications of these operations using 
StoreNotification (Protocol 5).  

The Channel data object does not include the actual index/value pairs, just the descriptive information. In 
ETP, the channel data is moved using one of the channel protocols (i.e., ChannelStreaming (Protocol 1), 
ChannelSubscribe (Protocol 21) (see Chapter 19) or ChannelDataLoad (Protocol 22) (see Chapter 20)).  

In ETP, "updates" to a Channel data object DO NOT include updates to the channel data. Updates to the 
channel data is done using the ETP streaming protocols.  

Additionally, ChannelDataFrame (Protocol 2) makes it possible to view several channels in a set of 
channels as a table or frame of data. For more information, about how channels may be organized 
together, see Section 7.1.1. 

The ETP channel streaming protocols do not define any specific meaning or behaviors to specific URIs. 
Defining meaning is the responsibility of the Energistics domain standards. 

NOTE: In WITSML v1.4.1.1 terms, a channel is comparable to a log curve; more generally, it is 
comparable to a tag in a process historian. In WITSML v2.0, the v1.4.1.1 constructs (such as log curve) 
have been redesigned similarly to ETP as channels, which can be grouped into channel sets and logs. 
However, ETP channel streaming protocols handle individual channels; that is, whether or not the 
channel is part of a channel set or log is irrelevant to how it is handled in a channel streaming protocol.  

6.1.1.1 About Indexes and Channel Data 
ETP defines several channel index kinds (for the list and definitions, see Section 23.33.2); which includes 
several variations for time and depth (e.g., dateTime, elapsed time, MD, TVD, etc.) to support oil and gas 
workflows and to be consistent with the Energistics domain standards.  

Additionally, ETP supports use of secondary indexes, which provide additional context for the associated 
values. A secondary index is one or more indexes in addition to the primary one. In ETP, the primary 
index is always the first index. For example, if the primary index of a channel is time, the secondary index 
may be depth. When channel data is ordered by the primary index, secondary index values may or may 
not be ordered. For example, when channel data is ordered by time as the primary index, a secondary 
index of hole depth may be ordered while a secondary index of bit depth would not be ordered. On 
endpoints that support it, secondary indexes may also be used for filtering on range and frame 
operations. 

NOTES:  

1. Support for secondary index is optional and is considered advanced query functionality that most ETP 
servers will not support.  

2. If a store supports write operations, it MUST support at least 1 secondary index. That is, a store's 
value for the MaxSecondaryIndexCount data object capability MUST be at least 1.  

6.1.2 Metadata for Channels, Indexes and Attributes 

To make channel streaming more efficient, ETP is designed so that endpoints can exchange relevant 
metadata about channels once, at the beginning of the ETP session. This approach allows each endpoint 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 129 

to use the metadata to "set up" (e.g., for the receiving endpoint to interpret and understand what channels 
it will be receiving, relevant units of measure (UOM), etc.), and then as new data points are produced, the 
sending endpoint simply streams the new data, which at a minimum is typically the latest index and value 
at that index.  

The main types of metadata include those listed here:  

 Channel metadata is exchanged in the ChannelMetadataRecord (see Section 23.33.7), which is a 
standard ETP structure (Avro record) that contains the metadata for one channel. Various messages 
in the channel streaming protocols—for example: ChannelMetadata message in ChannelStreaming 
(Protocol 1); GetChannelMetadataResponse message in ChannelSubscribe (Protocol 21); and the 
OpenChannelsResponse message in ChannelDataLoad (Protocol 22)—send one 
ChannelMetadataRecord record per channel. 

 Index metadata is the metadata about the index(es) in one channel, which includes information such 
as the index kind (time, depth, scalar or elapsed time) and direction (increasing or decreasing). The 
IndexMetadataRecord (Section 23.33.6) is an ETP datatype (Avro record) sent in the indexes field 
of the ChannelMetadataRecord.  

 Attribute metadata. ETP provides an Avro record (DataAttribute, Section 23.23) that allows an 
endpoint to pass attributes associated with individual channel data points (sometimes referred to as 
"decorating" individual points). These attributes are typically metadata for things such as quality, 
confidence, audit information, etc. NOTE: ETP simply provides the structure for passing such data. 
ETP does NOT specify the content and usage, which may be specified by individual MLs (in the 
relevant implementation specification) or may be custom.  

Consistent with the established pattern (for channels and indexes), ETP defines attribute metadata in 
the AttributeMetadataRecord record (Section 23.24), which is the information needed to 
interpret/understand the data attributes that may be sent in an ETP session. 

6.1.3 What Data is Sent When Streaming Channels 

As explained above, in its most basic form streaming channel data is sending an index and a data value 
at that index, which are sent in ChannelData messages (for all 3 channel streaming protocols). There are 
more options though to cover all scenarios and to help reduce message size on the wire.  

NOTE: For streaming data, ETP does NOT send null data values. However, if a new data value has the 
same index as the previous data value, then the index MAY be null, which indicates it is the same as the 
previous index. EXCEPTION: If channel data values are arrays, then the arrays MAY contain null values, 
but at least one array value MUST be non-null and the entire array CANNOT be null. 

The ChannelData message uses the ETP datatype DataItem (Section 23.33.5), which specifies these 
fields:  

 channelId: the identifier of the channel for this point, as received in a ChannelMetadataRecord. 

 indexes: the value of the index(es) for the data value.  

 value: the value of the data point. This field must be one of the types specified in the ETP datatype 
DataValue (Section 23.30)—which includes options to send a single data value (of various types 
such as integers, longs, doubles, etc.) OR arrays of values. For more information about options for 
sending arrays, see Section 6.1.3.1 below. 

 valueAttributes: any qualifiers, such as quality, accuracy, etc., attached to this data point. 

6.1.3.1 Sending an Array in a Data Value  
When sending an array as a data point value, the data should be encoded as a 1D array and additional 
information must be provided so that the receiver endpoint can reconstruct the 1D array into its original 
dimensions.  

The information for reconstructing the array is specified in the axisVectorLengths field on the 
ChannelMetadataRecord, by encoding the positional information (as an absolute ‘start’ offset) between it 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 130 

and the length of each subarray that Avro will encode onto the wire. For more information see, Section 
23.33.7.  

In some situations, it's possible that individual values within an array of data could be null. ETP offers 
these approaches for specifying null values in an array: 

 Sparse arrays. Using axisVectorLengths, specify the number of 'skips' (which indicate null values) in 
addition to the 'start' offsets.  

 For arrays of Int, Long or Boolean, ETP specifies a corresponding nullable type (i.e., 
ArrayOfNullableInt, ArrayOfNullableLong, ArrayOfNullableBoolean).  

 For arrays of double or float values, use "NaN" to specify null values. 

You must observe these rules when specifying null values in an array: 

1. The base type specified in ChannelMetadataRecord for the array type must be the base, non-
nullable array type (see ArrayofLong example in next item). 

2. The underlying type must be consistent for the same channel or other usage. i.e., if you start sending 
ArrayofLong, you must only use ArrayofLong, ArrayofLongNullable, SparseArray with Long. 

6.1.3.2 Reducing Channel Data Message Size on the Wire 
Sending every data point in its own ETP message introduces a sizeable overhead on the wire. When 
sending channel data, following some best practices and taking advantage of some ETP features for 
channel data will help minimize the overhead. 

Implementers should follow these best practices when sending channel data using the ChannelData, 
GetRangesResponse, and ReplaceRange messages: 

1. Send values from related data channels together and in index order rather than channel-by-channel. 
EXAMPLE: If a single piece of equipment produces measurement values for 5 channels, then send 
values for all 5 channels together for one index followed by values for all 5 channels for the next index 
and so on. 

2. Include as many DataItem records within a single message as possible without introducing 
unnecessary latency. That is, send as much available data as possible in every message without 
pausing to allow new data to accumulate and sending it in batches. 

3. Group together DataItem records within a message, when they have the same primary and 
secondary indexes, and order them within each group by index values. That is, order data within 
groups by “row” rather than by “column” or on a channel-by-channel or basis. 

4. When a DataItem’s indexes and index values are the same as the previous DataItem record in the 
message, set the indexes field in DataItem to a zero length (empty) array. 

6.1.4 "Simple Streamer" vs. "Standard Streamer" 

Typically, in oil and gas operations we think of technology that streams data (so-called data "streamers") 
in two broad categories:  

 A "simple streamer" refers to a basic device such as a sensor, that does nothing more than send 
data; by definition, it does not maintain history, and the receiver does NOT have any control over 
what the simple streamer sends.  

 A "standard streamer" refers to a client or server application with capabilities beyond the simple 
streamer, such as maintaining history changes or supporting requests for specific ranges of data in a 
channel. 

Protocol 1 supports behavior for a simple streamer only; for options for reading and writing data with 
standard streamers, see ChannelSubscribe (Protocol 21) and ChannelDataLoad (Protocol 22).  

IMPORTANT: When eventual consistency is important with channel data (i.e., when an endpoint needs to 
ensure it gets all channel data—including corrections to previously streamed data—even if the connection 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 131 

is occasionally dropped), then you MUST use the protocols for standard streaming, which are 
ChannelSubscribe (Protocol 21) and ChannelDataLoad (Protocol 22). The simple streaming protocol 
(ChannelStreaming (Protocol 1)) does not support eventual consistency.  

6.1.5 Organizing Channels into ChannelSets and Logs 

While Energistics data models (e.g., WITSML) allow users to organize channels into channel sets and 
logs, a channel is an Energistics data object that is acted upon independently. The ETP channel 
streaming protocols ((Channel Streaming (Protocol 1), ChannelSubscribe (Protocol 21) and 
ChannelDataLoad (Protocol 22)) only operate on Channels, and whether or not a Channel is included in a 
ChannelSet or Log does not affect the behavior defined by these protocols. In contrast with this, 
ChannelDataFrame (Protocol 2) only supports reading data from the Channels within a ChannelSet. For 
more information about channel sets and logs, see Section 7.1.1. For the definition of data object, see 
Section 25.1. 

6.2 ChannelStreaming: Required Behavior 

This section contains functional and non-functional requirements for this protocol. It is organized in these 
sub-sections: 

 Message Sequence. Summarizes all messages defined by this protocol, and identifies main tasks 
that can be done with this protocol and describes the response/request pattern for the messages 
needed to perform the task, including error scenarios and resulting error codes.  

 General Requirements. Identifies high-level and/or protocol-wide general behavior that must be 
observed (in addition to behavior specified in Message Sequence), including usage of protocol and 
endpoint capabilities.  

 Capabilities. Lists and defines the parameters that set necessary limits to help prevent aberrant 
behavior (e.g., sending oversized messages or sending more messages than an endpoint can 
handle).  

Prerequisites for using this protocol:  
 An ETP session has been established using Core (Protocol 0) as described in Chapter 5. 

 Contextual information (such as what wellbore/well the data is for) most likely will come out of band of 
ETP because simple streamers don't usually "know" these things and have no functionality to 
discover them. 

6.2.1 ChannelStreaming: Message Sequence 

This section explains the basic message sequence for the main task to be done using this protocol and 
includes related key behaviors and possible errors. The following Required Behavior section provides 
additional requirements and rules for how this protocol works.   

The following table lists all messages defined in this sub-protocol, and the basic request/response usage 
patterns per ETP role. The detailed content of each message is explained in the Message Schema 
section. 

ChannelStreaming (Protocol 1): 
Basic Message-Response flow by ETP Role 

Messages sent by Consumer Response/Message sent by Producer 

StartStreaming: Indicates that consumer is ready to 
receive data. 

ChannelMetatdata: Indicates the channel(s) it may send data 
for and metadata for each. 

 ChannelData: Contains the data the producer has for each 
channel; the producer keeps sending these messages as new 
data becomes available for as long as the consumer is 
connected. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 132 

ChannelStreaming (Protocol 1): 
Basic Message-Response flow by ETP Role 

Messages sent by Consumer Response/Message sent by Producer 

 TruncateChannels: Sent to reset the end index of a channel to 
allow streaming to resume from the new end index; used to 
correct "index jump" errors in previously sent data. 

StopStreaming: Indicates that the consumer wants the 
producer to stop sending data.  

 

 

6.2.1.1 Main Message Sequence for Simple Streamers 
Because this protocol is for so-called simple streamers, only one message sequence is 
required/described. This section describes the basic message sequence, related key behaviors, and 
possible errors.  

1. The consumer sends a StartStreaming message (Section 6.3.1) to the producer. The 
StartStreaming message indicates that the consumer is ready to receive data.  

2. On receipt of the StartStreaming message, the producer MUST send at least one ChannelMetadata 
message (Section 6.3.3), which indicates the channels it will stream. 

a. ChannelMetadata includes ChannelMetadataRecord records, which have the necessary 
contextual information (indexes, units of measure, etc.) that the customer needs to correctly 
interpret channel data. 

b. For many producers, this ChannelMetadata message MAY BE the only such message sent. 
However, if additional channels appear on the producer over time, the producer MUST send 
additional ChannelMetadata messages (for the new channels) before sending any data for the 
new channel.  

c. The producer MUST assign the channel an integer identifier that is unique for the session in this 
protocol. This identifier will be used instead of the channel URI to identify the channel in 
subsequent messages in this protocol for the session. This identifier is set in the id field in the 
ChannelMetadataRecord. RECOMMENDATION: Use the smallest available integer value for a 
new channel identifier. 
IMPORTANT: If the channel is deleted and recreated during a session, it MUST be assigned a 
new identifier. 

d. A simple streamer always streams all its available channels. That is, it does NOT accept requests 
to stream individual channels. 

e. The producer MUST NOT send any data until it receives the StartStreaming message from the 
consumer. 

f. If the producer cannot handle the request, the producer MUST deny the request and MUST send 
error EREQUEST_DENIED (6). 

3. After it sends the ChannelMetadata message, the producer MUST begin streaming ChannelData 
messages (see Section 6.3.4) and MUST continue streaming new data points as long as the 
consumer is connected or until the consumer sends the StopStreaming message. 

a. A good assumption is that the producer begins streaming data from its "current" index, though 
there are no guarantees. 

b. When it receives a StartStreaming message, a producer may not have any channel data to 
send. In this scenario, the producer will not immediately send any ChannelData messages, but, 
when data becomes available, it MUST start sending ChannelData messages. 

4. As needed, the producer MAY send TruncateChannels messages (e.g., to correct erroneous "index 
jumps") (Section 6.3.5). When a TruncateChannels message is sent: 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 133 

a. The consumer MUST: 

i. Reset its end index to the newEndIndex specified in the TruncateChannels message, and 

ii. Delete or disregard any data it previously received that was after the newEndIndex. 

b. When the producer resumes sending ChannelData messages (for the channel whose index it 
corrected), the index for each new DataItem record MUST be greater than the new end index in 
TruncateChannels message.  

5. If new channels appear on the producer, it MUST send the metadata for the new channels before 
sending any data for the channels. 

a. To do so, the producer sends additional ChannelMetadata messages, which MUST include a 
ChannelMetadataRecord for each new channel and MAY include a ChannelMetadataRecord 
for ALL channels it is currently streaming. 

b. The producer MAY then send ChannelData messages for the new channels. 

6. To stop streaming, a consumer MAY send a StopStreaming message (Section 6.3.2) to the 
producer or simply disconnect.  

a. Upon receipt of the StopStreaming message, the producer MUST stop sending ChannelData 
messages.  

6.2.2 ChannelStreaming: General Requirements 

In addition to the basic message sequence described in the previous section, this protocol has the 
additional requirements listed in the table below. For easy reference, the rows and behaviors in this table 
are numbered. 

NOTE: This table has been organized to reduce redundancy but also to help developers more easily 
locate specific requirements. EXAMPLE: There are rows with general requirements that apply to all 
protocols (e.g., Rows 1), rows for general requirements for this protocol, and (possibly) some rows with 
additional requirements for specific types of operations.  

Row# Requirement Behavior 

1.  ETP-wide behavior that must be 
observed in all protocols 

1. Requirements for general behavior consistent across all of ETP are 
defined in Chapter 3. This behavior includes information such as: all 
details of message handling (such as message headers, handling 
compression, use of message IDs and correlation IDs, requirements 
for plural and multipart message patterns) use of acknowledgements, 
general rules for sending ProtocolException messages, URI 
encoding, serialization and more. RECOMMENDATION: Read 
Chapter 3 first. 

2. For information about Energistics identifiers and prescribed ETP URI 
formats, see Appendix: Energistics Identifiers. 

a. In MOST cases, endpoints performing operations in this protocol 
MUST use the canonical Energistics URI. For more information, 
see Section 3.7.4. 

3. For the complete list of error codes defined by ETP, see Chapter 24. 

2.  No Session Survivability 1. If a session is interrupted, a consumer MUST re-establish the session 
(as described in Section 5.1) and restart ChannelStreaming (Protocol 
1) (as described in Section 6.2.1.1).  

2. After the consumer reconnects, a simple streamer is NOT required to 
send data that would have been sent while the consumer was 
disconnected. 

3.  Data order for streaming data 1. Streaming data points (in the ChannelMetadata messages) MUST be 
sent in primary index order for each channel, both within one message 
and across multiple messages.  

a. Primary index order is always as appropriate for the index 
direction of the channel (i.e., increasing or decreasing).   



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 134 

Row# Requirement Behavior 

2. The index values for each data point are in the same order as their 
corresponding IndexMetadataRecord records in the corresponding 
channel’s ChannelMetadataRecord record, and the primary index is 
always first. 

4.  Index metadata 1. A channel data object’s index metadata MUST be consistent: 

a. The index units and vertical datums MUST match the channel’s 
index metadata. 

2. When sending messages, the producer MUST ensure that all index 
metadata and data derived from index metadata are consistent in all 
fields in the message, including in XML or JSON object data or part 
data. 

a. EXAMPLE: The uom and depthDatum in an IndexInterval 
record MUST be consistent with the channel’s index metadata. 

5.  No null values sent 1. In streaming data, ETP does NOT send null values.  

6.2.3 ChannelStreaming: Capabilities 

Intentionally designed for "simple streamers", ChannelStreaming (Protocol 1) has no protocol capabilities, 
only the endpoint capabilities shared by most of the ETP sub-protocols.  

 For general information about the types of capabilities and how they may be used, see Section 3.3. 

ChannelStreaming (Protocol 1): Capabilities 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

Endpoint Capabilities  
 

   

NOTE: Many endpoint capabilities are "universal", used in all or 
most of the ETP protocols. For more information, see Section 3.3.2. 

Behavior associated with other endpoint capabilities are 
defined in relevant chapters.  
EXAMPLE: The capabilities defined for limiting ETP sessions 
between 2 endpoints are discussed in 
Section 4.3, How a Client Establishes a WebSocket Connection 

to an ETP Server. 

   

 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 135 

6.3 ChannelStreaming: Message Schemas 

This section provides a figure that displays all messages defined in ChannelStreaming (Protocol 1). 
Subsequent sub-sections provide an example schema for each message and definitions of the data fields 
contained in each message. 

 
Figure 11: ChannelStreaming: message schemas 

class ChannelStreaming

«Message»
ChannelMetadata

+ channels : ChannelMetadataRecord [1..n] (array)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 1
MultiPart = Fa lse
SenderRole = producer

notes
The producer MUST send this message in response to
the StartStreaming message. It contains an array of
ChannelMetadataRecords, one record for each channel
the producer can stream data for.

«Message»
ChannelData

+ data: DataItem [1..n] (array)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 2
MultiPart = Fa lse
SenderRole = producer

notes
A producer sends ChannelData messages to a consumer.
A ChannelData message contains an array of DataItem
records for one or more channels. For more information
on what data (value) may be sent, see the data field
below.

1. This message "appends" data to a channel. It does
NOT include changes to existing data in the channel.
2. There is no requirement that any given channel
appear in an individual ChannelData message, or that a
given channel appear only once in ChannelData message
(i.e., a range of several index values for the same channel
may appear in one message).
3. This is a "fire and forget" message. The sender does
NOT receive a positive confirmation from the receiver that
it has successfully received and processed the message.
4. For streaming data, ETP does NOT send null data
values. EXCEPTION: If channel data values are arrays, then
the arrays MAY contain null values, but at least one array
value MUST be non-null and the entire array CANNOT be
null.
5. To optimize size on-the-wire, redundant index values
MAY be sent as null. The rules for this are as follows:

a. The index value of the first DataItem record in the data
array MUST NOT be sent as null.
b. For subsequent index values:
i. If an index value differs from the previous index value in
the data array, the index value MUST NOT be sent as null.
ii. If an index value is the same as the previous index value
in the data array, the index value MAY be sent as null.
c. EXAMPLE: These index values from adjacent DataItem
records in the data array:
[1.0, 1.0, 2.0, 3.0, 3.0]
MAY be sent as:
[1.0, null, 2.0, 3.0, null].
d. When the DataItem records have both primary and
secondary index values, these rules apply separately to
each index.
EXAMPLE: These primary and secondary index values from
adjacent DataItem records in the data array:
[[1.0, 10.0], [1.0, 11.0], [2.0, 11.0], [3.0, 11.0], [3.0, 12.0]]
MAY be sent as:
[[1.0, 10.0], [null, 11.0], [2.0, null], [3.0, null], [null, 12.0]].
f. If ALL index values for a DataItem record are to be sent
as null, the indexes field should be set to an empty array.
6. For more information about sending channel data, see
Section 6.1.3.

«Message»
StartStreaming

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 3
MultiPart = Fa lse
SenderRole = consumer

notes
A consumer sends to a "simple-streamer" producer to
request that it begin streaming its channels. The
response to this message is a ChannelMetadata
message.

«Message»
StopStreaming

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 4
MultiPart = Fa lse
SenderRole = consumer

notes
A  consumer sends to a producer to request that
streaming be discontinued.

«Message»
TruncateChannels

+ channels : TruncateInfo [1..n] (array)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 5
MultiPart = Fa lse
SenderRole = producer

notes
A producer sends to a consumer to "reset" the
maximum index used in the ChannelData message.
It is an array of individual truncate commands
where each command specifies a channel ID and the
new end index for that channel.
When a consumer receives this message, it MUST:
- Reset the endIndex for the channel to the value
specified in newEndIndex.
- Delete or disregard any previously sent data
points that were AFTER the previous endIndex.
Use Case:   A frequently occurring issue/error when
collecting data in the oil field is often referred to as
a "depth jump", which is when an index
momentarily "jumps forward" (beyond the next
expected index value) before being fixed and then
the corrected streaming resumes.  This type of issue
must also be fixed in downstream consumers so
that the indexes of the data subsequently streamed
are in a logical order.



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 136 

6.3.1 Message: StartStreaming 

A consumer sends to a "simple streamer" producer to request that it begin streaming its channels. The 
response to this message is a ChannelMetadata message. 

Message Type ID: 3 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: consumer 

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelStreaming", 
     "name": "StartStreaming", 
     "protocol": "1", 
     "messageType": "3", 
     "senderRole": "consumer", 
     "protocolRoles": "producer,consumer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
      
     ] 
} 

  

6.3.2 Message: StopStreaming 

A consumer sends to a producer to request that streaming be discontinued. 

Message Type ID: 4 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: consumer 

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelStreaming", 
     "name": "StopStreaming", 
     "protocol": "1", 
     "messageType": "4", 
     "senderRole": "consumer", 
     "protocolRoles": "producer,consumer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
      
     ] 
} 

  

6.3.3 Message: ChannelMetadata 

The producer MUST send this message in response to the StartStreaming message. It contains an array 
of ChannelMetadataRecords, one record for each channel the producer can stream data for.  

Message Type ID: 1 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 137 

Multi-part: False 

Sent by: producer 

Field Name Description Data Type Min Max 

channels The list of channels with metadata for each; the 
fields for each channel are defined in the 
ChannelMetadataRecord.  

The URIs MUST be canonical Energistics data 
object URIs; for more information, see Appendix: 
Energistics Identifiers. 

ChannelMetadataRecord 1 n 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelStreaming", 
     "name": "ChannelMetadata", 
     "protocol": "1", 
     "messageType": "1", 
     "senderRole": "producer", 
     "protocolRoles": "producer,consumer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         {  
             "name": "channels", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.ChannelData.ChannelMetadataRecord" } 
         } 
     ] 
} 

  

6.3.4 Message: ChannelData 

A producer sends ChannelData messages to a consumer.  

A ChannelData message contains an array of DataItem records for one or more channels. For more 
information on what data (value) may be sent, see the data field below. 

1. This message "appends" data to a channel. It does NOT include changes to existing data in the 
channel. 

2. There is no requirement that any given channel appear in an individual ChannelData message, or 
that a given channel appear only once in ChannelData message (i.e., a range of several index 
values for the same channel may appear in one message). 

3. This is a "fire and forget" message. The sender does NOT receive a positive confirmation from the 
receiver that it has successfully received and processed the message. 

4. For streaming data, ETP does NOT send null data values. EXCEPTION: If channel data values are 
arrays, then the arrays MAY contain null values, but at least one array value MUST be non-null and 
the entire array CANNOT be null. 

5. The index values in each DataValue record are in the same order as their corresponding 
IndexMetadataRecord records in the corresponding channel’s ChannelMetadataRecord record, and 
the primary index is always first. 

6. To optimize size on-the-wire, redundant index values MAY be sent as null. The rules for this are as 
follows: 

a. The index value of the first DataItem record in the data array MUST NOT be sent as null. 

b. For subsequent index values: 

i. If an index value differs from the previous index value in the data array, the index value MUST 
NOT be sent as null. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 138 

ii. If an index value is the same as the previous index value in the data array, the index value 
MAY be sent as null. 

c. EXAMPLE: These index values from adjacent DataItem records in the data array: 

[1.0, 1.0, 2.0, 3.0, 3.0] 

MAY be sent as: 

[1.0, null, 2.0, 3.0, null]. 

d. When the DataItem records have both primary and secondary index values, these rules apply 
separately to each index. 

e. EXAMPLE: These primary and secondary index values from adjacent DataItem records in the 
data array: 

[[1.0, 10.0], [1.0, 11.0], [2.0, 11.0], [3.0, 11.0], [3.0, 12.0]] 

MAY be sent as: 

[[1.0, 10.0], [null, 11.0], [2.0, null], [3.0, null], [null, 12.0]]. 

f. If ALL index values for a DataItem record are to be sent as null, the indexes field should be set to 
an empty array. 

6. For more information about sending channel data, see Section 6.1.3. 

Message Type ID: 2 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: producer 

Field Name Description Data Type Min Max 

data Contains the data points for channels, which is an 
array of DataItem records. Note that the value 
must be one of the types specified in DataValue 
(Section 23.30)—which include options to send a 
single data value (of various types such as 
integers, longs, doubles, etc.) OR arrays of 
values. 

For more information, see Section 6.1.3. 

DataItem 1 n 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelStreaming", 
     "name": "ChannelData", 
     "protocol": "1", 
     "messageType": "2", 
     "senderRole": "producer", 
     "protocolRoles": "producer,consumer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         {  
             "name": "data", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.ChannelData.DataItem" } 
         } 
     ] 
} 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 139 

6.3.5 Message: TruncateChannels 

A producer sends to a consumer to "reset" the maximum index used in the ChannelData message. It is 
an array of individual truncate commands where each command specifies a channel ID and the new end 
index for that channel.  

When a consumer receives this message, it MUST:  

 Reset the endIndex for the channel to the value specified in newEndIndex. 

 Delete or disregard any previously sent data points that were AFTER the previous endIndex.  

Use Case: A frequently occurring issue/error when collecting data in the oil field is often referred to as a 
"depth jump", which is when an index momentarily "jumps forward" (beyond the next expected index 
value) before being fixed and then the corrected streaming resumes. This type of issue must also be fixed 
in downstream consumers so that the indexes of the data subsequently streamed are in a logical order.  

Message Type ID: 5 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: producer 

Field Name Description Data Type Min Max 

channels Contains an array of TruncateInfo structures, 
which each indicate the channel ID and its new 
end index.  

TruncateInfo 1 n 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelStreaming", 
     "name": "TruncateChannels", 
     "protocol": "1", 
     "messageType": "5", 
     "senderRole": "producer", 
     "protocolRoles": "producer,consumer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         {  
             "name": "channels", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.ChannelData.TruncateInfo" } 
         } 
     ] 
} 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 140 

7 ChannelDataFrame (Protocol 2) 
ProtocolID: 2 

Defined Roles: store, customer 

A customer uses ChannelDataFrame (Protocol 2) to get channel data from a store in a row-orientated 
'frame' or 'table' of data. In oil and gas jargon, the general use case that Protocol 2 supports is typically 
referred to as getting a "historical log". (In ETP jargon you are actually getting a frame of data from a 
ChannelSet data object; for more information, see Section 7.1.1).  

With this protocol, a customer endpoint gets rows of data, where one row consists of a primary index 
value, all associated secondary index values from the ChannelSet’s secondary indexes, and all 
associated data and attribute values from the ChannelSet’s channels. Being able to retrieve data in a 
frame simplifies logic for customer role software applications when dealing with data as a "log" rather than 
individual channels. 

This protocol supports several use cases, including: 
 Exporting data from a store to an on-disk representation of a log. 

 Querying "aligned" data for calculations like mechanical specific energy (MSE).  

NOTES: 
1. Protocol 2 supports get/read functionality only. To put/write channel data for individual channels, use 

ChannelDataLoad (Protocol 22) (see Chapter 20); you CANNOT put "rows" in a channel set.  

2. This protocol SHOULD NOT be used to poll for realtime data. Instead use ChannelSubscribe 
(Protocol 21) (see Chapter 19) or for "simple streamers" use ChannelStreaming (Protocol 1) (see 
Chapter 6).  

3. ChannelDataFrame (Protocol 2) allows stores to introduce a delay between when they receive new 
channel data and when they make the data available for consumption using Protocol 2. This delay is 
intended to help ensure customers receive “complete” rows of data from a store because new data 
for channels in a channel set may arrive in the store at different times from different sources. 

This chapter includes main sections for:  
 Key ETP concepts that are important to understanding how this protocol is intended to work (see 

Section 7.1).   

 Required behavior, which includes: 

 Description of the message sequence for main tasks, along with required behavior, endpoint, 
data object and protocol capabilities usage, and possible errors (see Section 7.2.1).   

 Other functional requirements (not covered in the message sequence) including use of additional 
endpoint, data object, and protocol capabilities for preventing and protecting against aberrant 
behavior (see Section 7.2.2). 

- Definitions of the endpoint and protocol capabilities used in this protocol (see Section 7.2.3). 

 Sample schemas of the messages defined in this protocol (which are identical to the Avro schemas 
published with this version of ETP). However, only the schema content in this specification includes 
documentation for each field in a schema (see Section 7.3).  

7.1 ChannelDataFrame: Concepts 

This section explains concepts that are important to understanding how ChannelDataFrame (Protocol 2) 
works. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 141 

7.1.1 Channel, Channel Set, Log and Frame 

This section defines the concepts of channel, channel set, log and frame. The first 3 objects are also 
Energistics data objects (defined in ETP and/or WITSML)—Channel, ChannelSet and Log—which are 
named objects in a store, each uniquely identified by a URI. 

 A channel is a series of values, usually measured or calculated, that are referenced to one or more 
indexes, usually time or depth. Channel data is a tuple of index values, data values, and attribute 
values; ETP supports that a "data value" may actually be an array of data values. A channel can be 
thought of as a "column" of data points. For more detailed definition of channel, see Section 6.1.1. 

 A channel set is an Energistics construct and is used to group channels with a compatible primary 
index for some purpose; users of a system compose channel sets. A channel set may also include 
secondary indexes, when all channels in the channel set also have compatible secondary indexes. 
'Compatible' simply means that all of the channels in the set have the same kind of index (e.g., all 
time or all depth, or others as defined in ChannelIndexKind, see Section 23.33.2, are all primary or all 
secondary, all have the same unit, all have the same direction, and use a common datum (for depth 
indexes). ChannelDataFrame (Protocol 2) acts on ETP ChannelSets; use Protocol 2 to get data 
from multiple channels in a pre-specified channel set at a given index value, as a "row"; 
consecutive rows constitute the frame. 

 In ETP, a log is a container for one or more channel sets, where the channel sets are not required to 
have compatible indexes. That is, it is a set of sets that may have different index types. A log is 
represented by the Log data object; Logs are composed by users. Note that the ETP approach differs 
from the traditional definition (e.g., in WITSML v1.x) where a log is analogous to a channel set. 
Because an ETP Log is a "set of sets" that may have different types of indexes, Protocol 2 
works only on ETP ChannelSets. 

7.1.2 Support for Secondary Indexes 

ETP provides support for secondary indexes both on channels and channel sets. As stated in Section 
6.1.1.1, support for secondary indexes is optional, advanced functionality, but if a store supports write 
operations, it MUST support at least one secondary index on a channel or channel set data object.  

The IndexMetadataRecord record (Section 23.33.6) is used to provide important metadata about both 
primary and secondary indexes. When used for secondary indexes:  

 The direction field MUST be populated based on the order that secondary index values will appear 
when data is ordered by the primary index. For example, if a secondary index’s values will be 
monotonically increasing when direction for the primary index is Decreasing, direction for the 
secondary index would be Increasing. If secondary index values are unordered when data is ordered 
by the primary index, the direction field for the secondary index MUST be se to Unordered. 

 The optional filterable field MAY be set to true, which allows an endpoint to specify if a particular 
secondary index can be filtered on in various request messages in some ETP sub-protocols. 

If an index is filterable, then the customer endpoint can use it to filter on GetFrame requests in this sub-
protocol.  

The GetFrame request includes these fields for using secondary indexes:  

 includeAllChannelSecondaryIndexes. Flag that allows the customer to request that secondary 
indexes from Channel data objects that are NOT secondary indexes in the containing ChannelSet 
data object be included in the response.  

NOTE: Some of these secondary indexes from Channel data objects may have null values. 

 requestedSecondaryIntervals. (Optional) For channels/channel sets that indicate an index is 
"filterable" (i.e., the filterable field on the IndexMetadataRecord is set to true) this option allows the 
customer to request that results be filtered on secondary indexes.  

This is an array of the secondary intervals (as defined in IndexInterval) on which the customer wants 
to filter.  

file:///C:/Users/Donna%20Marcotte/Documents/Energistics%202017/2017/ETP%202017-2018/2020/ETP%20Spec/$element:/%7b223A2A92-1C51-4398-8EDC-A630C4763884%7d


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 142 

EXAMPLE: If your primary interval is time, this field could be a depth interval on which filtering is 
being requested.  

7.2 ChannelDataFrame: Required Behavior 

This section contains functional and non-functional requirements for this protocol. It is organized in these 
sub-sections: 

 Message Sequence. Summarizes all messages defined by this protocol, identifies main tasks that 
can be done with this protocol and describes the response/request pattern for the messages needed 
to perform the tasks, including usage of ETP-defined capabilities, error scenarios, and resulting ETP 
error codes.  

 General Requirements. Identifies high-level (across ETP) and protocol-wide general behavior and 
rules that must be observed (in addition to behavior specified in Message Sequence), including usage 
of ETP-defined endpoint, data object and protocol capabilities, error scenarios, and resulting error 
codes.  

 Capabilities. Lists and defines the ETP-defined parameters most relevant for this sub-protocol. ETP 
defines these parameters to set necessary limits to help prevent aberrant behavior (e.g., sending 
oversized messages or sending more messages than an endpoint can handle).  

Prerequisites for using this protocol:  
 An ETP session has been established using Core (Protocol 0) as described in Chapter 5. 

 Customer must have the URIs of the ChannelSet data objects it's interested in; these URIs are 
typically found using Discovery (Protocol 3) (Chapter 8). (They may also come "out of band" of ETP, 
for example, by email.) 

- If the ChannelSet data object for the desired set of channels does not exist, the customer must 
create it using Store (Protocol 4).  

7.2.1 ChannelDataFrame: Message Sequences 

This section explains the basic message sequence for main tasks to be done using this protocol and 
includes related key behaviors and possible errors. The following General Requirements section provides 
additional requirements and rules for how this protocol works.   

The following table lists all messages defined in this sub-protocol, the basic request/response usage 
patterns per ETP role, and whether it may be multipart. The detailed content of each message is 
explained in the Message Schema section. 

ChannelDataFrame (Protocol 2): 
Basic Message-Response flow by ETP Role 

Message (sent by customer) Response Message (sent by store) 

GetFrameMetadata (optional): Request to get in ETP format 
the list of indexes and channels that compose a frame 
(ChannelSet). 

GetFrameMetadataResponse (multipart): The relevant list of 
indexes and channels that define the frame for the entire 
ChannelSet. 

GetFrame: Request for a frame of data from an existing 
channel set. 

GetFrameResponseHeader (multipart): The FIRST response 
to the GetFrame message; it specifies the channel IDs (the 
"column headings" or position in a row) for the subsequent 
rows of data that the store will return in one or more 
GetFrameResponseRows messages. 

GetFrameResponseRows (multipart): Contains a "frame", 
which is an array of one or more rows of data whose "column 
headings" are specified in the corresponding 
GetFrameResponseHeader message. 

CancelGetFrame: Request to stop sending data for a 
previous GetFrame request. 

A final GetFrameResponseRows message with the FIN bit 
set. 

 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 143 

7.2.1.1 To get row-oriented frames of data 
1. Optionally, a customer sends a store a GetFrameMetadata message (Section 7.3.5) with the URI of 

the channel set to get frame metadata for.  

a. Purpose of this message: to get in ETP format the list of indexes and channels that compose 
the ChannelSet from which the customer wants to get a frame.  

b. The message is optional because the customer may already have the information needed to 
retrieve a frame, e.g., out-of-band of the ETP session. 

2. If the store successfully returns frame metadata for the channel set URI, it MUST send one or more 
GetFrameMetadataResponse messages (Section 7.3.6), each of which contains arrays of index 
and/or frame channel metadata.  

a. Purpose of this message: Provides the relevant list of indexes and channels that define the 
frame for the entire ChannelSet data object. 

3. If the store does NOT successfully return frame metadata, it MUST send a non-map 
ProtocolException message with an appropriate error, such as EREQUEST_DENIED (6). 

4. The customer sends a store the GetFrame message (Section 7.3.1).  

a. Purpose of this message: The request for the store to send row-oriented 'frames' (tables) of 
data for an existing ChannelSet data object.  

b. The GetFrame message provides options for filtering data including support for secondary 
indexes. For more information, see Section 7.1.2. 

5. If the store has no data that fulfills the request, it MUST respond with one of these: 

a. An "empty" GetFrameResponseHeader message, with the FIN bit set. 

b. A GetFrameResponseHeader message and a GetFrameResponseRows message with the 
frame field set to an empty array and the FIN bit set. 

6. If the store returns frame data for the request, it MUST: 

a. Respond FIRST by sending a GetFrameResponseHeader message (Section 7.3.2), which 
specifies the URIs of each Channel in the ChannelSet in the order that data points will be 
returned in each subsequent row of data (sent in one or more GetFrameResponseRows 
messages) and the index metadata for the index values in the frame, in the order that the index 
values will be returned in each row of data. 

b. Subsequently send GetFrameResponseRows messages (Section 7.3.3) for the rows of data.  

i. The store MUST include any new or changed channel data in responses to GetFrame 
message requests no later than the store's value for the FrameChangeDetectionPeriod 
endpoint capability, after the data is changed or added. (In other words, updates to channels 
are not guaranteed to be visible in responses in less than this time.) 

ii. The store MUST limit the total count of rows returned in response to a request to the 
customer's value for the MaxFrameResponseRowCount protocol capability.  

1. The customer MAY notify the store of responses that exceed this limit by sending error 
ERESPONSECOUNT_EXCEEDED (30). 

2. If the store's value for MaxFrameResponseRowCount protocol capability is smaller than 
the customer's value, then the store MAY further limit the total count of rows to its value 
for MaxFrameResponseRowCount protocol capability. 

iii. If the store cannot send all rows in response to the request because it would exceed the 
lower of the customer's or the store's MaxFrameResponseRowCount value, it MUST send 
error ERESPONSECOUNT_EXCEEDED (30) to terminate the response. 

1. The store MUST NOT send error ERESPONSECOUNT_EXCEEDED (30) until it has sent 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 144 

the maximum allowed rows in response to the customer's request. 

c. The multipart response to one GetFrame request is composed of the 
GetFrameResponseHeader and all subsequent GetFrameResponseRows messages and, if an 
error occurs, a ProtocolException message. 

i. The "FIN bit" (0x02 flag in the message header) MUST be set on the last message of the 
multipart response; that last message may be either a GetFrameResponsesRows message 
or a ProtocolException message. 

ii. For more information on required behavior for multipart responses and requests, see Section 
3.7.3.1. 

7. If the store does NOT successfully return frame data or an empty positive response, it MUST send a 
non-map ProtocolException message with an appropriate error, such as EREQUEST_DENIED (6). 

a. If in the GetFrame message, the customer requests that data be filtered by secondary index 
values and the store's value for SupportsSecondaryIndexFiltering protocol capability is false or 
the filterable field on the IndexMetadataRecord record for the secondary index is false, the store 
MUST deny the request and send error ENOTSUPPORTED (7). 

7.2.1.2 To cancel a GetFrame operation 
1. The customer MUST send to the store a CancelGetFrame message (Section 7.3.4), which includes 

the request UUID (requestUuid) of the GetFrame operation to be cancelled.  

2. If the store has not already finished responding to the request that is being canceled, the store MUST: 

a. Send a final GetFrameResponsesRows message with the FIN bit set; this final message MAY 
be empty (i.e. have the frame field set to an empty array).   

b. Stop sending GetFrameResponsesRows messages for the specified request operation. 

7.2.2 ChannelDataFrame: General Requirements 

In addition to the basic message sequence described in the previous section, this protocol has the 
additional requirements listed in the table below. For easy reference, the rows and behaviors in this table 
are numbered. 

NOTE: This table has been organized to reduce redundancy but also to help developers more easily 
locate specific requirements. EXAMPLE: There are rows with general requirements that apply to all 
protocols (e.g., Rows 1–2), rows for general requirements for this protocol, and (possibly) some rows with 
additional requirements for specific types of operations. 

Row
# 

Requirement Behavior 

1.  ETP-wide behavior that must be 
observed in all protocols 

1. Requirements for general behavior consistent across all of ETP are 
defined in Chapter 3. This behavior includes information such as: all 
details of message handling (such as message headers, handling 
compression, use of message IDs and correlation IDs, requirements 
for plural and multipart message patterns) use of acknowledgements, 
general rules for sending ProtocolException messages, URI 
encoding, serialization and more. RECOMMENDATION: Read 
Chapter 3 first. 

2. For information about Energistics identifiers and prescribed ETP URI 
formats, see Appendix: Energistics Identifiers. 

a. In MOST cases, endpoints performing operations in this 
protocol MUST use the canonical Energistics URI. For more 
information, see Section 3.7.4. 

3. For the complete list of error codes defined by ETP, see Chapter 24. 

4. ALL operations in an ETP session are performed on the set of 
supported data object types that were negotiated to be used 
when the session was initiated and established. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 145 

Row
# 

Requirement Behavior 

a. The client and server exchange the list of data object types in 
the supportedDataObjects field of the RequestSession and 
OpenSession messages in Core (Protocol 0). For more 
information, see Chapter 5. 

b. In general, the list of supported objects for a session will most 
likely be the intersection of the data objects that the server 
supports and the data objects that the client requested for the 
ETP session. 

c. A store MUST support all messages (in each ETP sub-protocol) 
for each supported data object, whether the data object is 
supported explicitly or by wild card. 

d. An endpoint MUST only send messages with the URI of a data 
object that is a type supported by the other endpoint for this 
ETP session.  

i. If an endpoint sends a URI for an unsupported type of data 
object, the other endpoint MUST send error 
EDATAOBJECTTYPE_NOTSUPPORTED (16). 

2.  Capabilities-related behavior 1. Relevant ETP-defined endpoint, data object, and/or protocol 
capabilities MUST be specified when the ETP session is established 
(see Chapter 5) and MUST be used/honored as defined in the 
relevant ETP sub-protocol.  

2. For an explanation of endpoint, data object, and protocol capabilities, 
see Section 3.3. 

b. For the list of global capabilities and related behavior, see 
Section 3.3.2. 

3. The capabilities listed in Section 7.2.3 MUST BE used in this ETP 
sub-protocol. Additional details for how to use the protocol 
capabilities are included below in this table and in Section 7.2.1 
ChannelDataFrame: Message Sequence. 

3.  Message Sequence 

See Section 7.2.1. 

1. The Message Sequence section above (Section 7.2.1) describes 
requirements for the main tasks listed there and also defines required 
behavior. 

4.  Plural Messages (which includes maps) 1. This protocol uses plural messages. For detailed rules on handling 
plural messages (including ProtocolException handling), see Section 
3.7.3. 

5.  Do NOT use this protocol for realtime 
streaming 

1. This protocol SHOULD NOT be used to poll for realtime data. Instead 
use ChannelSubscribe (Protocol 21) (see Chapter 19) or for "simple 
streamers" use ChannelStreaming (Protocol 1) (see Chapter 6). 

6.  Channel order in messages 1. The order of the channels in each row of the 
GetFrameResponsesRows message MUST be the same as the 
order specified in the GetFrameResponseHeader message. 

2. The position (array index) of each channel in the 'points' array in 
FrameRow MUST be the same in each message of the multipart 
response. Position/Channel mapping is indicated by the 
channelURI's array.  

a. Unlike channel data in ETP (which MUST NOT have null 
values), a FrameRow MAY have null values (i.e., if a channel 
that composes the row has no data value at a specific index).  

7.  Rows include ALL channels in a channel 
set 

1. There is no mechanism to 'subset' the channels. This protocol 
returns ALL data for all channels for a given Channel Set. 

a. To get a subset of channels, you must create a ChannelSet 
data object that contains only the desired Channel data objects, 
using Store (Protocol 4) (see Chapter 9).  

8.  Indexes in rows 1. When the includeAllChannelSecondaryIndexes field in the GetFrame 
message is false, each row MUST contain an index value for the 

file:///C:/Users/dmarcotte/Desktop/$element:/%7b7C259463-A798-4898-8DD6-6E95245717B2%7d


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 146 

Row
# 

Requirement Behavior 

primary index and each secondary index in the frame’s channel set. 
In this case, index values MUST NOT be null.  

a. The index values in each row are in the same order as their 
corresponding IndexMetadataRecord records in the 
GetFrameResponseHeader message, and the primary index is 
always first. 

2. When includeAllChannelSecondaryIndexes is false, each row MUST 
contain an index value for the primary index and each secondary 
index of each channel in the channel set.  

a. There should only be one value per ‘compatible’ index.  

b. The index values in each row are in the same order as their 
corresponding IndexMetadataRecord records in the 
GetFrameResponseHeader message, and the primary index is 
always first. 

c. Secondary index values MUST NOT be null for secondary 
indexes that are secondary indexes on the channel set.  

d. Secondary index values MAY be null for secondary indexes that 
are not secondary indexes on the channel set.  

9.  Index Metadata 1. When sending messages, both the store AND the customer MUST 
ensure that all index metadata and data derived from index metadata 
are consistent in all fields in the message. 

a. EXAMPLE: The uom and depthDatum in an IndexInterval 
record MUST be consistent with the channel set’s frame index 
metadata. 

b. A store MUST reject requests with inconsistent index metadata 
with an appropriate error such as EINVALID_OBJECT (14) or 
EINVALID_ARGUMENT (5). 

10.  Row order for responses 1. Rows MUST be sent in primary index order for the frame, both within 
one message and across multiple messages. Primary index order is 
always as appropriate for the index direction of the frame’s primary 
index (i.e., increasing or decreasing). 

 

7.2.3 ChannelDataFrame: Capabilities 

The table below lists key capabilities for this protocol. The protocol capabilities are all defined here.  

 For protocol-specific behavior relating to using these capabilities in this protocol, see Sections 
7.2.1◦ChannelDataFrame: Message Sequences and 7.2.2 ChannelDataFrame: General 
Requirements. 

 For definitions for endpoint and data object capabilities, see the links in the table. 

 For general information about the types of capabilities and how they may be used, see Section 3.3. 

ChannelDataFrame (Protocol 2): Capabilities 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

Endpoint Capabilities  

(For definitions of each endpoint capability, see Section 3.3.) 

   

NOTE: Many endpoint capabilities are "universal", used in all or 

most of the ETP protocols. For more information, see Section 
3.3.2. 

Behavior associated with other endpoint capabilities are 
defined in relevant chapters.  

   



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 147 

ChannelDataFrame (Protocol 2): Capabilities 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

EXAMPLE: The capabilities defined for limiting ETP 
sessions between 2 endpoints are discussed in 
Section 4.3, How a Client Establishes a WebSocket 

Connection to an ETP Server. 

Protocol Capabilities    

FrameChangeDetectionPeriod: The maximum time period in 

seconds for updates to a channel to be visible in 
ChannelDataFrame (Protocol 2). 

Updates to channels are not guaranteed to be visible in responses 
in less than this period. (EXAMPLE: If your requested range 

includes rows that just received new data, the store may not return 
those rows. The store may be allowing time to potentially receive 
additional values for the rows before including them in responses.)  

The intent for this capability is that ChannelDataframe rows are 
complete, and not 'partially updated'. ChannelDataFrame (Protocol 
2) should not be used to poll for realtime data. 

long seconds 
<number of 
seconds> 

Default: 60 

Min: 1 

Max: 600 

MaxFrameResponseRowCount: The maximum total count of 

rows allowed in a complete multipart message response to a single 
request. 

Long count 
<count of rows> 

MIN: 100,000 

SupportsSecondaryIndexFiltering: Indicates whether an 

endpoint supports filtering requested data by secondary index 
values. If the filtering can be technically supported by an endpoint, 
this capability should be true. 

Boolean N/A N/A 

 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 148 

7.3 ChannelDataFrame: Message Schemas 

This section provides a figure that displays all messages defined in ChannelDataFrame (Protocol 2). 
Subsequent sub-sections provide an example schema for each message and definitions of the data fields 
contained in each message. 

 
Figure 12: ChannelDataFrame: message schemas 

7.3.1 Message: GetFrame 

A customer sends to a store to request a frame of data from one existing ChannelSet data object. This 
message has 2 types of response messages: 

 a single GetFrameResponseHeader message, which MUST be sent first. 

 zero or more GetFrameResponseRows messages, which contain an array of rows of data that fulfill 
the request. 

Message Type ID: 3 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

uri The URI of the ChannelSet data object from 
which you want to retrieve "rows" of data.  

If both endpoints support alternate URIs for the 
session, this MAY be an alternate URI. 
Otherwise, this MUST be a canonical 
Energistics data object URI. For more 
information, see Appendix: Energistics 
Identifiers. 

string 1 1 

class ChannelDataFrame

«Message»
GetFrame

+ includeAl lChannelSecondaryIndexes : boolean = fa lse
+ requestedInterva l : IndexInterva l
+ requestedSecondaryInterva ls : IndexInterva l  [0..*] (array) = EmptyArray
+ requestUuid: Uuid
+ uri : s tring

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 3
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store to request a frame of data from one existing
ChannelSet data object.  This message has 2 types of response messages:
- a single GetFrameResponseHeader message, which MUST be sent first.
- zero or more GetFrameResponseRows messages, which contain an array of
rows of data that fulfill the request.

«Message»
GetFrameResponseHeader

+ channelUris : s tring [1..*] (array)
+ indexes : IndexMetadataRecord [1..*] (array)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 4
MultiPart = True
SenderRole = s tore

notes
A store MUST send to a customer as the FIRST response
to the GetFrame message.  This message contains an
array the channel IDs (the "column headings" or position
in a row) for the subsequent rows of data that the store
will return in one or more GetFrameResponseRows
messages.
The store MUST send this header message first (before
any row messages).

«Message»
GetFrameResponseRows

+ frame: FrameRow [1..*] (array)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 6
MultiPart = True
SenderRole = s tore

notes
A store MUST send zero or more to a customer in response to a
GetFrame message. It contains a "frame", which is an array of one or
more rows of data whose "column headings" are specified in the
corresponding GetFrameResponseHeader message.
The order of the channels in each row MUST be the same as the order
specified in the GetFrameResponseHeader message.

«Message»
CancelGetFrame

+ requestUuid: Uuid

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 5
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store to stop sending data for a
previous GetFrame request.

«Message»
GetFrameMetadata

+ includeAl lChannelSecondaryIndexes : boolean = fa lse
+ uri : s tring

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 1
MultiPart = Fa lse
SenderRole = customer

notes
Optional message sent from customer to store to get in ETP
format the list of indexes and channels that compose a frame
(ChannelSet). The message is optional because the customer
may already have the information needed to retrieve a frame
(for example, the customer may have received it out-of-band of
the ETP session).
The response to this message is the
GetFrameMetadataResponse message.

«Message»
GetFrameMetadataResponse

+ channels : FrameChannelMetadataRecord [1..*] (array)
+ indexes : IndexMetadataRecord [1..*] (array)
+ uri : s tring

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 2
MultiPart = True
SenderRole = s tore

notes
A store MUST send to a customer in response to the
GetFrameMetadata message, with the relevant array of
channels and indexes that define the frame for the entire
ChannelSet.



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 149 

Field Name Description Data Type Min Max 

includeAllChannelSecondaryIndexes Flag that allows the customer to request that 
secondary indexes from Channel data objects 
that are NOT secondary indexes in the 
containing ChannelSet data object be included 
in the response.  

NOTE: Some of these secondary indexes from 
Channel data objects may have null values.  

boolean 1 1 

requestedInterval The interval of the ChannelSet data object over 
which data is being requested as specified in 
IndexInterval, which includes the start and end 
indexes (that define the interval) and The units 
and depth datum MUST match those in the 
IndexMetadataRecord for the channel set’s 
primary index. The start and end indexes are 
INCLUSIVE.  

IndexInterval 1 1 

requestUuid A UUID assigned to this request by the 
customer. If the customer later must cancel this 
request, it refers to this requestUuid in the 
CancelGetFrame message. Must be of type 
Uuid (Section 23.6). 

Uuid 1 1 

requestedSecondaryIntervals (Optional) For channels/channel sets that 
indicate an index is "filterable" (i.e., the 
filterable field on the IndexMetadataRecord is 
set to true) this option allows the customer to 
request that results be filtered on secondary 
indexes.  

This is an array of the secondary intervals (as 
defined in IndexInterval) on which the customer 
wants to filter.  

EXAMPLE: If your primary interval 
(requestedInterval field above) is time, this field 
could be a depth interval on which filtering is 
being requested.  

IndexInterval 0 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelDataFrame", 
     "name": "GetFrame", 
     "protocol": "2", 
     "messageType": "3", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "uri", "type": "string" }, 
         { "name": "includeAllChannelSecondaryIndexes", "type": "boolean", "default": false }, 
         { "name": "requestedInterval", "type": 
"Energistics.Etp.v12.Datatypes.Object.IndexInterval" }, 
         { "name": "requestUuid", "type": "Energistics.Etp.v12.Datatypes.Uuid" }, 
         { 
             "name": "requestedSecondaryIntervals", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.Object.IndexInterval" }, "default": [] 
         } 
     ] 
} 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 150 

7.3.2 Message: GetFrameResponseHeader 

A store MUST send to a customer as the FIRST response to the GetFrame message. This message 
contains an array the channel IDs (the "column headings" or position in a row) for the subsequent rows of 
data that the store will return in one or more GetFrameResponseRows messages.  

The store MUST send this header message first (before any row messages).  

Message Type ID: 4 

Correlation Id Usage: MUST be set to the messageId of the GetFrame message that this message is a 
response to. 

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

channelUris An array of channel URIs that indicates the 
position of each channel in the response 
FramePoints array in FrameRow (i.e., it specifies 
the "column headings" for each subsequent "row" 
returned.)  

These MUST be canonical Energistics data object 
URIs; for more information, see Appendix: 
Energistics Identifiers. 

string 1 * 

indexes An array of IndexMetadataRecord records, with 
metadata for the data indexes in the frame, in the 
order in which they will appear in the frame. The 
record for the primary index MUST always be the 
first record in the array. 

IndexMetadataRecord 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelDataFrame", 
     "name": "GetFrameResponseHeader", 
     "protocol": "2", 
     "messageType": "4", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         {  
             "name": "channelUris", 
             "type": { "type": "array", "items": "string" } 
         }, 
         {  
             "name": "indexes", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.ChannelData.IndexMetadataRecord" } 
         } 
     ] 
} 

  

7.3.3 Message: GetFrameResponseRows 

A store MUST send zero or more to a customer in response to a GetFrame message. It contains a 
"frame", which is an array of one or more rows of data whose "column headings" are specified in the 
corresponding GetFrameResponseHeader message.  

The order of the channels in each row MUST be the same as the order specified in the 
GetFrameResponseHeader message. 

Message Type ID: 6 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 151 

Correlation Id Usage: MUST be set to the messageId of the GetFrame message that this message is a 
response to. 

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

frame An array of rows with each row containing the 
content defined in FrameRow. 

FrameRow 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelDataFrame", 
     "name": "GetFrameResponseRows", 
     "protocol": "2", 
     "messageType": "6", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         {  
             "name": "frame", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.ChannelData.FrameRow" } 
         } 
     ] 
} 

  

7.3.4 Message: CancelGetFrame 

A customer sends to a store to stop sending data for a previous GetFrame request.  

Message Type ID: 5 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

requestUuid The UUID (assigned by the customer in the 
GetFrame message) of the request that is being 
canceled. Must be of type Uuid (Section 23.6). 

Uuid 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelDataFrame", 
     "name": "CancelGetFrame", 
     "protocol": "2", 
     "messageType": "5", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "requestUuid", "type": "Energistics.Etp.v12.Datatypes.Uuid" } 
     ] 
} 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 152 

7.3.5 Message: GetFrameMetadata 

Optional message sent from customer to store to get in ETP format the list of indexes and channels that 
compose a frame (ChannelSet). The message is optional because the customer may already have the 
information needed to retrieve a frame (for example, the customer may have received it out-of-band of the 
ETP session). 

The response to this message is the GetFrameMetadataResponse message.  

Message Type ID: 1 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

uri The URI of a channel set (ChannelSet) (or any 
other Energistics domain data object that can 
describe a "frame").  

If both endpoints support alternate URIs for the 
session, this MAY be an alternate URI. 
Otherwise, this MUST be a canonical 
Energistics data object URI. For more 
information, see Appendix: Energistics 
Identifiers. 

string 1 1 

includeAllChannelSecondaryIndexes Flag that allows the customer to request that 
secondary indexes from Channel data objects 
that are NOT secondary indexes in the 
containing ChannelSet data object be included 
in the response. 

boolean 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelDataFrame", 
     "name": "GetFrameMetadata", 
     "protocol": "2", 
     "messageType": "1", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "uri", "type": "string" }, 
         { "name": "includeAllChannelSecondaryIndexes", "type": "boolean", "default": false } 
     ] 
} 

  

7.3.6 Message: GetFrameMetadataResponse 

A store MUST send to a customer in response to the GetFrameMetadata message, with the relevant 
array of channels and indexes that define the frame for the entire ChannelSet.  

Message Type ID: 2 

Correlation Id Usage: MUST be set to the messageId of the GetFrameMetadata message that this 
message is a response to. 

Multi-part: True 

Sent by: store 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 153 

Field Name Description Data Type Min Max 

uri The URI of a channel set (ChannelSet data 
object) (or any other Energistics domain data 
object that can describe a "frame").  

This MUST be a canonical Energistics data object 
URI; for more information, see Appendix: 
Energistics Identifiers. 

string 1 1 

indexes An array of IndexMetadataRecords for each 
channel that composes the frame. The record for 
the primary index MUST always be the first record 
in the array. 

IndexMetadataRecord 1 * 

channels An array of metadata for each channel (as defined 
in FrameChannelMetadataRecord) that comprises 
the frame.  

FrameChannelMetadataRecord 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelDataFrame", 
     "name": "GetFrameMetadataResponse", 
     "protocol": "2", 
     "messageType": "2", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { "name": "uri", "type": "string" }, 
         {  
             "name": "indexes", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.ChannelData.IndexMetadataRecord" } 
         }, 
         {  
             "name": "channels", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.ChannelData.FrameChannelMetadataRecord" } 
         } 
     ] 
} 

  

 
 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 154 

8 Discovery (Protocol 3) 
ProtocolID: 3 

Defined Roles: store, customer 

Customers of a store use Discovery (Protocol 3) to enumerate and understand the contents of a store. 
The store represents a database or storage of data object information; Discovery uses Energistics domain 
data models to navigate the store as a graph. (For more information on graph concepts and how this 
works in ETP, see Section 8.1).  

IMPORTANT! The main benefit of data model as graph is the ability to efficiently and precisely identify—
often with a single request—the set of data objects that you are interested in. For more information on 
graphs and how ETP design leverages them, see Section 8.1.1. 

In Discovery, a customer and a store exchange discrete request and response messages that allow the 
customer application to request information and "walk the graph" to discover the store's content, which 
includes the data objects (nodes on the graph) and the relationships between them (the edges between 
the nodes).  

Since the previous version of ETP, Discovery (Protocol 3) has been significantly redesigned with the 2 
main goals of the redesign being: 

 A single discovery protocol that works consistently across all Energistics domain models. 

 The ability to reduce the number of messages required (i.e. reduce the back and forth between 
endpoints) to get all data objects of interest, thereby reducing traffic on the wire.  

Additionally, Discovery (Protocol 3) contains messages for discovering deleted resources. This and other 
behavior defined here are functionality required to support workflows for eventual consistency between 2 
stores.  

Other ETP sub-protocols that may be used with Discovery (Protocol 3): 
 If more than one dataspace exists on an endpoint and a customer needs to navigate dataspaces to 

find a particular store, the customer MUST use Dataspaces (Protocol 24) (see Chapter 21).  

- When the customer finds the particular dataspace it wants, then the customer MUST use 
Discovery (Protocol 3) to discover and enumerate the content of the dataspace. NOTE: ETP 
stores MUST always have a default dataspace; for more information, see Section 8.2.2. 

 If a customer wants to dynamically discover a store's data model (i.e., understand what object types 
are possible in the store at a given location whether or not there is any data in the store), without prior 
knowledge of the overall data model and graph connectivity, the customer MUST use 
SupportedTypes (Protocol 25) (see Chapter◦22).  

 To filter on property values within a data object, use DiscoveryQuery (Protocol 13) (see Chapter 15). 
This includes discovery of planned vs. actual objects; for more information, see Section 8.2.2.  
NOTE: For some widely used use cases, the GetResources message in Discovery (Protocol 3) 
provides a few filters at the message level; see Section 8.2.1.1.  

 For information about workflows for eventual consistency between stores, see Appendix: Data 
Replication and Outage Recovery Workflows. 

This chapter includes main sections for:  
 Key ETP concepts that are important to understanding how this protocol is intended to work (see 

Section 8.1).   

 Required behavior, which includes: 

 Description of the message sequence for main tasks, along with required behavior and possible 
errors (see Section 8.2.1).  

 Other required behavior (not covered in the message sequence) including use of capabilities for 
preventing and protecting against aberrant behavior (see Section 8.2.2). 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 155 

- Definitions of the key endpoint and protocol capabilities used in this protocol (see Section 8.2.3). 

 Sample schemas of the messages defined in this protocol (which are identical to the Avro 
schemas published with this version of ETP). However, only the schema content in this specification 
includes documentation for each field in a schema (see Section 8.3).  

8.1 Discovery: Key Concepts 

This section explains concepts that are important to understanding how Discovery (Protocol 3) works.  

8.1.1 Data Model as a Graph 

Discovery (Protocol 3) has been developed to work with data models as graphs. This section provides a 
general definition of a graph and how it works, and identifies key concepts, which are used as inputs for a 
customer to formulate a discovery request.  

IMPORTANT! When understood and used properly, these inputs allow customers to specify precisely the 
desired set of objects in a single request, thereby reducing traffic on the wire. Conversely, if the graph 
concepts are not understood and not used properly, related operations will be highly inefficient.  

A graph is a mathematical structure used to model pairwise relations between objects 
(https://en.m.wikipedia.org/wiki/Graph_theory). In this context, a graph is made up of nodes (which are 
also called points or vertices) and the lines (also called links or edges) that connect the nodes (Figure 
13).  

In some instances, the "direction" of the lines in the graph (which node points to another node) is not 
relevant; these are referred to as undirected graphs (Figure 13, left). In other graphs, the direction is 
important; these are referred to as directed graphs (Figure 13, right).  

 
Figure 13: Examples of graphs: left image is an undirected graph and right image is a directed graph.  

8.1.1.1 Energistics Data Models 
For Energistics: 

 Nodes represent data objects in a data model (WITSML, RESQML, PRODML or EML (i.e., 
Energistics common) (For the definition of data object, see Section 25.1).  

 Lines (directed links between nodes) represent relationships between those data objects. A data 
object can have multiple distinct references to other data objects (as specified in the various domain 
models).  

For example, a wellbore may reference the well it is in and may reference multiple channels of data 
and/or channel sets of data collected about the wellbore. Or a 3D grid may reference hundreds of 
properties, and reference the faults and horizons used to derive the grid structure.  

In some instances, a graph may have an obvious structure, for example a graph can be a tree or 
hierarchy, such as the traditional well, wellbore, log hierarchy. But in other cases, such as earth and 
reservoir modeling, objects may be in many-to-many relationships, so often there is no obvious "structure" 
or pattern (beyond the relationships). Figure 14 shows how a set of data objects and the relationships 
among them form a directed multigraph. 

https://en.m.wikipedia.org/wiki/Graph_theory


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 156 

 

Figure 14: A set of data objects and the relationships among them form a directed multigraph.  

8.1.1.1.1 Links and Relationships: Sources and Targets 
The "direction" of links in some Energistics data models is relevant and is used in the Discovery protocol. 
Figure 15 shows a directed link between nodes A and C, which represents a relationship between data 
object A and data object C.  

 

Figure 15: Node C is the "target" of the directed link from A to C; node A is the "source" of the directed link 
from A to C. 

In graph theory terminology: 
 Data object A is the “source” of the directed link from A to C. 

 Data object C is the “target” of the directed link from A to C. 

 By extension, data object A is the “source” of the relationship between A and C.  

Relationships in Energistics data models are specified using 2 main constructs:  
 eml:DataObjectReference (DOR)  

 ByValue containment 

In general, these rules apply for specifying sources and targets:  
 For DORs, the data object that contains the DOR is the source, and the object that it "points to" is the 

target. RECOMMENDATION: DORs should be to one or more data objects in the SAME dataspace. 
Technically, DORs do not prohibit referencing a data object in another dataspace (i.e., a URI to the 
data object can be specified). However, some aspects of ETP functionality (e.g., notifications) may 
not work as designed.   

 For ByValue containment, a contained object is the source, and the "container" is the target.  

NOTES:  
1. The “source” of a relationship between two data objects may be ML-specific.  

2. For more information on these topics, see the relevant ML's ETP implementation specification. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 157 

Figure 16 is a more complex example of sources and targets relative to node C.  

                        

Sources are nodes with directed links to C.               Targets are nodes with directed links from C. 

Nodes A and G are sources of C.                                Nodes B, D and F are targets of C. 
C is the target of these relationships.                          C is the source of these relationships 

Figure 16: More examples of targets and sources relative to node C. 

8.1.1.1.2 Types of Relationships: Primary and Secondary 
Energistics defines these types of relationships between data objects:  

 Primary: Primary relationships are the “most important” relationships between data objects. For 
example, primary relationships may be used to organize or group data objects, such as organizing 
Channels into ChannelSets or organizing ChannelSets into Logs. In some cases, all relationships 
between data objects are important so all relationships are primary. Common characteristics of a 
primary relationship: 

 One end of the relationship is mandatory; that is, one object cannot exist (as a data object in the 
system) without the other. In the above example: A ChannelSet cannot exist without at least 1 
Channel. 

- Relationships where one data object "contains" one or more other data objects (i.e., a by-value 
relationship), indicated with the ByValue construct in XML, such as ChannelSets containing 
Channels. 

 Secondary: Secondary relationships are “less important” relationships between data objects and may 
provide additional contextual information about a data object to improve understanding. For example, 
the reference from a Channel to a Wellbore. Common characteristics of a secondary relationship:  

 Both ends of the relationships are optional. 

 GENERAL RULE: ML-specific rules determine whether a relationship is primary or secondary. The 
ML rules to apply are determined by one of the data objects in the relationship.  

 In the case of relationships based on DORs, the type of relationship is determined by the ML of 
the data object that has the DOR.  

 In the case of by-value relationships, the relationship type is determined by the ML of the data 
object containing other data objects by value.  

EXAMPLES:  
A WITSML v2.0 ChannelSet contains WITSML v2.0 Channels by value and a ChannelSet has a 
DOR pointing to a WITSML Wellbore. So the WITSML rules determine whether the relationships 
between ChannelSet and Wellbore and ChannelSet and Channel are primary or secondary. 
A RESQML v2.0.1 obj_WellboreFeature has a DOR pointing to a WITSML Wellbore, so the 
RESQML rules determine whether the relationship between an obj_WellboreFeature and a 
Wellbore is primary or secondary.  

 NOTES:  
1) For the ML-specific rules on which relationships are primary and which are secondary, see the ML-
specific ETP implementation guide. 
2) Future versions of the ML data models will label the type or relationship (Primary or Secondary). 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 158 

8.1.1.1.3 How to Use this Information in Discovery (Protocol 3) 
Based on the notion of data model as a graph, the GetResources message (see Section 8.3.1) was 
designed so the customer, using a single message, can specify relevant criteria for a discovery operation, 
for a very specific set of nodes (data objects) and optionally edges (relationships). This relevant criteria 
includes: 

 context, which includes: 

 Starting position in the data model (which node) as specified by its URI (uri) 

 How many "levels" from that starting node the operation should explore (depth).  

 Which types of data objects to include (dataObjectTypes) 

 Which type of relationship, Primary or Secondary, to navigate (navigableEdges) 

 Whether to include an additional set of secondary targets and/or sources in the operation 
(includeSecondaryTargets, includeSecondarySources)  

 Which "direction" in the graph that the operation should proceed (targets or sources) and whether or 
not to include the starting point (self) in the results (scope). 

 Whether or not to provide counts of targets and sources (countObjects) 

The ability to specify context and scope improves the efficiency of this version of ETP by making it 
possible to discover "more" of the model (i.e., a larger portion of the graph) with fewer discovery requests.  

EXAMPLE: For a WITSML data model, if you specify the URI of a particular well, with an appropriate 
context and scope, it's possible to discover "everything" (all wellbores, logs, channels, BHA runs, etc.) 
related to the well in just one discovery request.  

EXAMPLE: For a RESQML data model, a user wants to discover all horizon interpretations and all 2D 
grid representations of a particular horizon. These relationships are specified as DORs, with the horizon 
interpretations pointing to the horizon feature, and each 2D grid representation pointing to the horizon 
interpretation that it represents. The GetResources message for this example must specify: 

 The context URI of the horizon feature with a level of '2'. 

 The scope is "sources" (the data objects that point to the "self" specified in the horizon feature URI)  

 The dataObjectTypes are "resqml20.obj_HorizonInterpretation, resqml20.obj_Grid2dRepresentation" 
(which are the specific types of data objects of interest). 

8.1.1.1.4 Logic of the Discovery Operation 
The basic logic of the ETP discovery operation MUST work as follows: 

1. Based on the URI and depth (specified in context), a store determines an initial candidate set of 
nodes and edges.  

2. If includeSecondaryTargets and/or includeSecondarySources flags are set to true, the store must 
expand the initial candidate set to include the secondary nodes and edges, as appropriate (i.e., 
depending on which flag(s) are set to true).  

a. If BOTH includeSecondaryTargets flag and includeSecondarySources are set to true, then the 
store MUST apply them "simultaneously" (not in sequence) so the candidate set is expanded 
once, not twice. 

3. The store must remove from the set any node types that are not specified in dataObjectTypes.  

4. Then the store must remove edges that are not connected to a node in the final set of nodes (post 
Step 3). 

8.2 Discovery: Required Behavior 

This section contains functional and non-functional requirements for this protocol. It is organized in these 
sub-sections: 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 159 

 Message Sequence. Summarizes all messages defined by this protocol, identifies main tasks that 
can be done with this protocol and describes the response/request pattern for the messages needed 
to perform the tasks, including usage of ETP-defined capabilities, error scenarios, and resulting ETP 
error codes.  

 General Requirements. Identifies high-level (across ETP) and protocol-wide general behavior and 
rules that must be observed (in addition to behavior specified in Message Sequence), including usage 
of ETP-defined endpoint, data object and protocol capabilities, error scenarios, and resulting error 
codes.  

 Capabilities. Lists and defines the ETP-defined parameters most relevant for this sub-protocol. ETP 
defines these parameters to set necessary limits to help prevent aberrant behavior (e.g., sending 
oversized messages or sending more messages than an endpoint can handle).  

Prerequisites for using this protocol:  
 An ETP session has been established using Core (Protocol 0) as described in Chapter 5. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 160 

8.2.1 Discovery: Message Sequences 

This section explains the basic message sequence for main tasks to be done using this protocol and 
includes related key behaviors and possible errors. The following General Requirements section provides 
additional requirements and rules for how this protocol works.   

The following table lists all messages defined in this sub-protocol, the basic request/response usage 
patterns per ETP role, and whether it may be multipart. The detailed content of each message is 
explained in the Message Schema section. 

Discovery (Protocol 3): 
Basic Message-Response flow by ETP Role 

Message (sent by customer) Response Message (sent by store) 

GetResources: Request message to enumerate contents 
of a store; it specifies details for the starting point and 
extent of the discovery operation. 

GetResourcesResponse (multipart): List of resources (graph 
nodes/data objects) that meet criteria specified in the request. 

GetResourcesEdgesResponse (optional, multipart): List of 
edges (relationship between nodes) that meet criteria in 
request, if edges requested. 

GetDeletedResources: Request message to enumerate 
deleted objects in a store. (Used in data synchronization 
workflows.) 

GetDeletedResourcesResponse (multipart): List of deleted 
resources that a store can return information for.  

 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 161 

8.2.1.1 To discover data objects in a store and optionally the relationships between them: 
1. The customer sends a GetResources message (see Section 8.3.1) to the store.  

For all details of all fields in this message, see the section referred to above. This table summarizes 
the fields in the GetResources message and referenced records and how they may impact the 
Discovery operation and message sequence. 

Field Description 

context REQUIRED. Context defines the parts of the data model that the customer wants the store to 
discover as defined in the ContextInfo record, which includes these fields:  

Field Description 

uri The URI of the dataspace or data object from which to start 
discovery. This MUST be the canonical Energistics URI as defined in 
Appendix: Energistics Identifiers. 

 Often, the first GetResources message that a customer sends 
contains a canonical dataspace URI, typically the default 
dataspace URI: eml:/// 

 A customer may also begin discovery by specifying the 
canonical URI for a specific data object. 

For more information about URIs used in Discovery (Protocol 3), see 
Section 8.2.2. 

depth The depth in the graph (data model) from the "starting" URI. 
RECOMMENDATION: For maximum efficiency in discovery and 
notification operations, understand how the graph is intended to work 
and specify an appropriate value here ((i.e., for Discovery (Protocol 
3) DO NOT simply set depth =1 and iterate)). For more information, 
see Section 8.1.1. 

dataObjectTypes The types of data objects that you want to discover. This MUST be 
the set or a subset of the supportedDataObjects negotiated for the 
current ETP session. For more information, see Chapter 5 and 
Section 8.2.2.  

navigableEdges Edges in a graph represent the relationships between the nodes 
(data objects). This field indicates the type of edges (relationships) to 
be navigated during the discovery operation. Choices are Primary, 
Secondary or Both. For more information about these types of 
relationships, see Section 8.1.1.1.2. 

Only edges of the specified type are navigated during discovery. Use 
of this field helps to exclude unwanted objects being returned in 
Discovery. 

 
includeSecondaryTargets 

If true, the initial candidate set of nodes is expanded with targets of 
secondary relationships of nodes in the initial candidate set of nodes. 
The edges for these contextual relationships are also included.  

NOTE: This flag and includeContextualSources MUST be applied 
"simultaneously" (not in sequence) so the candidate set is expanded 
once, not twice. For more information, see Section 8.2.2, row 10. 

 
includeSecondary 
Sources 

If true, the initial candidate set of nodes is expanded with sources of 
contextual relationships of nodes in the initial candidate set of nodes. 
The edges for these contextual relationships are also included. For 
more information, see Section 8.2.2, row 10. 

 

scope Scope is specified in reference to the URI entered in context (row above). It indicates which direction 
in the graph that the operation should proceed (targets or sources) and whether or not to include the 
starting point (self) in the results. 

For definitions of sources and targets, see Section 8.1.1.1.1. 

NOTE: Specifying an appropriate context and scope can significantly reduce the number of 
GetResources messages/back-and-forth between endpoints required to discover particular 
resources. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 162 

Field Description 

countObjects If true, the store provides counts of sources and targets for each type of resource identified by the 
discovery operation. Default is false. 

storeLastWriteFilter Use this to optionally filter the discovery on a date when a data object was last written in a particular 
store. The store returns resources whose storeLastWrite date/time is greater than the date/time 
specified in this filter field.  

Purpose of this field is part of the behavior for eventual consistency between 2 stores. 

activeStatusFilter Use this to optionally filter the discovery for data objects that are currently "active" or "inactive" as 
defined in ActiveStatusKind. 

includeEdges If true, the store returns "edges" (relationships between the nodes). Default is false. 

 

2. The store MUST respond with one or more of the messages listed below (column 1, Message Name), 
based on criteria in the table (column 2 (Positive or Error and Required or Optional) and column 3 
(Description of conditions and related behavior). 

a. For information on the logic of the discovery operation, see Section 8.1.1.1.4. 

Message Name Pos/Error 

RQD/OPT 

Description 

GetResourcesResponse 
(see Section 8.3.2) 

Pos/RQD 1. If the store successfully returns resources that meet the criteria 
specified in the GetResources message, the store MUST return 
one or more GetResourcesResponse messages and MUST 
observe these rules:  

a. Each message MUST contain an array of resources (i.e., a 
Resource record for each resource). 
NOTE: Data objects returned may vary depending on the 
navigableEdges specified (in ContextInfo, in the Context field 
on the GetResources message.  

i. A store MUST limit the total count of responses to the 
customer's value for the MaxResponseCount protocol 
capability. (NOTE: This protocol capability is a single limit 
that applies to the total combined count of 
GetResourcesResponse messages and 
GetResourcesEdgesResponse messages (if any). See 
the next row in this table.)   

ii. If the store exceeds the customer's MaxResponseCount 
value, the customer MAY send error 
ERESPONSECOUNT_EXCEEDED (30). 

iii. If a store's MaxResponseCount value is less than the 
customer's MaxResponseCount value, the store MAY 
further limit the total count of responses (to its value). 

iv. If a store cannot return all responses to a request because 
it would exceed the lower or the customer's or the store's 
value for MaxResponseCount, the store MUST terminate 
the multipart message with error 
ERESPONSECOUNT_EXCEEDED (30). 

v. A store MUST NOT send 
ERESPONSECOUNT_EXCEEDED (30) until it has sent 
MaxResponseCount responses. 

b. If the filter dataObjectTypes field is populated in the 
GetResources message, the store MUST first traverse the 
graph and then filter on dataObjectTypes (i.e., navigate to the 
full depth and scope, then filter response by the 
dataObjectTypes). (For more information, see Section 8.2.2, 
Row 10. 

c. If the store supports alternate URI formats (formats other than 
the canonical Energistics URI), it MAY return them in the 
alternateUris field (on the Resource record, in this message).  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 163 

Message Name Pos/Error 
RQD/OPT 

Description 

For more information about URI formats, see Appendix: Energistics 
Identifiers. 

2. If the store has no data objects that meet the criteria specified in the 
GetResources message, the store MUST send a 
GetResourcesResponse message with the FIN bit set and the 
resources field set to an empty array. 

GetResourcesEdge 
Response 
(Section 8.3.3) 

Pos/OPT 1. If the store successfully returns edges that meet the criteria in the 
GetResources message, the store MUST return one or more 
GetResourcesEdgesResponse messages, each of which has an 
array of edges. 

2. If the store has no edges that meet the criteria specified in the 
GetResources message, the store MUST NOT send a 
GetResourcesEdgesResponse. 
IMPORTANT: The store MUST NOT return edges unless both: 

a. includeEdges is true. 

b. At least one resource is also returned. 

3. When sending edges, it is RECOMMENDED that the store: 

a. Send the resources first, in breadth-first search order.  

b. Then send edges (i.e., after sending the resource records 
(nodes) that define each end of the edge). NOTE: Edges are 
defined by specifying the URI of each of its 2 nodes (source 
and target).  

c. Include an edge in the response if EITHER end (or both) are 
present in the GetResourcesResponse message (i.e., even if 
one node in the relationship is filtered out by dataObjectTypes 
filter, the store SHOULD still return a related edge). 

4. The MaxResponseCount protocol capability (described in the row 
above) is a single limit that applies to the total combined count of 
GetResourcesResponse and GetResourcesEdgesResponse 
messages.  

ProtocolException Error/RQD If the store does NOT successfully return resources or edges, it MUST 
send a non-map ProtocolException message with an appropriate error. 
EXAMPLES: 

 If the dataspace or data object specified by the URI in the context does 
not exist, the store MUST send error ENOT_FOUND (11). 

 If the request contains a malformed URI, the store MUST send error 
EINVALID_URI (9).  

For more information:  

 About ProtocolException messages and how they work, see Section 
3.6.2.1. 

 About how plural messages work with ProtocolException messages, 
see Section 3.8.1. 

 

3. Based on the response to a GetResources message and the specific data the customer is looking 
for, the customer MAY iteratively send additional GetResources messages until it discovers the 
desired resource(s). 

EXAMPLE: If the customer started with the URI eml:///, it might want to use one of the returned 
resources and continue discovering from there, so it would send another GetResources message 
using the URI of the desired resource.   

d. If the customer and store both support alternate URI formats and the store returned them 
in the GetResourcesResponse message, then the customer MAY use alternate URIs to 
make subsequent requests. (For more information and rules about using alternate URIs, 
see the uri field on the Resources record.)  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 164 

8.2.1.2 To discover deleted objects in a store: 
As part of the workflow for eventual consistency between 2 stores (aka, replication workflows), an 
endpoint may need to discover deleted objects, which are often called tombstones.  

If a data object has been deleted within a store's ChangeRetentionTime capability (for more information, 
see Section 8.2.3), the customer may follow these steps to discover tombstones. Otherwise, the customer 
may have to do a costly and inefficient full scan/compare. For more information, see Appendix: Data 
Replication and Outage Recovery Workflows.  

Stores MUST support retention of tombstones and should set the ChangeRetentionPeriod to be as long 
as practical, ideally weeks. The longer it is, the less likelihood that a customer must perform an inefficient 
full scan. 

Not every store will be able to accurately track and retain tombstones through the full 
ChangeRetentionPeriod. For example, some stores may lack a persistent data store for ETP-specific 
information so will lose this information if the store application restarts. The minimum requirement to 
enable eventual consistency workflows is that: If a store loses track of tombstones, the store MUST 
set earliestRetainedChangeTime in RequestSession or OpenSession to indicate the earlies timestamp 
that tombstones ARE available from. 

To discover deleted objects in a store: 

1. The customer MUST send a GetDeletedResources message (Section 8.3.4) to the store.  

For all details of all fields in this message, see the section referenced above. This table summarizes 
the fields and how they may impact the message sequence. 

Field Description 

dataspacesUri REQUIRED. The URI of the dataspace where the objects were deleted.  

NOTE: Tombstones for deleted objects most likely no longer have sufficient history 
to put them in a context/scope of the data model, so the discovery MUST be done at 
the dataspace level. For more information, see Appendix: Data Replication and 
Outage Recovery Workflows. 

deleteTimeFilter Optionally, specify a delete time.  

1. A customer MUST NOT request deleted resources with a deleteTimeFilter that 
is older than the store's ChangeRetentionPeriod endpoint capability. For more 
information, see Section 8.2.3. 

2. A store MUST deny any request that exceeds its value for 
ChangeRetentionPeriod and send error ERETENTION_PERIOD_EXCEEDED 
(5001).  

dataObjectsType Optionally, filter for the types of data objects you want. 

 

2. The store MUST respond with one or more of these messages (column 1, Message Name), based on 
criteria in the table (column 2 (Positive or Error and Required or Optional) and column 3 (Description 
of conditions):  

Message Name Pos/Error 
RQD/OPT 

Description 

GetDeletedResourcesResponse 
(Section 8.3.5) 

Pos/RQD 1. If the store successfully returns deleted resources that meet 
the criteria specified in the GetDeletedResources message, 
the store MUST return one or more 
GetDeletedResourcesResponse messages that contain an 
array of deleted resources.  

a. A store MUST return any resources that were deleted 
more recently than its ChangeRetentionPeriod. 

i. The rules for the MaxResponseCount protocol 
capability described in Section 8.2.1.1 (first row of 
table), MUST also be observed for 
GetDeletedResourcesResponse messages.   



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 165 

Message Name Pos/Error 
RQD/OPT 

Description 

2. If the store has no deleted resources that meet the criteria 
specified in the GetDeletedResources message, the store 
MUST send a GetDeletedResourcesResponse message 
with the FIN bit set and the deletedResources field set to an 
empty array. 

3. NOTE: For more information on how a customer can use 
these deleted resources to establish consistency with the 
store, see Appendix: Data Replication and Outage 
Recovery Workflows. 

ProtocolException Error/RQD 1. If the store does NOT successfully return deleted resources, 
it MUST send a non-map ProtocolException message with 
an appropriate error, such as EREQUEST_DENIED (6). 

a. If in the GetDeletedResources message, the 
dataspacesUri field is NOT a valid dataspace URI, send 
EINVALID_URI (9).  

b. If the URI is valid but does not refer to a deleted 
resource in the store, send error ENOT_FOUND (11). 

2. For more information about ProtocolException messages 
and how they work, see Section 3.6.2.1. 

3. For more information about how plural messages work with 
ProtocolException messages, see Section 3.8.1. 

 

8.2.2 Discovery: General Requirements 

In addition to the basic message sequence described in the previous section, this protocol has the 
additional requirements listed in the table below. Possible optional behaviors may also be defined. For 
easy reference, the rows and behaviors in this table are numbered.  

NOTE: This table has been organized to reduce redundancy but also to help developers more easily 
locate specific requirements. EXAMPLE: There are rows with general requirements that apply to all 
protocols (e.g., Rows 1–2), rows for general requirements for this protocol, and (possibly) some rows with 
additional requirements for specific types of operations.  

Row# Requirement Behavior 

1.  ETP-wide behavior that MUST be 
observed in all protocols 

1. Requirements for general behavior consistent across all of ETP are 
defined in Chapter 3. This behavior includes information such as: all 
details of message handling (such as message headers, handling 
compression, use of message IDs and correlation IDs, requirements for 
plural and multipart message patterns) use of acknowledgements, 
general rules for sending ProtocolException messages, URI encoding, 
serialization and more. RECOMMENDATION: Read Chapter 3 first. 

2. For information about Energistics identifiers and prescribed ETP URI 
formats, see Appendix: Energistics Identifiers. 

a. In MOST cases, endpoints performing operations in this protocol 
MUST use the canonical Energistics URI. For more information, see 
Section 3.7.4. 

3. For the complete list of error codes defined by ETP, see Chapter 24. 

4. ALL operations in an ETP session are performed on the set of 
supported data object types that were negotiated to be used when 
the session was initiated and established. 

a. The client and server exchange the list of data object types in the 
supportedDataObjects field of the RequestSession and 
OpenSession messages in Core (Protocol 0). For more 
information, see Chapter 5. 

b. In general, the list of supported objects for a session will most likely 
be the intersection of the data objects that the server supports and 
the data objects that the client requested for the ETP session. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 166 

Row# Requirement Behavior 

c. A store MUST support all messages (in each supported ETP sub-
protocol) for each supported data object, whether the data object is 
supported explicitly or by wild card. 

d. An endpoint MUST only send messages with the URI of a data 
object that is a type supported by the other endpoint for this ETP 
session.  

i. If an endpoint sends a URI for an unsupported type of data 
object, the other endpoint MUST send error 
EDATAOBJECTTYPE_NOTSUPPORTED (16). 

2.  Capabilities-related behavior 1. Relevant endpoint, data object, and/or protocol capabilities MUST be 
specified when the ETP session is established (see Chapter 5) and 
MUST be used/honored as defined in this specification.  

2. For an explanation of endpoint, data object, and protocol capabilities, 
see Section 3.3. 

a. For the list of global capabilities and related behavior, see Section 
3.3.2. 

3. Section 8.2.3 identifies the capabilities most relevant to this ETP sub-
protocol. If one or more of the defined capabilities is presented by an 
endpoint, the other endpoint in the ETP session MUST accept it (them) 
and process the value, and apply them to the behavior as specified in 
this document.  

a. Additional details for how to use these capabilities are included in 
Section 8.2.1 Discovery: Message Sequence.  

3.  Message Sequence 

See Section 8.2.1. 

1. The Message Sequence section above (Section 8.2.1) describes 
requirements for the main tasks listed there and also defines required 
behavior. 

4.  Plural messages (which includes 
maps) 

1. This protocol uses plural messages. For detailed rules on handling plural 
messages (including ProtocolException handling), see Section 3.7.3. 

5.  Discoverable data objects 1. Discovery MUST return only data objects whose type (dataObjectTypes 
specified in the Context field on the GetResources message) are in the 
set of negotiated supportedTypes (as indicated on the OpenSession 
message in Core (Protocol 0)) for the current ETP session.  

a. If a customer specifies a data object type in a request for a data 
object type that was not negotiated for the current ETP session, the 
store MUST send error EDATAOBJECTTYPE_NOTSUPPORTED 
(16). 

2. For more information about data objects, resources, and identifiers, see 
Section Appendix: Energistics Identifiers.  

6.  Discovery of planned vs. actual data 
objects 

All top-level data objects in Energistics domain models derive from 
AbstractObject, which is in Energistics common (namespace = eml). 
AbstractObject has a field named ExistenceKind, which may have a value of 
"planned" or "actual".  

To discover planned vs actual data objects in a store:  

1. The customer MUST use DiscoveryQuery (Protocol 13) (see Chapter 15) 
and filter on ExistenceKind (specifying planned or actual) for 
AbstractObject. 

7.  Dataspaces in discovery operations 1. "eml:///" refers to the default dataspace. 

a. A default dataspace ALWAYS exists, but it might be empty.  

b. If the default dataspace has no content, the store MUST return an 
empty array in the GetResourcesResponse message.  

2. If other dataspaces exist, a client MUST: 

a. First use Dataspaces (Protocol 24) to discover the available 
dataspaces in the store (see Chapter 21).   

b. Then use Discovery (Protocol 3) to discover and enumerate the 
content of a particular dataspace.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 167 

Row# Requirement Behavior 

3. All ETP stores MUST support discovery of dataspace URIs, including 
"eml:///", for all dataspaces supported by the store. 

a. When discovering a dataspace URI, the scope and depth fields (in 
the GetResources message) MUST be ignored. 

8.  URI formats 1. For information about all URIs and allowed formats, see Appendix: 
Energistics Identifiers. 

2. In a GetResources message, the customer MUST use one of the 
following: 

a. To discover the root contents of a dataspace, use the dataspace’s 
canonical URI: "eml:///" 

i. Other root URIs MAY also be used, EXAMPLE: 
eml:///dataspace(some-dataspace-id)/ 

b. To discover the resource for a specific data object, use the data 
object’s canonical Energistics URI. 

3. Alternate URI formats: 

a. Alternate URIs are NOT allowed as URIs in the GetResources 
message. 

b. If the store DOES NOT support alternate URI formats, it MUST 
respond in the GetResourcesResponse message with only 
canonical Energistics URIs.  

c. If a store DOES support alternate URI formats, it MAY send 
alternate URIs in the GetResourcesResponse message. (NOTE: 
The alternateUris field is specified in the Resource record; a 
positive GetResourcesResponse message contains an array of 
Resource records.)  

d. For usage rules for alternate URIs, see Section 3.7.4.1. 

9.  How to navigate a data model 1. The customer MUST specify the details of how to navigate the data 
model in the GetResources message (see Section 8.3.1), based on 
information explained in Section 8.1.1.1. 

a. The mechanisms in the data object that specify the relationships 
between/among other data objects are DataObjectReference (DOR) 
and ByValue containment. For more information, see Section 
8.1.1.1.1.  

i. To navigate the graph, an endpoint MUST inspect the DOR and 
ByValue references. 

ii. Stores are not required to navigate relationships across 
dataspaces. 

2. Currently, Energistics has 2 ways to specify DORs:   

a. The "old format" (which will be phased out over time) uses the 
previous Energistics URI format and a contentType (mime type) in 
the DOR format (see ObjectReference in the Energistics Identifier 
Specification v4.0 in Energistics Online).  

b. The "new format" replaces the contentType with the 
dataObjectType (which is the semantic equivalent of the OData 
qualifiedEntityType) and is based on the new Energistics URI 
format, which is explained in Appendix: Energistics Identifiers of 
this document (for information on the dataObjectType, see Section 
25.3.7.1).  

c. Implications for ETP behavior related to the 2 formats for 
DORs: A store MUST accept both the "old format" and the "new 
format". However, a store MUST return ONLY the "new format". 
(That is, a Store must be able to "understand" all DORs (both old 
format and new format) to traverse the graph in ETP for Discovery 
(Protocol 3) and notification subscriptions in Protocol 5.) 

3. For information on how to navigate "across" different data models, see 
Row 11 below. 

https://docs.energistics.org/#EID/EID_TOPICS/EID-000-013-0-C-sv4000.html


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 168 

Row# Requirement Behavior 

10.  Logic of the discovery operation For convenience this section is repeated from Section 8.1.1.1.4. 

All field names refer to fields on the GetResources message. The basic logic 
of the ETP discovery operation MUST work as follows: 

1. Based on the URI and depth (specified in context), a store determines an 
initial candidate set of nodes and edges.  

2. If includeSecondaryTargets and/or includeSecondarySources flags are 
set to true, the store must expand the initial candidate set to include the 
secondary nodes and edges, as appropriate (i.e., depending on which 
flag(s) are set to true).  

a. If BOTH includeSecondaryTargets flag and 
includeSecondarySources are set to true, then the store MUST 
apply them "simultaneously" (not in sequence) so the candidate set 
is expanded once, not twice. 

3. The store must remove from the set any node types that are not 
specified in dataObjectTypes.  

4. Then the store must remove edges that are not connected to a node in 
the final set of nodes (post Step 3). 

11.  Navigating data objects between 
different Energistics data models 

Increasingly, software applications use data objects from various Energistics 
data models. For example, both earth modeling (RESQML) and production 
(PRODML) applications use the well and wellbore defined in WITSML. When 
working in applications that include objects from more than one Energistics 
data models, an application MUST observe these rules:  

1. The domain model (ML) where the DOR resides or the data object that 
contains other data objects resides determines the attribute of the 
navigableEdges (i.e., whether the relationship is primary or secondary).  

a. EXAMPLE: In RESQML, all relationships are primary, so when a 
RESQML wellbore feature references a WITSML wellbore, the 
navigableEdge (relationship) is primary.  

b. NOTE: This is consistent with the general rule specified in Section 
8.1.1.1.2: The data object that has the DOR defines the primary or 
secondary relationship. 

2. If the discovery operation has been specified so that it "continues" into 
the new data model, observe the navigableEdges as defined in that data 
model. 
EXAMPLE: In the example in 1.a above, any continued discovery MUST 
follow WITSML rules.  

3. For exceptions to relationship rules, see the ML-specific ETP 
implementation guides. 

12.  Requirements for use of PWLS Practical Well Log Standard (PWLS) is an industry standard stewarded by 
Energistics. It categorizes the obscure mnemonics used for oilfield data and 
relates them to the marketing names for logging tools that make those 
measurements using plain English. PWLS provides an industry-agreed list of 
logging tool classes and a hierarchy of measurement properties and applies 
all known mnemonics to them. For more information, see Section 3.12.7.  

1. If an ETP store supports the WITSML Channel data object, then it MUST 
support PropertyKind data objects (which are an implementation of 
PWLS).   

2. Endpoints MUST be able to discover property kind data objects (to 
determine available property kinds) and use the returned property kinds 
in relevant Discovery, Store and Query operations. 

8.2.3 Discovery: Capabilities 

The table below lists key capabilities for this protocol. The protocol capabilities are all defined here. For 
this protocol, one particularly crucial endpoint capability is also defined here.  

 For protocol-specific behavior for using these capabilities in this protocol, see Sections 
8.2.1◦Discovery: Message Sequence and 8.2.2 Discovery: General Requirements. 

 For definitions of endpoint and data object capabilities, see the links in the table. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 169 

 For general information about the types of capabilities and how they may be used, see Section 3.3. 

 

Discovery (Protocol 3): Capabilities 

Name: Description Type Units Defaults 

and/or 
MIN/MAX 

Endpoint Capabilities  
(For definitions and usage rules, see Section 3.3.) 

   

NOTE: Many endpoint capabilities are "universal", used in all or most of the ETP protocols. 
For more information, see Section 3.3.2. 

Behavior associated with other endpoint capabilities are defined in relevant chapters.  
EXAMPLE: The capabilities defined for limiting ETP sessions between 2 endpoints are discussed in 
Section 4.3, How a Client Establishes a WebSocket Connection to an ETP Server. 

ChangeRetentionPeriod: The minimum time period in seconds 

that a store retains the canonical URI of a deleted data object and 
any change annotations for channels and growing data objects.  
RECOMMENDATION: This period should be as long as is feasible 

in an implementation. When the period is shorter, the risk is that 
additional data will need to be transmitted to recover from outages, 
leading to higher initial load on sessions.  

Long Seconds 

Value units: 

<number of 
seconds> 

Default: 

86,400 

MIN: 86,400  

Protocol Capabilities    

MaxResponseCount: The maximum total count of responses 

allowed in a complete multipart message response to a single 
request.  

Long count 

Value units: 

<count of 
responses> 

MIN: 10,000  

 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 170 

8.3 Discovery: Message Schemas 

This section provides a figure that displays all messages defined in Discovery (Protocol 3). Subsequent 
sub-sections provide an example schema for each message and definitions of the data fields contained in 
each message. 

 
Figure 17: Discovery: message schemas 

8.3.1 Message: GetResources 

A Customer sends one or more of these messages to a store to discover data objects in the store. The 
response to this message is a GetResourcesResponse message, which contains an array of Resource 
records and, in some cases, GetResourcesEdgesResponse messages (Section 8.3.3). 

class Discovery

«Message»
GetResourcesResponse

+ resources : Resource [0..n] (array) = EmptyArray

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 4
MultiPart = True
SenderRole = s tore

notes
A store sends to a customer in response to the
GetResources message; each GetResourcesResponse
message contains an array of Resource records.
Discovery (Protocol 3) works based on the notion of the
data model as a graph. For an explanation of this
concept and related definitions, see Section 8.1.1.

«enumeration»
Object::RelationshipKind

 Primary
 Secondary
 Both

notes
Energistics data models can be considered directed
graphs. (For more information on this concept, see Section
8.1.1).
For discovery and notification operations, a customer can
specify the kinds of relationship it wants to be included.

«record»
Object::ContextInfo

+ dataObjectTypes : s tring [0..n] (array) = EmptyArray
+ depth: int
+ includeSecondarySources : boolean = fa lse
+ includeSecondaryTargets : boolean = fa lse
+ navigableEdges : RelationshipKind
+ uri : s tring

tags
AvroSrc = <memo>

notes
Record that is a collection of fields used to identify the part
(or area) of the data model that is of interest for a given
request. Used in Discovery (Protocol 3), StoreNotification
(Protocol 5) and StoreQuery (Protocol 14) and other
protocols.
EXAMPLE: A customer may be interested in any and all new
data objects and changes to existing data objects that
happen in a particular well. The customer request must
specify the well (by its Energistics URI) and other relevant
information using the other fields in this ContextInfo record.
This ContextInfo is based on the notion of Energistics data
models as graphs. For more information, see Section 8.1.1.

«enumeration»
Object::ContextScopeKind

 sel f = 0
 sources  = 1
 targets  = 2
 sourcesOrSel f = 3
 targetsOrSel f = 4

notes
Energistics data models can be considered directed graphs.
(For more information on this concept, see Section 8.1.1).
For certain ETP operations (such as Discovery (Protocol 3)
and notifications (StoreNotification (Protocol 5) and
GrowingObjectNotification (Protocol 7) and others) you
must specify a "context" (ContextInfo), which simplistically
is where in the data model (at what node/data object) you
want to start the operation and what direction you want to
navigate.
ContextScopeKind lets you specify the "direction" in the
graph that you want the operation to navigate.
NOTE: If contextScopeKind = "self" then depth in ContextInfo
is ignored.

«Message»
GetResources

+ activeStatusFi l ter: ActiveStatusKind [0..1]
+ context: ContextInfo
+ countObjects : boolean = fa lse
+ includeEdges : boolean = fa lse
+ scope: ContextScopeKind
+ s toreLastWriteFi l ter: long [0..1]

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 1
MultiPart = Fa lse
SenderRole = customer

notes
A Customer sends one or more of these messages to a
store to discover data objects in the store. The response
to this message is a GetResourcesResponse message,
which contains an array of Resource records, and, in some
cases, GetResourcesEdgesResponse messages.
Discovery (Protocol 3) works based on the notion of the
data model as a graph. For an explanation of this concept
and related definitions, see Section 8.1.1.
Discovery proceeds in three steps:
1) An initial candidate set of nodes and edges is
discovered based on the uri and depth fields specified in
ContextInfo and the scope field.
2) This set is optionally expanded to include the secondary
edges and nodes for the initial candidate nodes (based on
other flags also specified in ContextInfo).
3) Nodes with types not specified in the dataObjectTypes
field (also in ContextInfo) are removed from the set.
Edges not connected to a node in the final set are
removed.

«enumeration»
Object::ActiveStatusKind

 Active
 Inactive

notes
Enumeration of possible channel or growing data object
statuses. Statuses are mapped from domain data objects,
such as wellbores, channels, and growing data objects.

«Message»
GetDeletedResources

+ dataObjectTypes : s tring [1..*] (array) = EmptyArray
+ dataspaceUri : s tring
+ deleteTimeFi l ter: long [0..1]

notes
A customer sends to a store to discover data objects  that have been
deleted (which are sometimes called "tombstones").
This message is provided to support the workflow for eventual consistency
between 2 stores. For more information, see Appendix: Data Replication
and Outage Recovery Workflows.
The response to this message is the GetDeletedResourcesResponse
message.

«Message»
GetDeletedResourcesResponse

+ deletedResources : DeletedResource [0..*] (array) = EmptyArray

notes
A store sends to a customer as the response to the GetDeletedResources
message.
It contains the array of deleted resources that the store can return. Or if
the store has no deleted resources, or none that match any filtering
criteria specified, it returns an empty array.

«record»
Object::DeletedResource

+ customData: DataValue [0..n] (map) = EmptyMap
+ deletedTime: long
+ uri : s tring

notes
Record for data fields retained for deleted data objects (tombstones).
NOTE: The fields on DeletedResource are a subset of the fields on the
Resource record and include the fields most likely to be retained for a
deleted object plus customData (which the store may use to send any
custom or additional information).

«record»
Object::Edge

+ customData: DataValue [0..*] (map) = EmptyMap
+ relationshipKind: RelationshipKind
+ sourceUri : s tring
+ targetUri : s tring

notes
Record that contains the information to define an edge
between 2 nodes in a graph data model.

«Message»
GetResourcesEdgesResponse

+ edges : Edge [1..n] (array)

notes
If the customer sets the includeEdges flag to true in the GetResources
message, the store returns one or more of these messages, which
lists the edges in the graph, which represent the relationships
between data objects (nodes). This message is returned in addition to
the GetResourcesResponse message(s).
RECOMMENDATION:

1. First return resources (in the GetResourcesResponse message) in
breadth-first search order.
2. Send edges AFTER sending resource records for both ends of an
edge.



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 171 

Discovery (Protocol 3) works based on the notion of the data model as a graph. For an explanation of this 
concept and related definitions, see Section 8.1.1.  

Discovery proceeds in three steps: 

1) An initial candidate set of nodes and edges is discovered based on the uri and depth fields specified in 
ContextInfo and the scope field. 

2) This set is optionally expanded to include the secondary edges and nodes for the initial candidate 
nodes (based on other flags also specified in ContextInfo).  

3) Nodes with types not specified in the dataObjectTypes field (also in ContextInfo) are removed from the 
set. Edges not connected to a node in the final set are removed. 

Message Type ID: 1 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

context As defined in the ContextInfo record, which 
includes the URI of the dataspace or data object 
to begin the discovery, what specific types of data 
objects are of interest, and how many "levels" of 
relationships in the model to discover, among 
others.  

The URI MUST be a canonical Energistics data 
object or dataspace URI; for more information, 
see Appendix: Energistics Identifiers. 

ContextInfo 1 1 

scope Scope is specified in reference to the URI (which 
is entered in the context field). It indicates which 
direction in the graph that the operation should 
proceed (targets or sources) and whether or not to 
include the starting point (self). The enumerated 
values to choose from are specified in 
ContextScopeKind. 

For definitions of targets and sources, see Section 
8.1.1.  

NOTE: If scope = "self", then depth (in 
ContextInfo) is ignored.  

ContextScopeKind 1 1 

storeLastWriteFilter Use this to optionally filter the discovery on a date 
when the data object was last written in a 
particular store. The store returns resources 
whose storeLastWrite date/time is GREATER 
than the date/time specified in this filter field.  

Purpose of this field is part of the behavior for 
eventual consistency between 2 stores. 

It must be a UTC dateTime value, serialized as a 
long, using the Avro logical type timestamp-micros 
(microseconds from the Unix Epoch, 1 January 
1970 00:00:00.000000 UTC). 

long 0 1 

countObjects If true, the store provides counts of sources and 
targets for each resource identified by Discovery. 
Default is false. 

boolean 1 1 

activeStatusFilter Use this to optionally filter the discovery for data 
objects that are currently "active" or "inactive" as 
defined in ActiveStatusKind. 

This field is for data objects that have a notion of 
being active or inactive. Each ML defines which 
data objects this applies to and how it applies to 
them. Examples include WITSML channel data 
objects and growing data objects, which have a 

ActiveStatusKind 0 1 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 172 

Field Name Description Data Type Min Max 

GrowingStatus property (which maps to the ETP 
field activeStatus on Resource), which may be 

 active = A channel or growing data object is 
actively producing data points. 

 inactive = A channel or growing object is 
offline or not currently producing data points. 

The store returns resources for data objects 
whose value for activeStatus matches the value 
specified in the activeStatusFilter. 

includeEdges If true, the store returns "edges" (relationships 
between the nodes as defined in Edge ) in 
GetResourcesEdgesResponse messages (in 
addition to the nodes (data objects) in the 
GetResourcesResponse messages). 

Default is false. 

boolean 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Discovery", 
     "name": "GetResources", 
     "protocol": "3", 
     "messageType": "1", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "context", "type": "Energistics.Etp.v12.Datatypes.Object.ContextInfo" }, 
         { "name": "scope", "type": "Energistics.Etp.v12.Datatypes.Object.ContextScopeKind" }, 
         { "name": "countObjects", "type": "boolean", "default": false }, 
         { "name": "storeLastWriteFilter", "type": ["null", "long"] }, 
         { "name": "activeStatusFilter", "type": ["null", 
"Energistics.Etp.v12.Datatypes.Object.ActiveStatusKind"] }, 
         { "name": "includeEdges", "type": "boolean", "default": false } 
     ] 
} 

  

8.3.2 Message: GetResourcesResponse 

A store sends to a customer in response to the GetResources message; each GetResourcesResponse 
message contains an array of Resource records. 

Discovery (Protocol 3) works based on the notion of the data model as a graph. For an explanation of this 
concept and related definitions, see Section 8.1.1. 

Message Type ID: 4 

Correlation Id Usage: MUST be set to the messageId of the GetResources message that this message 
is a response to.  

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

resources The list of Resource records the store is returning. 

The URI MUST be a canonical Energistics data 
object URI; for more information, see Appendix: 
Energistics Identifiers.  

Resource 0 n 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 173 

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Discovery", 
     "name": "GetResourcesResponse", 
     "protocol": "3", 
     "messageType": "4", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "resources", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.Object.Resource" }, "default": [] 
         } 
     ] 
} 

  

8.3.3 Message: GetResourcesEdgesResponse 

If the customer sets the includeEdges flag to true in the GetResources message, the store returns one or 
more of these messages, which lists the edges in the graph, which represent the relationships between 
data objects (nodes). This message is returned in addition to the GetResourcesResponse message(s).  

RECOMMENDATION:  

1. First return resources (in the GetResourcesResponse message) in breadth-first search order. 

2. Send edges AFTER sending resource records for both ends of an edge. 

Message Type ID: 7 

Correlation Id Usage: MUST be set to the messageId of the GetResources message that this message 
is a response to.  

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

edges An array of Edge records, each of which specifies 
the URI of the source node and target node that 
defines each edge.  

The URI MUST be a canonical Energistics data 
object URI; for more information, see Appendix: 
Energistics Identifiers. 

Edge 1 n 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Discovery", 
     "name": "GetResourcesEdgesResponse", 
     "protocol": "3", 
     "messageType": "7", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         {  
             "name": "edges", 
             "type": { "type": "array", "items": "Energistics.Etp.v12.Datatypes.Object.Edge" } 
         } 
     ] 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 174 

} 

  

8.3.4 Message: GetDeletedResources 

A customer sends to a store to discover data objects that have been deleted (which are sometimes called 
"tombstones").  

This message is provided to support the workflow for eventual consistency between 2 stores. For more 
information, see Appendix: Data Replication and Outage Recovery Workflows.  

The response to this message is the GetDeletedResourcesResponse message.  

Message Type ID: 5 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

dataspaceUri The URI of the dataspace where the objects were 
deleted.  

The URI MUST be a canonical Energistics 
dataspace URI; for more information, see 
Appendix: Energistics Identifiers. 

NOTE: Tombstones for deleted objects most likely 
no longer have sufficient history to put them in a 
context/scope of the data model, so the discovery 
MUST be done at the dataspace level.  

string 1 1 

deleteTimeFilter Optionally, specify a delete time. The store returns 
resources for objects whose delete times are 
greater than this value.  

Must be a UTC dateTime value, serialized as a 
long, using the Avro logical type timestamp-micros 
(microseconds from the Unix Epoch, 1 January 
1970 00:00:00.000000 UTC). 

long 0 1 

dataObjectTypes Optionally, filter for the types of data objects you 
want. The default is an empty array, which means 
ALL data types.  

The form of the list is an array of strings, where 
each value is a dataObjectType as described in 
Appendix: Energistics Identifiers and serialized as 
JSON. It is the semantic equivalent of a 
qualifiedEntityType in OData.  

They ARE case sensitive.  

EXAMPLES: 

"witsml20.Well", 

"witsml20.Wellbore", 

"prodml21.WellTest", 

"resqml20.obj_TectonicBoundaryFeature" 

"eml21.DataAssuranceRecord" 

To indicate that all data objects within a data 
schema version are supported, you can use a star 
(*) as a wildcard, EXAMPLES: 

"witsml20.*", 

"prodml21.*", 

"resqml20.*", 

So "witsml20.*" means all data objects defined by 
WITSML v2.0 data schemas. 

string 1 * 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 175 

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Discovery", 
     "name": "GetDeletedResources", 
     "protocol": "3", 
     "messageType": "5", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "dataspaceUri", "type": "string" }, 
         { "name": "deleteTimeFilter", "type": ["null", "long"] }, 
         { 
             "name": "dataObjectTypes", 
             "type": { "type": "array", "items": "string" }, "default": [] 
         } 
     ] 
} 

  

8.3.5 Message: GetDeletedResourcesResponse 

A store sends to a customer as the response to the GetDeletedResources message.  

It contains the array of deleted resources that the store can return. Or if the store has no deleted 
resources, or none that match any filtering criteria specified, it returns an empty array.  

Message Type ID: 6 

Correlation Id Usage: MUST be set to the messageId of the GetDeletedResources message that this 
message is a response to.  

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

deletedResources An array of DeletedResource records, one for 
each tombstone. Or if the store has no 
tombstones or none that meet the specified 
criteria, an empty array. 

The URI MUST be a canonical Energistics data 
object URI; for more information, see Appendix: 
Energistics Identifiers. 

DeletedResource 0 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Discovery", 
     "name": "GetDeletedResourcesResponse", 
     "protocol": "3", 
     "messageType": "6", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "deletedResources", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.Object.DeletedResource" }, "default": [] 
         } 
     ] 
} 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 176 

 
 
 
 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 177 

9 Store (Protocol 4) 
ProtocolID: 4 

Defined Roles: store, customer 

Use Store (Protocol 4) to get, put and delete ALL data objects defined by Energistics domain data 
models—which includes data objects that "contain" other data objects (such as channel sets and logs), 
channels, and "growing data objects" (such as WITSML trajectories, mud logs and others). NOTE: The 
ability to handle some operations on growing data objects in this protocol is new behavior for ETP v1.2.  

For the Energistics' definition of data object, information on the kinds of data objects, and information on 
identification, see Appendix: Energistics Identifiers (Section 25.1). 

Other ETP sub-protocols that may be used with Store (Protocol 4): 
 To subscribe to and receive notifications from the store about operations/events in the store resulting 

from operations using Store (Protocol 4), use StoreNotification (Protocol 5). That is, this chapter 
explains events that trigger notifications in StoreNotification (Protocol 5); however, the store is only 
required to send notifications if the customer is subscribed to notifications for the appropriate 
context. For more information on Protocol 5, see Chapter 10. 

 To UPDATE a growing data object—including the "header" or any of the parts—use GrowingObject 
(Protocol 6) (Chapter 11).  

 To query on fields in a data object for Store get operations, use StoreQuery (Protocol 14) 
(Chapter◦16). 

 For information on streaming channel data or other operations specific to channels, see: 

 ChannelStreaming (Protocol 1), Chapter 6 

 ChannelDataFrame (Protocol 2), Chapter 7 

 ChannelSubscribe (Protocol 21), Chapter 19 

- ChannelDataLoad (Protocol 22), Chapter 20 

This chapter includes main sections for:  
 Key Concepts (Section 9.1). Key ETP concepts that are important to understanding how this 

protocol is intended to work.    

 Required Behavior (Section 9.2), which includes: 

 Message Sequence (Section 9.2.1). Description of the message sequence for main tasks, along 
with required behavior—including use of endpoint, data object, and protocol capabilities for 
preventing and protecting against aberrant behavior—possible errors, and related error codes.  

 General Requirements (Section 9.2.2). Other functional requirements and required behavior (not 
covered in the message sequence), including use of additional endpoint, data object, and 
protocol capabilities, possible errors and related error codes. 

- Capabilities (Section 9.2.3). The list of endpoint, data object, and protocol capabilities 
particularly relevant to this protocol, which includes links to required behavior (e.g., for "global" 
capabilities used throughout ETP).  

 Message Schemas (Section 9.3). Sample schemas of the messages defined in this protocol (which 
are identical to the Avro schemas published with this version of ETP). However, only the schema 
content in this specification includes documentation for each field in a schema.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 178 

9.1 Store: Key Concepts 

This section contains key concepts that are important to understanding how Store (Protocol 4) works.  

9.1.1 ETP uses 'Upsert' Semantics 

Store (Protocol 4) uses 'Upsert' semantics for insert (create/add) and update operations. That is, a single 
PutDataObjects message is used for both operations.  

 If the object already exists, it is completely replaced by the new version.  

 If the object does not exist, it is created.  

 NOTE: Exceptions to these behavior for specific object kinds (e.g., growing data objects) are noted in 
Section 9.2.2. 

Unlike the WITSML SOAP protocols, there are no partial updates of data objects; it is not possible to 
update individual fields in an object. 

Though the same message is used for insert and update, notifications sent in StoreNotification (Protocol 
5) have options for a store to designate if an operation was an insert (add) or an update operation (if the 
store is able to determine this). For more information, see Chapter 10. 

9.1.2 Handling Binary Large Objects (BLOBs) in ETP 

Some messages in this protocol allow or require a data object to be sent with the message. If the size of 
the data object (bytes) is too large for the WebSocket message size (which for some WebSocket libraries 
can be quite small, e.g. 128 kb), you must subdivide the data object and send it in "chunks" (using the 
Chunk message). For information on how to handle these binary large objects (BLOBs), see Section 
3.7.3.2. 

9.1.3 "Container" and "Contained" Data Objects 

In Energistics standards, the concept of a "contained" data object refers to a data object (as defined in 
Section 25.1) that is contained by another data object with a ByValue reference—and ONLY a ByValue 
reference—that is, relationships specified by an Energistics Data Object Reference (DOR) DO NOT result 
in container/contained objects.  

EXAMPLE: 
An Energistics data object MAY be included in one or more container data objects.  

One of the best-known examples comes from WITSML where:  

 One or more Channel data objects can be contained in one or more ChannelSet data objects. In this 
example, the Channels are the "contained" data objects and the Channel Set is the "container".  

 One or more ChannelSet data objects can be contained in one or more Log data objects. In this 
example, the ChannelSets are the "contained" data objects and the Log is the "container". 

NOTE: Individual container/contained data objects are listed in the relevant ML's ETP implementation 
specification (which is a companion document to this ETP Specification). For example, Channel, 
Channel Set and other contained data objects defined in WITSML are listed in the ETP v1.2 for 
WITSML v2.0 Implementation Specification. 

For more details about the relationships between Channel, Channel Set and Log data objects, and 
this contained object concept, see http://docs.energistics.org/#WITSML/WITSML_TOPICS/WITSML-
000-050-0-C-sv2000.html. 

The inherent design of these container/contained data objects requires some additional handling for store 
operations and related notifications. ETP defines a data object capability, 
MaxContainedDataObjectCount, which allows an endpoint to limit the number of contained data objects in 
a container data object.  

https://docs.energistics.org/#WITSML/WITSML_TOPICS/WITSML-000-050-0-C-sv2000.html
https://docs.energistics.org/#WITSML/WITSML_TOPICS/WITSML-000-050-0-C-sv2000.html


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 179 

9.1.3.1 Joining and Unjoining  
"Joining” is connecting a contained data object to a container. Conversely, “unjoining” is disconnecting a 
contained data object from a container. The details of these operations are specified in Section 9.2.2, but 
a simple example here helps to show some key concepts. 

When putting a container data object (which includes its contained data objects) into a store, those 
contained objects may already exist in the store OR they may be new objects that are being added to the 
store (with the adding or updating of the container). If the contained data objects already exist, they are 
joined to the container. If they DO NOT exist, then the store must add them, which is considered these 2 
operations:  

 Add (put, insert) the new contained data objects (which are standalone data objects in their own right) 
to the store.) 

 Join the contained data objects to their container. 

Because it can be 2 operations, it is possible to generate 2 notifications (in StoreNotification (Protocol 5), 
which is also explained below). 

"Unjoining" happens when a contained data object is removed from a container. Unjoins happen in three 
main ways: 

 Putting a container data object into a store may unjoin contained data objects. EXAMPLE: This can 
happen when the container itself previously existed in the store and the new copy of the container 
has fewer contained data objects. The contained data objects no longer in the container are unjoined 
from the container and, in some cases, may be pruned (see Section 9.1.3.2). 

 Deleting a container data object unjoins any data objects it contains.  

 Deleting a data object that is contained in another data object unjoins the deleted data object from its 
container(s). 

9.1.3.2 Pruning  
Another important concept is the notion of "pruning," which is deletion of contained data objects when an 
operation to the container would result in "orphan" contained data objects (that is, the contained data 
object is no longer joined to any container at all).  

ETP specifies a data object capability, OrphanedChildrenPrunedOnDelete, which allows an endpoint to 
specify for each type of data object, whether or not it allows pruning operations. In addition, Store 
(Protocol 4) request messages that might result in orphaned contained data objects have a field named 
pruneContainedObjects flag, which allows the customer to request that orphans be pruned. Both 
conditions (the capability and the flag) must be true for pruning to occur.  

 For more information on capabilities for this protocol, see Section 9.2.3.  

 For related behavior for their use and all details of operations on container/contained data objects 
Section◦9.2.2. 

9.2 Store: Required Behavior 

This section contains functional and non-functional requirements for this protocol. It is organized in these 
sub-sections: 

 Message Sequence. Summarizes all messages defined by this protocol, identifies main tasks that 
can be done with this protocol and describes the response/request pattern for the messages needed 
to perform the tasks, including usage of ETP-defined capabilities, error scenarios, and resulting ETP 
error codes.  

 General Requirements. Identifies high-level (across ETP) and protocol-wide general behavior and 
rules that must be observed (in addition to behavior specified in Message Sequence), including usage 
of ETP-defined endpoint, data object and protocol capabilities, error scenarios, and resulting error 
codes.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 180 

 Capabilities. Lists and defines the ETP-defined parameters most relevant for this sub-protocol. ETP 
defines these parameters to set necessary limits to help prevent aberrant behavior (e.g., sending 
oversized messages or sending more messages than an endpoint can handle).  

Prerequisites for using this protocol:  
 An ETP session has been established using Core (Protocol 0) as described in Chapter 5. 

 Customer must have the URIs of the data objects it's interested in; these URIs are typically found 
using Discovery (Protocol 3) (Chapter 8). (They may also come "out of band" of ETP, for example, by 
email.) 

9.2.1 Store: Message Sequences 

This section explains the basic message sequence for main tasks to be done using this protocol and 
includes related key behaviors including usage of capabilities and some possible errors.  

The General Requirements section provides additional requirements and rules for how this protocol 
works.   

NOTES:  

1. This chapter explains events (operations) in Store (Protocol 4) that trigger the store to send 
notifications, which the store sends using StoreNotification (Protocol 5). However, statements of 
NOTIFICATION BEHAVIOR are here in this chapter, in the context of the detailed explanation of the 
behavior that triggers the notification.  

2. Notification behavior is described here using MUST. However, the store MUST ONLY send 
notifications IF AND ONLY IF there is a customer subscribed to notifications for an appropriate 
context (i.e., a context that includes the data object) and the store MUST ONLY send notifications to 
those customers that are subscribed to appropriate contexts. 

The following table lists all messages defined in this sub-protocol, the basic request/response usage 
patterns per ETP role, and whether it may be multipart. The detailed content of each message is 
explained in the Message Schema section. 

Store (Protocol 4): 
Basic Message-Response flow by ETP Role 

Message from customer Response Message from store 

GetDataObjects: Request to get data objects from a store.  GetDataObjectsResponse (multipart): Lists the data objects 
the store could return. 

Chunk (optional, multipart): If the data object is too large to fit 
into the response message (exceeds the WebSocket message 
size), it MUST be subdivided into a set of Chunk messages. 

PutDataObjects (multipart): Request to add data objects 
to a store. Optionally, specify "prune" behavior for 
contained objects.  

Chunk (optional, multipart): If the data object is too large to 
fit into the request message (exceeds the WebSocket 
message size), it MUST be subdivided into a set of Chunk 
messages 

PutDataObjectsResponse (multipart): List of the data objects 
the store successfully put. For container data objects, includes 
additional information. 

DeleteDataObjects: Request to delete data objects from a 
store. Optionally, specify "prune" behavior for contained 
objects. 

DeleteDataObjectsResponse (multipart): List of the data 
objects the store successfully deleted. For container data 
objects, includes additional information. 

 

9.2.1.1 To get data objects from a store: 
1. The customer MUST send the store the GetDataObjects message (Section 9.3.1), which contains a 

map whose values are the URIs of the data objects that the customer wants to retrieve. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 181 

2. For the URIs it successfully returns data objects for, the store MUST send one or more 
GetDataObjectsResponse map response messages (Section 9.3.6) where the map values are 
DataObject records with the data object URIs and data. 

a. For more information on how map response messages work, see Section 3.7.3.  

b. The store MUST return all data objects that it can that meet the criteria of the request. 

i. For definition of data object, see Section Appendix: Energistics Identifiers. 

c. The store MUST observe limits specified by its own and the customer's values for the 
MaxDataObjectSize capability. For more information about how this capability works and required 
behavior, see Section 3.3.2.4.  

d. If a data object is too large to fit in a WebSocket message, the store MAY subdivide the object 
and send it in "chunks" using the Chunk message. For more information on how to use Chunk 
messages, see Section 3.7.3.2. 

e. For more information on how GetDataObjects works for container/contained data objects, see 
Section 9.2.2, Row 15.  

i. For definitions of container/contained objects, see Section 9.1.3. 

f. For more information on how GetDataObjects works for channel data objects, see Section 9.2.2, 
Row 16. 

g. For more information on how GetDataObjects works for growing data objects, see Section 9.2.2, 
Row 17. 

3. For the URIs it does NOT successfully return data objects for, the store MUST send one or more map 
ProtocolException messages where values in the errors field (a map) are appropriate errors, such 
as ENOT_FOUND (11).  

a. For more information on how ProtocolException messages work with plural messages, see 
Section 3.7.3. 

9.2.1.2 To put data objects in a store: 
1. The customer MUST send the PutDataObjects message (Section 9.3.2), which contains a map of 

DataObject records (Section 23.34.5) each of which has the URI and data, one record for each data 
object that the customer wants to put in the request.  

a. Store (Protocol 4) uses "upsert" semantics, where update and insert use the same message—
PutDataObjects, which means a put operation MUST always be a complete replacement of the 
data object(s). 

b. The customer MUST observe limits specified the store's values for the MaxDataObjectSize 
capability. For more information about how this capability works and required behavior, see 
Section 3.3.2.4. 

c. If a data object is too large to fit in the WebSocket message, the customer MUST subdivide it and 
send it in "chunks" using the Chunk message (Section 9.3.7). For more information, see Section 
3.7.3.2.  

d. A PutDataObjects message is designated as "multipart" because it may require use of Chunk 
messages. A request MUST have only 1 PutDataObjects message, followed by zero or more 
Chunk messages. 

e. For more information on how PutDataObjects works for container/contained data objects, see 
Section 9.2.2, Row 19.  

f. For more information on how PutDataObjects works for channels and channel sets, see Section 
9.2.2, Row 20.  

g. For more information on how PutDataObjects works for growing data objects, see Section 9.2.2, 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 182 

Row 21. 

2. For the data objects it successfully puts (add to/replace in the store), the store MUST send one or 
more PutDataObjectsResponse map response messages (Section 9.3.3).  

a. For more information on how map response messages work, see Section 3.7.3. 

b. For data objects that already exist in the store, the put operation MUST ALWAYS be a complete 
replacement of the object.  

i. The store MUST also update the storeLastWrite field, which is only on the Resource for the 
data object (not on the data object itself). For more information about the storeLastWrite field, 
see Section 3.12.5.2. 

ii. The store MUST NOT set or change any elements on the data object that are not “store 
managed”. The Creation or LastUpdate elements on data objects are NOT “store managed”. 
The store MUST NOT set or change the value of these elements. 

c. For data objects that do not yet exist in the store, the store MUST add them. 

i. The store MUST also update the storeCreated and the storeLastWrite fields, which are only 
on the Resource for the data object (not the data object itself). 

1. The store MUST NOT set or change any elements on the data object that are not “store 
managed”. The Creation or LastUpdate elements on data objects are NOT “store 
managed”. The store MUST NOT set or change the value of these elements. 

ii. If the data object being added is a Channel data object, growing data object, or other data 
object that can be "active", the store MUST also set its activeStatus flag to "inactive" (the 
default when a new data object is added to a store).  

iii. For additional information for growing data objects and container/contained data objects, see 
Section 9.2.2.  

d. A store MAY schema-validate an object, but it is NOT REQUIRED to do so. 

e. NOTIFICATION BEHAVIOR: The store MUST send an ObjectChanged notification message 
with a type (objectChangeKind) of "insert" or "update". 

i. A store MUST send a notification for only the most recent effective state of a data object. So 
if multiple insert or update changes happened to a data object since the most recent insert or 
update notifications were sent for the data object, the store MAY send only one notification. If 
the object was inserted since the most recent insert or update notification was sent, the store 
MUST send an insert notification with the timestamp of the most recent insert or update 
change. Otherwise, the store MUST send an update notification with the timestamp of the 
most recent update. 

ii. Notifications are sent in StoreNotification (Protocol 5). For more information on rules for 
populating/sending notifications and why notification behavior is specified here, see Section 
9.2.2. 

f. The store MUST observe limits specified by its values for the MaxDataObjectSize capability. For 
more information about how this capability works and required behavior, see Section 3.3.2.4.  

g. If the PutDataObjects message includes container objects, the PutDataObjectsResponse 
message MUST contain additional information as specified in the PutResponse record (Section 
23.34.9) in the message.  

i. For more information on how PutDataObjects works for container/contained data objects, see 
Section 9.2.2. 

h. For more information on how PutDataObjects works for growing data objects, see Section 9.2.2. 

3. For the data objects it does NOT successfully put, the store MUST send one or more map 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 183 

ProtocolException messages where values in the errors field (a map) are appropriate errors, such 
as EREQUEST_DENIED (6).  

a. For more information on how ProtocolException messages work with a plural messages, see 
Section 3.7.3. 

b. The store MAY schema validate a data object but is not required to.  

i. A store MAY reject any document that is not schema valid and send error 
EINVALID_OBJECT (14). 

9.2.1.3 To delete one or more data objects from a store: 
1. The customer MUST send the DeleteDataObjects message (Section 9.3.4), which contains a map 

whose values are the URIs for data objects to be deleted.  

a. For more information on how DeleteDataObjects works for container/contained data objects, see 
Section 9.2.2. 

2. For the URIs it successfully deletes data objects for, the store: 

a. MUST delete the data object(s). 

i. A store MUST retain a "tombstone" for each deleted data object for its value for the 
ChangeRetentionPeriod capability, which MUST be greater than or equal to the minimum 
value stated in this specification (see Section 9.2.3). 

1. The "tombstone" and its content are defined by the DeletedResource schema (see 
Section 23.34.12), which MUST include the data object's canonical URI, qualified type, 
and the time it was deleted.  

2. Tombstones MUST be retained by a store endpoint for at least the 
ChangeRetentionPeriod as long as there is at least one session connected to it. It is 
STRONGLY recommended to always retain tombstones for the ChangeRetentionPeriod. 

3. If a store is unable to retain tombstones for the full ChangeRetentionPeriod (e.g., 
because the store application restarted and it has no persistent storage for tombstones), 
the store MUST advise customers of the earliest timestamp tombstones that are available 
in the earliestRetainedChangeTime field in either OpenSession or RequestSession. 

4. NOTE: For growing and channel data objects, a store MUST also delete any relevant 
change annotations. For more information about change annotations, see Chapter 11 
GrowingObject (Protocol 6) and Chapter◦19◦ChannelSubscribe (Protocol 21). 

ii. Tombstones are used in the workflow for eventual consistency; for more information, see 
Appendix: Data Replication and Outage Recovery Workflows.  

iii. For growing data objects, the store MUST also delete the parts of the growing data object. 

b. MUST perform this NOTIFICATION BEHAVIOR (StoreNotification (Protocol 5):  
i. After a delete operation, the store MUST send an ObjectDeleted notification. 
ii. A delete is an atomic operation; the store MUST perform the delete operation and then send 

notifications.  
iii. A store MUST send a notification for only the most recent effective state of a data object. So 

if notifications are queued, and the object is subsequently deleted, the store MAY discard any 
previous notifications. 

c. MUST respond with one or more DeletedDataObjectsResponse map response messages. 
(Section 9.3.5), which lists the URIs for each of the data objects that was successfully deleted.  

i. For more information on how map response messages work, see Section 3.7.3. 

3. For the URIs it does NOT successfully delete data objects for, the store MUST send one or more map 
ProtocolException messages where values in the errors field (a map) are appropriate errors, such 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 184 

as ENOT_FOUND (11).  

a. For more information on how ProtocolException messages work with a plural messages, see 
Section 3.7.3. 

9.2.2 Store: General Requirements 

In addition to the basic message sequence described in the previous section, this protocol has the 
additional requirements listed in the table below. For easy reference, the rows and behaviors in this table 
are numbered.  

NOTE: This table has been organized to reduce redundancy but also to help developers more easily 
locate specific requirements. EXAMPLE: There are rows with general requirements that apply to all 
protocols (e.g., Rows 1–2), rows for general requirements for this protocol, and (possibly) some rows with 
additional requirements for specific types of operations.  

Row# Requirement Behavior 

1.  ETP-wide behavior that MUST be 
observed in all protocols 

1. Requirements for general behavior consistent across all of ETP are defined in 
Chapter 3. This behavior includes information such as: all details of message 
handling (such as message headers, handling compression, use of message IDs 
and correlation IDs, requirements for plural and multipart message patterns) use 
of acknowledgements, general rules for sending ProtocolException messages, 
URI encoding, serialization and more. RECOMMENDATION: Read Chapter 3 
first. 

2. For information about Energistics identifiers and prescribed ETP URI formats, see 
Appendix: Energistics Identifiers. 

a. In MOST cases, endpoints performing operations in this protocol MUST use 
the canonical Energistics URI. For more information, see Section 3.7.4. 

3. For the complete list of error codes defined by ETP, see Chapter 24. 

4. ALL operations in an ETP session are performed on the set of supported data 
object types that were negotiated to be used when the session was initiated 
and established. 

a. The client and server exchange the list of data object types in the 
supportedDataObjects field of the RequestSession and OpenSession 
messages in Core (Protocol 0). For more information, see Chapter 5. 

b. In general, the list of supported objects for a session will most likely be the 
intersection of the data objects that the server supports and the data objects 
that the client requested for the ETP session. 

c. A store MUST support all messages (in each supported ETP sub-protocol) 
for each supported data object, whether the data object is supported 
explicitly or by wild card. 

d. An endpoint MUST only send messages with the URI of a data object that is 
a type supported by the other endpoint for this ETP session.  

i. If an endpoint sends a URI for an unsupported type of data object, the 
other endpoint MUST send error 
EDATAOBJECTTYPE_NOTSUPPORTED (16). 

2.  Capabilities-related behavior 1. Relevant endpoint, data object, and/or protocol capabilities MUST be specified 
when the ETP session is established (see Chapter 5) and MUST be used/honored 
as defined in the relevant ETP sub-protocol.  

2. For an explanation of endpoint, data object, and protocol capabilities, see Section 
3.3. 

a. For the list of global capabilities and related behavior, see Section 3.3.2. 

3. Section 9.2.3 identifies the capabilities most relevant to this ETP sub-protocol. If 
one or more of the defined capabilities is presented by an endpoint, the other 
endpoint in the ETP session MUST accept it (them) and process the value, and 
apply them to the behavior as specified in this document. 

a. Additional details for how to use the capabilities are included below in this 
table and in Section 9.2.1 Store: Message Sequence. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 185 

Row# Requirement Behavior 

3.  Message Sequence 

See Section 9.2.1. 

1. The Message Sequence section above (Section 9.2.1) describes requirements for 
the main tasks listed there and also defines required behavior. 

4.  Plural messages (which includes 
maps) 

1. This protocol uses plural messages. For detailed rules on handling plural 
messages (including ProtocolException handling), see Section 3.7.3. 

5.  Requirements for use of PWLS Practical Well Log Standard (PWLS) is an industry standard stewarded by Energistics. 
It provides an industry-agreed list of logging tool classes and a hierarchy of 
measurement properties and applies all known mnemonics to them. For more 
information, see Section 3.12.7.  

1. If an ETP store supports the WITSML Channel data object, then it MUST support 
PropertyKind data objects (which are an implementation of PWLS).   

2. Endpoints MUST be able to discover property kind data objects (to determine 
available property kinds) and use the returned property kinds in relevant 
Discovery, Store and Query operations. 

6.  For data objects that exceed an 
endpoint's WebSocket message 
size, use the Chunk message. 

1. Some messages in this protocol allow or require a data object to be sent with the 
message. If the size of the data object (bytes) is too large for the WebSocket 
message size (which for some WebSocket libraries can be quite small, e.g. 128 
kb), an endpoint MAY subdivide the data object and send it in "chunks" using the 
Chunk message defined in this protocol. For information on how to handle these 
binary large objects (BLOBs), see Section 3.7.3.2. 

2. NOTE: Use of Chunk messages DOES NOT address an endpoint's 
MaxDataObjectSize limit.  

3. The specific messages in this protocol that may use Chunk messages are: 

a. GetDataObjectsResponse 

b. PutDataObjects 

7.  Notifications 1. This chapter explains events (operations) in Store (Protocol 4) that trigger the 
store to send notifications, which the store sends using StoreNotification (Protocol 
5). However, statements of NOTIFICATION BEHAVIOR are here in this chapter, 
in the context of the detailed explanation of the behavior that triggers the 
notification.  

2. Notification behavior is described here using MUST. However, the store MUST 
ONLY send notifications IF AND ONLY IF there is a customer subscribed to 
notifications for an appropriate context (i.e., a context that includes the data 
object) and the store MUST ONLY send notifications to those customers that are 
subscribed to appropriate contexts. 

a. For more information on data object notifications, see Chapter 10 
StoreNotification (Protocol 5). 

b. For information on notifications for parts in growing data objects, see 
Chapter◦12 GrowingObjectNotification (Protocol 7). 

8.  Store Behavior: Updates to 
storeCreated and storeLastWrite 
fields. 

1. Each Resource in ETP has these two fields: storeCreated and storeLastWrite.   

a. These fields appear ONLY on the Resource NOT on the data object and are 
used in workflows for eventual consistency between 2 stores.  

b. For more information about these fields, see Section 3.12.5.1 and their 
definitions/required format in Resource (see Section 23.34.11).   

2. For operations in Store (Protocol 4) that ADD a new data object (e.g. 
PutDataObjects), the store MUST do both of these: 

a. Set the storeCreated field to the time that the data object was added in the 
store.  

b. Set the storeLastWrite to the same time as storeCreated. 

3. For operations to data objects that may occur in another protocol that change any 
data for the data object (e.g., GrowingObject (Protocol 6), which may result in 
changes to the growing data object header or its parts, or ChannelSubscribe 
(Protocol 21) where data may be appended to a channel), the store MUST update 
the storeLastWrite field with the time of the change in the store. 

a. Currently other protocols that trigger updates to these fields include:  

i. GrowingObject (Protocol 6); see Chapter 11. 

ii. ChannelStreaming (Protocol 1); see Chapter 6. 

iii. ChannelDataLoad (Protocol 22); see 20. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 186 

Row# Requirement Behavior 

9.  Store behavior for data objects 
that can be "active": Setting the 
activeStatus field 

1. In ETP, channel data objects, growing data objects and other data objects that 
can be “active” have a field named activeStatus. For information about this field 
and required behavior for setting it to "inactive" related to the ActiveTimeoutPeriod 
capability, see Section 3.3.2.1. 

2. If a data object that can be “active” has an activeStatus of “inactive” and relevant 
updates are made to data objects in the store, the store MUST set the 
activeStatus to “active”. For channel data objects, the relevant changes are 
adding or changing data points. For growing data objects, the relevant changes 
are adding or changing parts. For other data objects, see the relevant ML ETP 
implementation guide. 

a. For Channel data objects, data points are added or changed using 
ChannelStreaming (Protocol 1) (see Chapter 6), or ChannelDataLoad 
(Protocol 22) (see Chapter 20). 

b. For growing data objects, parts are added or changed using GrowingObject 
(Protocol 6). For more information, see Chapter 11. 

c. NOTIFICATION BEHAVIOR: When a data object's activeStatus field 
changes, a store MUST send an ObjectActiveStatusChanged notification 
message. For more information see Chapter 10 StoreNotification (Protocol 
5). 

10.  Store Behavior: Store managed 
elements and attributes on data 
objects 

Some elements and attributes on Energistics data objects are managed by an ETP 
store. Examples of these are the index range elements on channels and growing data 
objects and the GrowingStatus element on growing data objects. The individual MLs 
define which elements and attributes are store managed. 

Observe these rules for store managed elements and attributes: 

1. When a customer requests a data object, the store MUST populate these 
elements and attributes with the correct and current values before returning the 
data object to the customer. 

2. When a customer puts a data object into a store, the store MUST ignore any 
values the customer may have provided for these elements and attributes. If the 
customer provides values for these elements and attributes, the store MUST NOT 
treat it as an error. 

11.  Store Behavior: Immutable 
elements and attributes 

Some elements and attributes on Energistics data objects are immutable. That is, the 
values for these are set when the data object is created, and the values cannot be 
changed after that. Examples of these are a data object’s UUID and the unit of 
measure for channel data. 

Observe these rules for immutable elements and attributes: 

1. When the customer creates the data object, the store MUST use the values 
provided by the customer for these elements and attributes. 

2. If a customer attempts to update an existing data object and provides different 
values for immutable elements or attributes, the store MUST reject the update and 
send error EREQUEST_DENIED (6). 

3. If a customer needs to change the values of any immutable elements or attributes, 
the customer MUST first delete the data object and then recreate it with the 
correct values. 

12.  Container/contained data objects: 
General rules (including optional 
pruning behavior)  

1. Relevant definitions: 

a. Of container and contained objects and related concepts, see Section 9.1.3. 

b. Of protocol and data object capabilities, see Section 9.2.3. 

2. A customer MUST limit in a put request the count of data objects contained in 
each container data object to a store's value for the 
MaxContainedDataObjectCount data object capability for that specific container 
data object type.  

a. For any request that exceeds the store's limit, the store MUST deny the 
request and send error ELIMIT_EXCEEDED (12). 

b. In situations where there are multiple nested levels of contained data 
objects, more than one limit may apply. In the example in Paragraph 7 
above, the value for MaxContainedDataObjectCount may be different for 
logs and channel sets. 

3. An endpoint MAY specify on which types of container data objects it allows 
"pruning operations" to occur by setting the OrphanedChildrenPrunedOnDelete 
data object capability to true (see Section 9.2.3). 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 187 

Row# Requirement Behavior 

4. The PutDataObjects and DeleteDataObjects messages have a 
pruneContainedObjects Boolean flag, which allows the store to cleanup "orphan" 
contained objects following an operation on a container.  

a. For more information on PutDataObjects operations for container/contained 
data objects, see Rows 19.  

b. For more information on DeleteDataObjects operations for 
container/contained data objects, see Rows 25. 

5. For successful pruning operations to occur on a specific data object type, both of 
these conditions MUST be true:  

a. The OrphanedChildrenPrunedOnDelete data object capability MUST be set 
to true.  

b. The pruneContainedObjects Boolean flag on the request message MUST be 
set to true. 

6. A prune operation is a "soft delete" for "garbage collection". The store will only 
delete those objects that qualify for pruning. 

a. There may be reasons (e.g., security) unknown to the customers, that a 
customer cannot see all contained objects or that all contained objects are 
not deleted.  

7. A prune operation is applied to ALL levels of ByValue relationships in the 
container being acted upon. EXAMPLE: A log contains channel sets ByValue, 
and a channel set contains channels ByValue. If both conditions in Paragraph 5 
are true for both logs and channel sets, for an operation on a log, the store MUST 
cleanup both orphaned channel sets and channels.  

a. Putting or deleting a data object is an atomic operation. Any pruning caused 
by a put or delete MUST be included in the atomic put or delete operation. 

b. The OrphanedChildrenPrunedOnDelete data object capability may be 
different for different objects.  

c. The pruneContainedObjects is applied to ALL data objects listed in a given 
request message. If a customer has some data objects it wants "pruned" and 
others it does not, then the customer MUST send separate requests for each 
case.  

8. If a customer sends a message with the pruneContainedObjects flag set to true 
for a data object type whose OrphanedChildrenPrunedOnDelete data object 
capability is false, the store MUST reject the entire operation and send error 
ENOCASCADE_DELETE (4003). 

13.  Get data objects: General rules 1. For the general requirements and the message sequence for getting data objects 
from a store, see Section 9.2.1.1. 

14.  Index metadata: General rules for 
channels, channel sets and growing 
data objects. 

1. A growing data object’s index metadata MUST be consistent: 

a. All parts MUST have the same index unit and the same vertical datum. 

b. The index units and vertical datums in the growing data header MUST match 
the parts. 

2. A channel data object’s index metadata MUST be consistent: 

a. The index units and vertical datums MUST match the channel’s index 
metadata. 

3. A channel set data object’s index metadata MUST be consistent: 

a. The index units and vertical datums MUST match the channel set’s index 
metadata. 

b. The channel set’s index metadata MUST match the relevant index metadata 
in the channels it contains. 

4. When sending messages, both the store AND the customer MUST ensure that all 
index metadata and data derived from index metadata are consistent in all fields 
in the message, including in XML or JSON object data or part data. 

a. EXAMPLE: The uom and depthDatum in an IndexInterval record MUST be 
consistent with the data object’s index metadata. 

b. EXAMPLE: Data object elements related to index values in growing data 
object headers (e.g., MdMn and MdMx on a WITSML 2.0 Trajectory) and 
parts (e.g., Md on a WITSML 2.0 TrajectoryStation) MUST be consistent with 
each other AND the data object’s index metadata. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 188 

Row# Requirement Behavior 

5. A store MUST reject requests with inconsistent index metadata with an 
appropriate error such as EINVALID_OBJECT (14) or EINVALID_ARGUMENT 
(5). 

15.  Get data objects: Additional rules 
for container/contained objects 

1. You MUST follow the general rules for get operations in Section 9.2.1.1 and the 
general rules for container/contained objects in Row 12, and the additional 
requirements listed in this row.  

2. A store MUST return contained objects in a container object, as defined by the 
container data object schema.  

a. For more information about specific kinds of container objects, consult the 
relevant ML documentation and companion ETP implementation 
specification.  

16.  Get data objects: Additional rules 
for channels and channel sets 

1. You MUST observe the rules in previous row for container/contained objects and 
these additional rules for ChannelSets and Channels. 

2. For a ChannelSet data object, the store MUST return the Channels but NOT the 
data for each channel. 

3. For a Channel data object, the store MUST NOT return the data for the channel. 

17.  Get data objects: Additional rules 
for growing data objects 

1. You MUST follow the rules specified in Section 9.2.1.1 with these additional 
requirements for growing data objects. 

2. The store MUST return the full growing data object, including its parts, as defined 
by the growing data object schema. (NOTE: The parts of growing data objects are 
not themselves Energistics data objects. As such, Store (Protocol 4) does not 
operate directly on parts. Store (Protocol 4) only handles parts of growing data 
objects when they are included within the body of the growing data object. To 
operate directly on parts, use GrowingObject (Protocol 6).)  

a. The store must observe limits specified by its own and the customer’s values 
for the MaxPartSize capability. For more information about how this 
capability works and required behavior, see Section 3.3.2.5. 

b. For more information about specific growing data objects, consult the 
relevant ML documentation and companion ETP implementation 
specification. 

3. When returning a growing data object, any store-managed elements or attributes 
in the growing data object header that are populated with information from the 
growing data object’s index metadata MUST be populated consistently with the 
index metadata.  

a. EXAMPLE: The MdMn and MdMx elements on a WITSML 2.0 Trajectory 
MUST have the same unit and depth datum as the Md elements on the 
trajectory’s stations. 

18.  Put (insert or update) data 
objects: General rules  

1. For the general requirements and message sequence for creating/inserting or 
updating data objects, see Section 9.2.1.2. 

19.  Put/update data objects: 
Additional rules for 
container/contained data objects 

1. You MUST follow the general rules for put operations in Section 9.2.1.2 and the 
general rules for container/contained objects in Row 12, and the additional 
requirements listed in this row.  

a. If the customer wants to prune orphaned contained data objects, it MUST set 
the pruneContainedObjects field in PutDataObjects message to true. For all 
details on how prune operations work, see Row 12 above. 

b. Rule 2 in Section 9.2.1.2 MUST be applied to the container object only—
NOT to the contained objects. EXAMPLE: If the customer request is to put a 
ChannelSet with 6 Channels, the store MUST replace ONLY the ChannelSet 
(NOT each of the Channels in the set).  

c. The notification behavior in Rule 2.e MUST be applied for the container 
object only. NOTE: Additional items below in this row explain additional 
notifications that MAY be sent for contained objects.  

2. A customer MUST limit in a put request, the count of data objects contained in 
each container data object to a store's value for MaxContainedDataObjectCount 
data object capability for that specific container data object type.  

a. For any request that exceeds the store's limit, the store MUST deny the 
request and send error ELIMIT_EXCEEDED (12). 

 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 189 

Row# Requirement Behavior 

For the contained objects in a put container operation, a store MUST observe these 
rules:  

3. If a contained object already exists in the store and was not previously contained 
in the container data object: 

a. The store MUST link (join) it to the container ("link" as appropriate for the 
underlying store). 

b. The store MUST NOT update any data elements (including LastChanged) on 
the contained objects; the store MUST ignore any changes that may have 
been sent for the contained object.  

c. NOTIFICATION BEHAVIOR (StoreNotification (Protocol 5) (reminder: Row 
7): The store MUST send an ObjectChanged notification with an 
objectChangeKind of "joined".  

4. If a contained object already exists in the store and is already contained in the 
container: 

a. The store MUST NOT update any data fields (including the lastChanged 
field) on the contained objects; the store MUST ignore any changes that may 
have been sent for the contained object. 

5. If the contained object DOES NOT exist in the store: 

a. The store MUST add the object and MUST link it to the container.  

b. NOTIFICATION BEHAVIOR (StoreNotification (Protocol 5) (reminder: Row 
7): The store MUST send 2 ObjectChanged notifications: one for "insert" of 
the new contained data object and one for "joined" to its container.  

6. A put operation may have an "implied delete". EXAMPLE: If an existing channel 
set originally had 6 channels, and the channel set is put again with only 5 
channels, then the channel that was not included in the latest put is removed from 
the channel set. The store MUST observe this behavior: 

a. NOTIFICATION BEHAVIOR (StoreNotification (Protocol 5) (reminder: Row 
7): It MUST send an ObjectChanged notification with a type of "unjoined". 

b. If pruneContainedObjects is set to true in the PutDataObjects message, the 
store MUST follow prune behavior as specified in Row 12.  

i. NOTIFICATION BEHAVIOR (StoreNotification (Protocol 5): If the 
contained object was pruned, the store MUST send an ObjectDeleted 
notification. 

ii. If the contained data object was not pruned, it is skipped (not included in 
the response).  

c. The PutDataObjectsResponse message contains a PutResponse record 
which contains additional information for operations on the contained objects 
in the container. For more information, see Section 23.34.9.  

7. If the contained object is itself a container object, the store MUST repeat Steps 3 
through 6 (implied delete) on the data objects contained within it. That is, apply 
the put container operation recursively to nested container objects such as Log 
and Channel Set. 

8. At completion of the operation, all contained objects in the PutDataObjects 
message MUST be linked or unlinked (depending on specifics of the operation as 
described in the steps above in this row) to the specified container.  

9. Possible errors: 

a. The entire put operation MUST succeed. If any part of the put operation fails, 
the store MUST do the following: 

i. Send error EREQUEST_DENIED (06) (for more information about 
using ProtocolException messages with maps, see Section 3.7.3.)  

ii. Roll back all parts of the operation (EXAMPLE: If putting a 
ChannelSet with 100 Channels, and one Channel cannot be put, 
then the entire operation MUST be rolled back.) RECOMMENDED: 
The ProtocolException message include information that indicates 
the object(s) in the set that failed. 

b. If the pruneContainedObjects flag on the PutDataObjects message is set to 
true, but the OrphanedChildrenPrunedOnDelete capability for the data object 
is false, the store MUST send error ENOCASCADE_DELETE (4003).   

20.  Put/update data objects: 
Additional rules for channels and 
channel sets 

1. You MUST observe the rules in previous row for container/contained objects and 
these additional rules for ChannelSets and Channels 

2. If the data object being put is a channel or channel set, and the request exceeds 
the store's value for MaxSecondaryIndexCount data object capability, the store 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 190 

Row# Requirement Behavior 

MUST deny the request with ELIMIT_EXCEEDED (12). 

a. If a store allows write/put operations, it MUST support at least 1 secondary 
index. 

3. When putting a channel or channel set, the index range elements MUST be 
consistent with the channel or channel set’s index metadata. 

a. The store MUST reject any channel or channel set with inconsistent index 
range elements send error EINVALID_OBJECT (14). For the definition of 
compatible index metadata, see Section 7.1.1. 

4. When putting a channel set, the customer MUST ensure that the channel set’s 
index metadata is compatible with the index metadata for all channels in the 
channel set. 

a. The store MUST reject any channel set with incompatible index metadata 
and send error EINVALID_OBJECT (14). For the definition of compatible 
index metadata, see Section 7.1.1. 

21.  Put/update data objects: 
Additional rules for growing data 
objects 

1. You MUST follow the rules specified in Section 9.2.1.2 with these additional 
requirements for growing data objects. 

2. A customer MAY use the PutDataObjects message to put (insert, add) a NEW 
growing data object (new = one that does not exist in the store) including its parts, 
in a single operation (which is new behavior in ETP v1.2).  

a. Store (Protocol 4) only handles growing data object parts when the parts are 
themselves data objects or when creating a new growing data object and 
parts are included within the body of the growing data object. To operate 
directly on parts, use GrowingObject (Protocol 6).  

b. The customer must observe limits specified by the store’s value for the 
MaxPartSize capability. For more information about how this capability works 
and required behavior, see Section 3.3.2.5.  

c. Alternatively, an endpoint MAY use GrowingObject (Protocol 6) to add a new 
growing data object and its parts, but use of that protocol requires a couple 
of messages/operations (see Chapter 11).  

d. When creating a growing data object that includes parts, the customer MUST 
ensure that ALL parts have consistent index metadata for the elements on 
the parts that are used as the part index values or index range values. The 
parts MUST also be consistent with any index metadata related to the parts 
included in the growing object header (EXAMPLE: MdMn and MdMx on a 
WITSML 2.0 Trajectory). 

i. The store MUST reject any growing data object that has parts with 
inconsistent index metadata or parts that have index metadata that is 
inconsistent with the header and send error EINVALID_OBJECT (14). 

3. For successful put operations, a store MUST do the following in response:  

a. Add the new growing data object(s). 

b. If parts are included and the parts themselves are NOT data objects, add the 
parts to the growing data object. 

c. If parts are included and the parts themselves ARE also data objects: 

i. Create any parts that do not exist. 

ii. Update any previously existing parts with the new content. 

iii. Link all parts to the growing data object. 

d. Set the growing data object's activeStatus flag to "inactive" (default when a 
new growing data object or channel is added to a store).  

e. Send the PutDataObjectsResponse message, which lists the growing data 
objects that were successfully added.  

f. NOTIFICATION BEHAVIOR: (reminder: Row 7) in StoreNotification 
(Protocol 5), the store MUST send an ObjectChanged notification message 
for the growing data object.  

i. If any parts that are themselves also data objects previously existed 
and were updated, the store MUST also send ObjectChanged and 
notifications for these parts.  

ii. If any previously parts that are themselves data objects are also 
contained in other growing data objects, the store MUST also send 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 191 

Row# Requirement Behavior 

“joined” ObjectChanged notifications AND PartsChanged notifications 
for these parts.  

4. All UPDATES to existing growing data objects and their parts MUST be done 
using GrowingObject (Protocol 6).  

a. If a customer tries to update an existing growing data object using the 
PutDataObjects message, the store MUST send error 
EUPDATEGROWINGOBJECT_DENIED (23).  

22.  Put/update data objects: 

Additional rules for data objects that 
are BOTH growing data objects 
AND container data objects 

1. For data objects that are both growing data objects AND container data objects 
(such as the WITSML v2.0 InterpretedGeology object), the additional rules for 
both growing data objects and container data objects apply, but the growing data 
object rules take precedence.  

a. When creating a new growing data object that contains previously existing 
parts, the previously existing parts MUST be both linked AND updated. 

i. NOTIFICATION BEHAVIOR: (reminder: Row 7) in StoreNotification 
(Protocol 5), for previously existing parts that are linked, the store 
MUST send an ObjectChanged notification message, with an 
ObjectChangeKind of "joined".  

b. When creating a new growing data object, a customer MUST also limit the 
count of parts in the growing data object to the store's relevant value for 
MaxContainedDataObjectCount. 

c. EXAMPLE: Putting a new InterpretedGeology data object that contains a 
combination of new and existing InterpretedGeologyInterval contained data 
objects/parts WILL SUCCEED.  

i. The new InterpretedGeology data object will be created in the store; 
any new InterpretedGeologyInterval data objects will be created in the 
store; any previously existing InterpretedGeologyInterval data objects 
that are included in the new InterpretedGeology data object will be 
updated with the new content; the InterpretedGeology data object will 
be linked with all intervals it contains; and an ObjectChanged 
notification message, with an ObjectChangeKind of "joined" will be 
sent for the previously existing intervals. 

d. EXAMPLE: Putting an existing InterpretedGeology data object with a 
different set of InterpretedGeologyInterval contained data objects/parts WILL 
FAIL because Store (Protocol 4) does not support updates to growing data 
objects. 

i. Because the put fails, no changes will be made to the 
InterpretedGeologyInterval data objects/parts contained in the 
InterpretedGeology interval and no linking or unlinking will happen. 

23.  Put/update data objects: 
Additional rules for data objects that 
are BOTH growing data object parts 
AND contained data objects 

 

1. Observe these rules for data objects that are both growing data object parts AND 
contained data objects (such as the WITSML v2.0 InterpretedGeologyInterval 
object): 

a. You MUST follow the general rules for put operations in Section 9.2.1.2.  

b. NOTIFICATION BEHAVIOR: If the data objects are included in any growing 
data objects, in GrowingObjectNotification (Protocol 7), the store MUST send 
a PartsChanged notification message. 

24.  Delete data objects: General rules 
(including growing data objects) 

1. For the general requirements and message sequence for deleting one or more 
data objects, see Section 9.2.1.3.  

25.  Delete data Objects: Additional 
rules for container and contained 
data objects 

1. You MUST follow the general rules for delete operations in Section 9.2.1.3 and 
the general rules container/contained objects in Row 12, and the additional 
requirements listed in this row.   

a. Step 2 in Section 9.2.1.3 applies to the container object only (not the 
contained objects).  

For contained objects, observe these rules for a delete container data object operation:  

2. If a customer wants to prune orphan contained data objects, it MUST set the 
pruneContainedObjects flag to true in the DeleteDataObjects message.  

a. The store MUST delete orphan contained objects as described in Row 12. 
NOTIFICATION BEHAVIOR (StoreNotification (Protocol 5) (reminder: Row 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 192 

Row# Requirement Behavior 

7): The store MUST send an ObjectDeleted notification for each deleted 
container data object and for pruned contained data objects. 

3. The DeleteDataObjectsResponse message MUST also list any contained data 
objects that were pruned/deleted (in addition to the container objects that were in 
the delete request).  

4. To remove contained objects from a container (but NOT delete the data object), a 
customer MUST send a PutDataObjects message that lists only those contained 
objects that must be included in the set. For more information, see Row 19. 

For contained objects, observe these rules for a delete contained data object 
operation: 

5. The store MUST unlink (unjoin) it to from any container data object it is contained 
in. 

6. The store MUST update storeLastWrite on any container data object it is 
contained in. 

7. NOTIFICATION BEHAVIOR (StoreNotification (Protocol 5) (reminder: Row 7): 
The store MUST send an ObjectChanged notification with an objectChangeKind 
of "unjoined".  

26.  Delete data objects: Additional 
rules for data objects that are BOTH 
growing data objects AND container 
data objects 

1. For data objects that are both growing data objects AND container data objects 
(such as the WITSML v2.0 InterpretedGeology object), these additional rules for 
container data objects apply: 

a. When deleting a growing data object, the parts will only be deleted if pruning 
is requested and supported for the growing data object type AND the parts 
are not also included in other data objects (i.e., deleting the growing data 
object will orphan the parts). 

b. EXAMPLE: Deleting an InterpretedGeology data object that contains 
InterpretedGeologyIntervals with pruneContainedObjects = false will NOT 
delete the intervals: 

i. The InterpretedGeology data object will be deleted. 

ii. The InterpretedGeologyInterval data objects it contained will still exist in 
the store. 

c. EXAMPLE: Deleting an InterpretedGeology data object that contains two 
InterpretedGeologyIntervals, interval A and interval B, where interval A is 
contained in another InterpretedGeology data object and interval B is ONLY 
contained in the InterpretedGeology data object that is being deleted, with 
pruneContainedObjects = true will ONLY delete the orphaned interval: 

i. The InterpretedGeology data object will be deleted. 

ii. Interval A will NOT be deleted (because it is still contained in another 
data object). 

iii. Interval B WILL be deleted (because it is orphaned). 

27.  Delete data objects: Additional 
rules for data objects that are BOTH 
growing data object parts AND 
contained data objects 

1. Observe these rules for data objects that are both growing data object parts AND 
contained data objects (such as the WITSML v2.0 InterpretedGeologyInterval 
object): 

a. You MUST follow the general rules for delete operations in Section 9.2.1.3. 

b. NOTIFICATION BEHAVIOR: If the data objects are included in any growing 
data objects, in GrowingObjectNotification (Protocol 7), the store MUST send 
a PartsDeleted notification message. 

 

9.2.3 Store: Capabilities 

The table below lists key capabilities for this protocol. The protocol capabilities are all defined here. For 
this protocol, two particularly crucial endpoint capabilities are defined here.  

 For protocol-specific behavior relating to using these capabilities in this protocol, see Sections 
9.2.1,◦Store: Message Sequence and 9.2.2, Store: General Requirements. 

 For definitions for endpoint and data object capabilities, see the links in the table. 

 For general information about the types of capabilities and how they may be used, see Section 3.3. 

 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 193 

Store (Protocol 4): Capabilities 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

Endpoint Capabilities  

(For definitions of all endpoint capabilities, see Section 3.3.) 

   

NOTE: Many endpoint capabilities are "universal", used in all or 

most of the ETP protocols. For more information, see Section 
3.3.2. 

Behavior associated with other endpoint capabilities are 
defined in relevant chapters.  
EXAMPLE: The capabilities defined for limiting ETP 
sessions between 2 endpoints are discussed in 
Section 4.3, How a Client Establishes a WebSocket 

Connection to an ETP Server. 

   

ChangeRetentionPeriod: The minimum time period in seconds 

that a store retains the canonical URI of a deleted data object and 
any change annotations for channels and growing data objects.  
RECOMMENDATION: This period should be as long as is feasible 

in an implementation. When the period is shorter, the risk is that 
additional data will need to be transmitted to recover from outages, 
leading to higher initial load on sessions.  

Long Seconds 

Value units: 

<number of 
seconds> 

Default: 86,400 

MIN: 86,400  

MaxPartSize: The maximum size in bytes of each data object part 

allowed in a standalone message or a complete multipart 
message. Size in bytes is the total size in bytes of the 
uncompressed string representation of the data object part in the 
format in which it is sent or received. 

Applies to get and put operations of growing data objects.  

Long byte 
<number of 
bytes> 

Min: 10,000 
bytes 

Data Object Capabilities  

(For definitions of all data object capabilities, see Section 3.3.4) 

   

SupportsGet, SupportsPut and SupportsDelete 

For definitions and usage rules for each of these data object 
capabilities, see Section 3.3.4. 

   

ActiveTimeoutPeriod: (This is also an endpoint capability.)  

The minimum time period in seconds that a store keeps the active 
status (activeStatus field in ETP) for a data object as “active” after 
the most recent update causing the data object’s active status to 
be set to true. For growing data objects, this is any change to its 
parts. For channels, this is any change to its data points. 

This capability can be set for an endpoint and/or for a data object. 
A data object-specific value overrides an endpoint-specific value. 

Long second 
<number of 
seconds> 

Default: 3,600 

MIN: 60 seconds 

MaxContainedDataObjectCount: The maximum count of 

contained data objects allowed in a single instance of the data 
object type that the capability applies to.  

EXAMPLE: If this capability is set to 2000 for a ChannelSet, then 
the ChannelSet may contain a maximum of 2000 Channels. 

Long Count 
<count of objects> 

MIN: Should be 
specified per 
domain 

OrphanedChildrenPrunedOnDelete: For a container data object 

type (i.e., a data object type that may contain other data objects 
ByValue), this capability indicates whether contained data objects 

Boolean N/A Default: false 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 194 

Store (Protocol 4): Capabilities 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

that are orphaned as a result of an operation on its container data 
object may be deleted (pruned).  

NOTES:  

1. Both delete or put operations of a container data object may 
result in contained data objects being orphaned. 

2. For successful pruning operations to occur on a specific data 
object type, both of these conditions MUST be true:  

a. This capability MUST be set to true.  

b. The pruneContainedObjects Boolean flag on the request 

message MUST be set to true. 

EXAMPLE: If this capability is set to true for ChannelSet, and on a 
DeleteDataObjects message for a ChannelSet the 
pruneContainedObjects Boolean flag is set to true, and (after the 
container is deleted) a Channel in that ChannelSet belongs to no 
other ChannelSets, then that "orphaned" Channel is also deleted. 

MaxSecondaryIndexCount: The maximum count of secondary 

indexes allowed in a single instance of the data object type that the 
capability applies to, which may be Channel or ChannelSet. 

long Count 
<count of 
secondary 
indexes> 

MIN: 1 

Default: 1 

Protocol Capabilities     

MaxDataObjectSize: (This is also an endpoint capability and a 

data object.) The maximum size in bytes of a data object allowed in 
a complete multipart message. Size in bytes is the size in bytes of 
the uncompressed string representation of the data object in the 
format in which it is sent or received. 

This capability can be set for an endpoint, a protocol, and/or a data 
object. If set for all three, here is how they generally work:  

 An object-specific value overrides an endpoint-specific value.  

 A protocol-specific value can further lower (but NOT raise) the 
limit for the protocol.  

EXAMPLE: A store may wish to generally support sending and 

receiving any data object that is one megabyte or less with the 
exceptions of Wells that are 100 kilobytes or less and Attachments 
that are 5 megabytes or less.  A store may further wish to limit the 
size of any data object sent as part of a notification in 
StoreNotification (Protocol 5) to 256 kilobytes. 

long byte 
<number of 
bytes> 

 

MIN: 100,000 
bytes 

 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 195 

9.3 Store: Message Schemas 

This section provides a figure that displays all messages defined in Store (Protocol 4). Subsequent sub-
sections provide an example schema for each message and definitions of the data fields contained in 
each message. 

 
Figure 18: Store: message schemas 

9.3.1 Message: GetDataObjects 

A customer sends to a store to get one or more data objects, each identified by a URI. The response to 
this message is the GetDataObjectsResponse message.  

Message Type ID: 1 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

uris General ETP map where each value MUST be the 
URI of a data object to be retrieved. 

If both endpoints support alternate URIs for the 
session, these MAY be alternate data object 
URIs. Otherwise, they MUST be canonical 
Energistics data object URIs. For more 
information, see Appendix: Energistics 
Identifiers. 

string 1 n 

format Specifies the format (e.g., XML or JSON) in which 
you want to receive data for the requested data 
objects. This MUST be a format that was 
negotiated when establishing the session. 

string 1 1 

class Store

«Message»
DeleteDataObjects

+ pruneContainedObjects : boolean = fa lse
+ uris : s tring [1..n] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 3
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store to delete one or more data objects
from the store.
The response to this message is the DeleteDataObjectsResponse
message.

«Message»
GetDataObjects

+ format: s tring = xml
+ uris : s tring [1..n] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 1
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store to get one or more data objects,
each identified by a URI. The response to this message is the
GetDataObjectsResponse message.

«Message»
PutDataObjects

+ dataObjects : DataObject [1..n] (map)
+ pruneContainedObjects : boolean = fa lse

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 2
MultiPart = True
SenderRole = customer

notes
A customer sends to a store to add or update one or more data
objects. The "success only" response to this message is the
PutDataObjectsResponse message.
If the data objects are too large for the WebSocket message size
(which for some WebSocket libraries can be quite small, e.g. 128
kb), you must partition the data objects and send them in
multiple Chunk messages.
This PutDataObjects message is designated as "multipart"
because it may require use of Chunk messages. A request MUST
have only 1 PutDataObjects message followed by zero or more
Chunk messages.
Protocol 4 uses "upsert" semantics (where update and insert use
the same message) and, if the object does not exist, then the
object MUST be created. For more information, see Store
Requirements.
NOTE: The alternateUris field (which is in the Resource record,
which is referenced from the DataObject record) is NOT used
with this PutDataObjects message; it MUST be an empty array.

«Message»
GetDataObjectsResponse

+ dataObjects : DataObject [0..n] (map) = EmptyMap

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 4
MultiPart = True
SenderRole = s tore

notes
A store sends to a customer in response to the GetDataObjects
message. It is a map whose values are the data objects that the
store can return. Optionally, the actual data objects may be
returned. If the data objects are small enough (bytes), they may
be returned in this message (in the dataObjects field).
If sending all data objects in one response would be too large for
the WebSocket message size (which for some WebSocket
libraries can be quite small, e.g. 128 kb), they can be sent in
multiple GetDataObjectsResponse messages.
However, if any one data object is too large for the WebSocket
message size, the store must partition the data object and send
it in multiple Chunk messages.

«Message»
Chunk

+ blobId: Uuid
+ data: bytes
+ fina l : boolean

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 8
MultiPart = True
SenderRole = s tore,customer

notes
A message used when a data object (being sent in a message
from store to customer OR customer to store) is too large for
the negotiated WebSocket message size limit
(MaxWebSocketMessagePayloadSize) for the session (which for
some WebSocket libraries can be quite small, e.g. 128 kb).
This Chunk message:

1. Is used in Store (Protocol 4), StoreNotification (Protocol 5),
and StoreQuery (Protocol 14).
2. Can be used in conjunction with any request, response or
notification message that allows or requires a data object to be
sent with the message. Such messages contain a field called
dataObjects, which is a map composed of the ETP data type
DataObject. If the data object size (bytes) exceeds the maximum
negotiated WebSocket size limit for the session, and you want to
send it with the message, you MUST use Chunk messages.
3. The DataObject type (record) contains an optional Binary
Large Object (BLOB) ID (blobId). If you must divide a data object
into multiple chunks, you MUST assign a blobId and the
dataObject field MUST NOT contain any data.
4. Use a set of Chunk message to send small portions of the
data object (small enough to fit into the negotiated WebSocket
size limit for the session). Each Chunk message MUST contain its
assigned "parent" BlobId and a portion of the data object.
5. For endpoints that receive these messages, to correctly
"reassemble" the data object (BLOB): use the blobId, and the
messageId (which indicates the message sequence, because ETP
(via WebSocket) guarantees messages to be delivered in order),
and final (flag that indicates the last chunk that comprises a
particular data object).
6. Chunk messages for different data objects MUST NOT be
interleaved within the context of one multipart message
operation. If more than one data object must be sent using
Chunk messages, the sender MUST finish sending each data
object before sending the next one. To indicate the last Chunk
message for one data object, the sender MUST set the final flag
to true.

For more information on how to use the Chunk message, see
Section 3.7.3.2.

«Message»
DeleteDataObjectsResponse

+ deletedUris : ArrayOfString [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 10
MultiPart = True
SenderRole = s tore

notes
A store sends to a customer in response to a DeleteDataObjects
message. It is a map whose values are the URIs of the data
objects that were successfully deleted.
If a delete operation has the pruneContainedObjects flag set to
true, then this message returns both the container objects that
were deleted and any contained objects that may have been
pruned. For more information, see Section 9.2.2, Row x.

«Message»
PutDataObjectsResponse

+ success : PutResponse [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 9
MultiPart = True
SenderRole = s tore

notes
A store MUST send this "success only" message to a customer
as confirmation of a successful operation in response to a
PutDataObjects message.
These "success only" response messages have been added to
ETP to support more efficient operations of customer role
software.



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 196 

Field Name Description Data Type Min Max 

Currently, ETP MAY support "xml" and "json". 
Other formats may be supported in the future, and 
endpoints may agree to use custom formats. 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Store", 
     "name": "GetDataObjects", 
     "protocol": "4", 
     "messageType": "1", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { 
             "name": "uris", 
             "type": { "type": "map", "values": "string" } 
         }, 
         { "name": "format", "type": "string", "default": "xml" } 
     ] 
} 

  

9.3.2 Message: PutDataObjects 

A customer sends to a store to add or update one or more data objects. The "success only" response to 
this message is the PutDataObjectsResponse message.  

If the data objects are too large for the WebSocket message size (which for some WebSocket libraries 
can be quite small, e.g. 128 kb), you must partition the data objects and send them in multiple Chunk 
messages. 

This PutDataObjects message is designated as "multipart" because it may require use of Chunk 
messages. A request MUST have only 1 PutDataObjects message followed by zero or more Chunk 
messages.  

Protocol 4 uses "upsert" semantics (where update and insert use the same message) and, if the object 
does not exist, then the object MUST be created. For more information, see Store Requirements.  

NOTE: The alternateUris field (which is in the Resource record, which is referenced from the DataObject 
record) is NOT used with this PutDataObjects message; it MUST be an empty array. 

Message Type ID: 2 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: True 

Sent by: customer 

Field Name Description Data Type Min Max 

dataObjects General ETP map of DataObject records, each of 
which contains the data for each data object in the 
request, including each one's URI.  

The URIs in the Resource records MUST be 
canonical Energistics data object URIs; for more 
information, see Appendix: Energistics 
Identifiers. 

DataObject 1 n 

pruneContainedObjects For this field to work as described, the 
OrphanedChildrenPrunedOnDelete data object 
capability for the type of data object MUST be 

boolean 1 1 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 197 

Field Name Description Data Type Min Max 

true. For more information, see Section 9.2.2, 
Row 12.  

Boolean. Default = false.  

 If true, the store deletes any data objects 
contained ByValue (that is, data objects 
contained in the data object identified by the 
URI, such as channels in a channel set) that 
are NOT contained by any other data 
objects. This prune will carry down ALL 
ByValue relationships of an object. 
EXAMPLE: If the request is to put a channel 
set, and pruneContainedObjects is true, the 
store will delete any channels that are not 
contained in any other channel sets after the 
operation is complete (e.g., if you 
update/replace a channel set that effectively 
deletes a channel from the set) . In other 
words, the store deletes any "orphan" 
channels. 

 If false, only the data objects (identified by 
the URIs in the DataObject record) are 
affected/updated; any contained data objects 
are not affected. 

NOTE: This flag is applied to ALL data objects 
listed in a given PutDataObjects request 
message. If a customer has some data objects it 
wants "pruned" and others it does not, then the 
customer MUST send separate requests for each 
case.  

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Store", 
     "name": "PutDataObjects", 
     "protocol": "4", 
     "messageType": "2", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "dataObjects", 
             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.Object.DataObject" } 
         }, 
         { "name": "pruneContainedObjects", "type": "boolean", "default": false } 
     ] 
} 

  

9.3.3 Message: PutDataObjectsResponse 

A store MUST send this "success only" message to a customer as confirmation of a successful operation 
in response to a PutDataObjects message.  

These "success only" response messages have been added to ETP to support more efficient operations 
of customer role software. 

Message Type ID: 9 

Correlation Id Usage: MUST be set to the messageId of the PutDataObjects message that this 
message is a response to.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 198 

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

success  For non-container data objects, the map 
value MUST an empty PutResponse record 
(Section 23.34.9), which has all arrays set to 
empty arrays. 

 For contained data objects, the map value 
MUST be a PutResponse record with the 
arrays populated appropriately. 

 For more information about 
container/contained data objects, see 
Section 9.2.2, Row 19. 

PutResponse 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Store", 
     "name": "PutDataObjectsResponse", 
     "protocol": "4", 
     "messageType": "9", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "success", 
             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.Object.PutResponse" } 
         } 
     ] 
} 

  

9.3.4 Message: DeleteDataObjects 

A customer sends to a store to delete one or more data objects from the store.  

The response to this message is the DeleteDataObjectsResponse message.  

Message Type ID: 3 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

uris General ETP map where each value MUST be the 
URI of a data object to be deleted. 

These MUST be canonical Energistics data object 
URIs; for more information, see Appendix: 
Energistics Identifiers. 

string 1 n 

pruneContainedObjects Boolean. Default = false.  

 If true, the store deletes any data objects 
contained ByValue (that is, data objects 
contained in the data object identified by the 
URI, such as channel sets in log and 
channels in a channel set) that are NOT 
contained by any other data objects. It does 
this for ALL ByValue relationships in the data 

boolean 1 1 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 199 

 
  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Store", 
     "name": "DeleteDataObjects", 
     "protocol": "4", 
     "messageType": "3", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { 
             "name": "uris", 
             "type": { "type": "map", "values": "string" } 
         }, 
         { "name": "pruneContainedObjects", "type": "boolean", "default": false } 
     ] 
} 

  

9.3.5 Message: DeleteDataObjectsResponse 

A store sends to a customer in response to a DeleteDataObjects message. It is a map whose values are 
the URIs of the data objects that were successfully deleted.  

If a delete operation has the pruneContainedObjects flag set to true, then this message returns both the 
container objects that were deleted and any contained objects that may have been pruned. For more 
information, see Section 9.2.2, Row 12.  

Message Type ID: 10 

Correlation Id Usage: MUST be set to the messageId of the DeleteDataObjects message that this 
message is a response to.  

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

deletedUris A general ETP map where each value is an array 
of URIs containing the URI of a data object from 
the request that was successfully deleted and the 
URIs of any data objects that were pruned when 
deleting the object from the request. 

ArrayOfString 1 * 

object. EXAMPLE: If the request is to delete 
a log, and pruneContainedObjects is true, 
the store will delete any channel sets that are 
not contained in any other logs, AND any 
channels that are not contained in any other 
channel sets. In other words, the store 
deletes any "orphan" channel sets and 
channels. 

 If false, only the data objects (identified by 
the URIs) are deleted; any contained data 
objects are not deleted. 

NOTE: This flag is applied to ALL data objects 
listed in a given DeleteDataObjects request 
message. If a customer has some data objects it 
wants "pruned" and others it does not, then the 
customer MUST send separate requests for each 
case.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 200 

Field Name Description Data Type Min Max 

These MUST be canonical Energistics data object 
URIs; for more information, see Appendix: 
Energistics Identifiers. 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Store", 
     "name": "DeleteDataObjectsResponse", 
     "protocol": "4", 
     "messageType": "10", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "deletedUris", 
             "type": { "type": "map", "values": "Energistics.Etp.v12.Datatypes.ArrayOfString" } 
         } 
     ] 
} 

  

9.3.6 Message: GetDataObjectsResponse 

A store sends to a customer in response to the GetDataObjects message. It is a map whose values are 
the data objects that the store can return. Optionally, the actual data objects may be returned. If the data 
objects are small enough (bytes), they may be returned in this message (in the dataObjects field).  

If sending all data objects in one response would be too large for the WebSocket message size (which for 
some WebSocket libraries can be quite small, e.g. 128 kb), they can be sent in multiple 
GetDataObjectsResponse messages. 

However, if any one data object is too large for the WebSocket message size, the store must partition the 
data object and send it in multiple Chunk messages. 

Message Type ID: 4 

Correlation Id Usage: MUST be set to the messageId of the GetDataObjects message that this 
message is a response to.  

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

dataObjects General ETP map of DataObject records, one 
each for the data objects to that the store could 
return. 

The URIs in the Resource records MUST be 
canonical Energistics data object URIs; for more 
information, see Appendix: Energistics 
Identifiers. 

DataObject 0 n 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Store", 
     "name": "GetDataObjectsResponse", 
     "protocol": "4", 
     "messageType": "4", 
     "senderRole": "store", 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 201 

     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "dataObjects", 
             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.Object.DataObject" }, "default": {} 
         } 
     ] 
} 

  

9.3.7 Message: Chunk 

A message used when a data object (being sent in a message from store to customer OR customer to 
store) is too large for the negotiated WebSocket message size limit 
(MaxWebSocketMessagePayloadSize) for the session (which for some WebSocket libraries can be quite 
small, e.g. 128 kb).  

This Chunk message:  

1. Is used in Store (Protocol 4), StoreNotification (Protocol 5), and StoreQuery (Protocol 14). 
2. Can be used in conjunction with any request, response or notification message that allows or requires 

a data object to be sent with the message. Such messages contain a field called dataObjects, which 
is a map composed of the ETP data type DataObject. If the data object size (bytes) exceeds the 
maximum negotiated WebSocket size limit for the session, and you want to send it with the message, 
you MUST use Chunk messages. 

3. The DataObject type (record) contains an optional Binary Large Object (BLOB) ID (blobId). If you 
must divide a data object into multiple chunks, you MUST assign a blobId and the dataObject field 
MUST NOT contain any data. 

4. Use a set of Chunk message to send small portions of the data object (small enough to fit into the 
negotiated WebSocket size limit for the session). Each Chunk message MUST contain its assigned 
"parent" BlobId and a portion of the data object. 

5. For endpoints that receive these messages, to correctly "reassemble" the data object (BLOB): use 
the blobId, and the messageId (which indicates the message sequence, because ETP (via 
WebSocket) guarantees messages to be delivered in order), and final (flag that indicates the last 
chunk that comprises a particular data object). 

6. Chunk messages for different data objects MUST NOT be interleaved within the context of one 
multipart message operation. If more than one data object must be sent using Chunk messages, the 
sender MUST finish sending each data object before sending the next one. To indicate the last 
Chunk message for one data object, the sender MUST set the final flag to true. 

For more information on how to use the Chunk message, see Section 3.7.3.2.  

Message Type ID: 8 

Correlation Id Usage: MUST be set to the messageId of the GetDataObjects or PutDataObjects 
message that resulted in the assignment of a blobId and this Chunk message being created. 

Multi-part: True 

Sent by: store,customer 

Field Name Description Data Type Min Max 

blobId The BLOB ID assigned by an endpoint when a 
data object being sent in a request, response or 
notification message must be subdivided into 
multiple chunks. Each Chunk message that 
comprises a BLOB must contain the blobId of its 
"parent" BLOB.  

The blobId: 

Uuid 1 1 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 202 

Field Name Description Data Type Min Max 

 is entered in the DataObject record 
referenced in the dataObjects field of the 
request or response message.  

 Must be of type Uuid (Section 23.6).  

data The data that comprises a chunk (portion) of the 
data object/BLOB.  

bytes 1 1 

final Flag to indicate that this the final message of a set 
of Chunk messages that comprise one particular 
data object.  

boolean 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Store", 
     "name": "Chunk", 
     "protocol": "4", 
     "messageType": "8", 
     "senderRole": "store,customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { "name": "blobId", "type": "Energistics.Etp.v12.Datatypes.Uuid" }, 
         { "name": "data", "type": "bytes" }, 
         { "name": "final", "type": "boolean" } 
     ] 
} 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 203 

10 StoreNotification (Protocol 5)  
ProtocolID: 5 

Defined Roles: store, customer 

StoreNotification (Protocol 5) allows store customers to subscribe to and receive notifications of changes 
to data objects in the store, in an event-driven manner, from events (operations) that occur in Store 
(Protocol 4). Customers can choose to receive notifications with the changed data object OR only 
notifications of change—then based on the change, can decide whether or not to get the full data object.  

Customers subscribe to changes within a given context (defined, in part, by a URI) in the store 
(EXAMPLE: A context might be all changes that occur in a specific well). The store provides notifications 
to the customer—only while the session is valid—of additions, changes, and deletions in the specified 
context. Additionally, this protocol contains a message for so-called "unsolicited" subscriptions 
(subscriptions that a store may automatically create for a customer) to support new workflows.  

NOTE: Notification messages are a "fire and forget" operation. They are a reliable way for a store to 
inform a customer that data has changed, which is useful for typical customer applications, such as 
visualizations, calculations and data synchronization tools. However, notification messages are not a 
reliable way for the store to ensure the customer successfully receives and persists the changed data. If a 
data store needs to ensure that another data store is eventually consistent with it, the preferred workflow 
is for the data store to instead act as a store customer using the push workflow to deliver data to the other 
data store as described in Appendix: Data Replication and Outage Recovery Workflows (Section 
26.4). 

Other ETP sub-protocols that may be used with StoreNotification (Protocol 5): 
 The events that trigger notifications in this protocol happen in Store (Protocol 4). Some of the details 

of operations that trigger notifications are explained in Chapter 9. 

 NOTE: Use of the PutGrowingDataObjectsHeader message in GrowingObject (Protocol 6) 
creates or updates the header information of a data object, so operations using that message 
trigger notifications in this protocol, StoreNotification (Protocol 5). 

 To receive notifications for changes to the parts of one growing data object, ETP has similar 
protocols: GrowingObject (Protocol 6) where the event/operations occur and 
GrowingObjectNotification (Protocol 7), where customers can subscribe to receive notifications about 
operations on/to the parts within the context of one growing data object. For information on operations 
and notifications related to parts of a growing data object, see Chapters 11 and 12.  

For data objects that are both growing data objects AND container data objects (i.e., where the parts 
are themselves also data objects), other operations in GrowingObject (Protocol 6) will also trigger 
StoreNotification (Protocol 5) messages. 

This chapter includes main sections for:  
 Key ETP concepts that are important to understanding how this protocol is intended to work (see 

Section 10.1).   

 Required behavior, which includes: 

 Description of the message sequence for main tasks, along with required behavior, use of 
capabilities, and possible errors (see Section 10.2.1).  

 Other functional requirements (not covered in the message sequence) including use of additional 
endpoint, data object, and protocol capabilities for preventing and protecting against aberrant 
behavior (see Section 10.2.2). 

- Definitions of the endpoint, data object, and protocol capabilities used in this protocol (see 
Section 10.2.3). 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 204 

 Sample schemas of the messages defined in this protocol (which are identical to the Avro schemas 
published with this version of ETP). However, only the schema content in this specification includes 
documentation for each field in a schema (see Section 10.3).  

10.1 StoreNotification: Key Concepts 

This section explains concepts that are important to understanding how StoreNotification (Protocol 5) 
works. 

10.1.1 Definitions 

This section defines terms for this protocol.  

Term Definition 

Subscription We're all familiar with the concept of a video or audio streaming subscription 
or a magazine subscription, which is the action of making or agreeing to make 
an advance payment in order to receive or participate in something. 

In the context of ETP, a subscription is an agreement to receive notifications of 
events or operations, e.g., adds, deletes or updates of data objects that 
happen in Store (Protocol 4). Subscriptions are created and notifications sent 
using StoreNotification (Protocol 5).  

NOTE: Subscriptions work similarly for parts in growing data objects. That is, 

subscriptions are created and notifications about changes to parts in a growing 
data object are sent in GrowingObjectNotification (Protocol 7) for changes that 
happen as result of actions in GrowingObject (Protocol 6).  

Subscriptions can be established in these main ways: 

1. A customer can create one or more subscriptions using the 
SubscribeNotifications message.  

2. A store can automatically create a subscription for a customer. This is 
referred to as an “unsolicited subscription”. See the row below.  

Unsolicited subscription Subscriptions created by the store on behalf of the customer, usually based on 
business agreements or other information exchanged out of band of an ETP 
session. 

EXAMPLE: In some newer workflows, operators want to automatically create 

subscriptions for contracted data providers, based on business agreements 
(contracts) executed outside of ETP. When a contracted data provider 
connects to the operator's data store, the data provider will automatically be 
subscribed to notifications for an appropriate context, e.g., a well, wellbore, 
etc. as agreed in a contract. When the data provider connects to the operator's 
system, it automatically receives UnsolicitedStoreNotifications messages. 
For more information about these workflows in the drilling domain, see the 
WITSML v2.0 for ETP v1.2 Implementation Specification. 

 

10.1.2 Data Model as Graph 

The messages in StoreNotification (Protocol 5) have been developed to work with data models as graphs. 
When understood and used properly, this graph approach allows customers to specify precisely and in a 
single request the desired set of objects to monitor for notifications, thereby reducing traffic on the wire.  

 For general definition of a graph, how it works, and key concepts and how they are used as inputs, 
see Section 8.1.1. 

 For the details of how to create a subscription to receive notifications, see Section 10.2.1.1. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 205 

10.1.3 Handling Binary Large Objects (BLOBs) in ETP 

Some messages in this protocol allow or require a data object to be sent with the message. If the size of 
the data object (bytes) is too large for the WebSocket message size (which for some WebSocket libraries 
can be quite small, e.g. 128 kb), you must subdivide the data object and send it in "chunks" (using the 
Chunk.avsc message). For information on how to handle these binary large objects (BLOBs), see Section 
3.7.3.2. 

10.2 StoreNotification: Required Behavior 

This section contains functional and non-functional requirements for this protocol. It is organized in these 
sub-sections: 

 Message Sequence. Summarizes all messages defined by this protocol, identifies main tasks that 
can be done with this protocol and describes the response/request pattern for the messages needed 
to perform the tasks, including usage of ETP-defined capabilities, error scenarios, and resulting ETP 
error codes.  

 General Requirements. Identifies high-level (across ETP) and protocol-wide general behavior and 
rules that must be observed (in addition to behavior specified in Message Sequence), including usage 
of ETP-defined endpoint, data object and protocol capabilities, error scenarios, and resulting error 
codes.  

 Capabilities. Lists and defines the ETP-defined parameters most relevant for this sub-protocol. ETP 
defines these parameters to set necessary limits to help prevent aberrant behavior (e.g., sending 
oversized messages or sending more messages than an endpoint can handle).  

Prerequisites for using this protocol:  
 An ETP session has been established using Core (Protocol 0) as described in Chapter 5. 

 Customer must have the details of the data objects or subscription contexts it’s interested in; these 
details are typically found using Discovery (Protocol 3) (Chapter 8) but may also come out of band of 
ETP (e.g., in an email). 

10.2.1 StoreNotification: Message Sequences 

This section explains the basic message sequence for main tasks to be done using this protocol and 
includes related key behaviors and possible errors. The following General Requirements section provides 
additional requirements and rules for how this protocol works.   

The following table lists all messages defined in this sub-protocol, the basic request/response usage 
patterns per ETP role, and whether it may be multipart. The detailed content of each message is 
explained in the Message Schema section. 

StoreNotification (Protocol 5): 

Basic Message-Response flow by ETP Role 

Message from customer Response Message from store 

SubscribeNotifications: A request to create a 
subscription for notifications.  

SubscribeNotificationsResponse (multipart): Reply listing the 
subscriptions that were successfully created. 

 UnsolicitedStoreNotifications: Automatically sent to a customer 
when it connects to a store where a subscription was created for 
the customer based on out-of-band business knowledge (e.g., a 
contract). 

 Notification messages sent by the store for established 
subscriptions (see details of each message in Section 10.3): 

ObjectChanged (multipart)  

ObjectDeleted 

ObjectActiveStatusChanged 

ObjectAccessRevoked 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 206 

StoreNotification (Protocol 5): 
Basic Message-Response flow by ETP Role 

Message from customer Response Message from store 

 

Chunk (multipart): If the data object is too large to be included in 
the ObjectChanged message, use to subdivide and send the data 
object in smaller "chunks". 

UnsubscribeNotifications: A request to cancel/stop a 
subscription (either a requested or unsolicited one). 

SubscriptionEnded: Response to an unsubscribe request OR 
notice from the store that it has canceled a subscription. 

 

The main tasks in this protocol are subscribing to the appropriate objects or contexts (sets of related 
objects) in a store to receive the desired notifications and canceling/stopping those subscriptions. Once a 
subscription has been created, a store MUST send appropriate notifications based on events in Store 
(Protocol 4) and put header operations in GrowingObject (Protocol 6).  

10.2.1.1 To subscribe to notifications (i.e., create a subscription):  
1. A customer MUST send a store a SubscribeNotifications message (Section 10.3.6).  

a. This message is a map of subscription requests. The details of each subscription request are 
specified in the SubscriptionInfo record, each of which uses a ContextInfo record to specify 
details of the data objects of interest in the store (Section 23.34.15).  

b. SubscriptionInfo contains a lot of important information where the customer specifies details of 
the notification subscription it wants to create, but some key fields worth noting here are: 

i. requestUuid, which assigns a UUID to uniquely identify each subscription.  

ii. includeObjectData, a Boolean flag the customer uses to request that data objects be included 
with notification messages.  

c. A customer MUST limit the total count of subscriptions in a session to the store's value for the 
MaxSubscriptionSessionCount protocol capability. 

i. The Store MUST deny requests that exceed this limit by sending error 
ELIMIT_EXCEEDED◦(12). 

2. For the requests it successfully creates subscriptions for, the store MUST respond one or more 
SubscribeNotificationsResponse map response messages (Section 10.3.7), which list the 
successful subscriptions that the store has created. 

a. For more information on how map response messages work, see Section 3.7.3. 

b. The store MUST then send notifications for the subscriptions identified in this response message 
(according to criteria specified in the SubscribeNotifications message) and according to any 
rules stated in this specification. 10.2.2, Row   

c. For details about general requirements for when to send specific notifications, see Section 10.2.2.  

3. For the requests it does NOT successfully create subscriptions for, the store MUST send one or more 
map ProtocolException messages where values in the errors field (a map) are appropriate errors, 
such as ENOT_FOUND (11) if a request URI could not be resolved.  

a. For more information on how ProtocolException messages work with plural messages, see 
Section 3.7.3. 

4. NOTE: A store can also create "unsolicited" notification subscriptions on behalf of a customer. For 
more information, see Section 10.2.2 (Row 7). 

5. If a customer sends a ProtocolException message in response to an ObjectChanged, 
ObjectDeleted, ObjectActiveStatusChanged, or ObjectAccessRevoked message, the store MAY 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 207 

attempt to take corrective action but the store MUST NOT terminate the associated subscriptions. 

10.2.1.2 To unsubscribe to notifications (i.e., cancel a subscription):  
1. A customer sends a store an UnsubscribeNotifications message (Section 10.3.1).  

a. This message must identify the subscription to be cancelled by its request UUID, which the 
customer assigned to the subscription when it was requested or may have been assigned by an 
UnsolicitedStoreNotifications message (Section 10.3.9). 

2. If the store successfully cancels the subscription, the store MUST respond with a 
SubscriptionEnded message (Section 10.3.5), which holds the request UUID of the subscription that 
was successfully stopped.  

a. The store MUST stop sending any further notifications that were specified in the subscription that 
has now been ended. It's possible that the customer COULD receive a few additional notifications 
that were in process before the subscription was stopped.   

b. After sending SubscriptionEnded, the store MUST NOT send any notifications for the 
subscription. 

3. If the store does NOT successfully cancel the subscription, it MUST send a ProtocolException 
message with an appropriate error code (e.g., if the request UUID could not be found by the store 
send ENOT_FOUND (11)).  

4. The store MAY also end a subscription without receiving a customer request. If the store does so, it 
MUST notify the customer by sending a SubscriptionEnded message (Section◦10.3.5). 
EXAMPLE:◦This happens if the subscription’s context URI refers to a data object that has been 
deleted.  

5. When a customer has canceled a subscription, the store MUST NOT restart it, even if the 
subscription was created by the store on behalf of the customer with UnsolicitedStoreNotifications.  

a. If the customer wants to restart the subscription, it MUST instead set up a new subscription by 
sending SubscribeNotifications as described in Section 10.2.1.1 using a NEW requestUuid. 

10.2.2 StoreNotification: General Requirements 

In addition to the basic message sequence described in the previous section, this protocol has the 
additional requirements listed in the table below. For easy reference, the rows and behaviors in this table 
are numbered.  

NOTE: This table has been organized to reduce redundancy but also to help developers more easily 
locate specific requirements. EXAMPLE: There are rows with general requirements that apply to all 
protocols (e.g., Rows 1–2), rows for general requirements for this protocol, and (possibly) some rows with 
additional requirements for specific types of operations.  

Row# Requirement Description 

1.  ETP-wide behavior that MUST be 
observed in all protocols 

1. Requirements for general behavior consistent across all of ETP are defined 
in Chapter 3. This behavior includes information such as: all details of 
message handling (such as message headers, handling compression, use of 
message IDs and correlation IDs, requirements for plural and multipart 
message patterns) use of acknowledgements, general rules for sending 
ProtocolException messages, URI encoding, serialization and more. 
RECOMMENDATION: Read Chapter 3 first. 

2. For information about Energistics identifiers and prescribed ETP URI 
formats, see Appendix: Energistics Identifiers. 

a. In MOST cases, endpoints performing operations in this protocol MUST 
use the canonical Energistics URI. For more information, see Section 
3.7.4. 

3. For the complete list of error codes defined by ETP, see Chapter 24. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 208 

4. ALL operations in an ETP session are performed on the set of supported 
data object types that were negotiated to be used when the session 
was initiated and established. 

a. The client and server exchange the list of data object types in the 
supportedDataObjects field of the RequestSession and OpenSession 
messages in Core (Protocol 0). For more information, see Chapter 5. 

b. In general, the list of supported objects for a session will most likely be 
the intersection of the data objects that the server supports and the data 
objects that the client requested for the ETP session. 

c. A store MUST support all messages (in each supported ETP sub-
protocol) for each supported data object, whether the data object is 
supported explicitly or by wild card. 

d. An endpoint MUST only send messages with the URI of a data object 
that is a type supported by the other endpoint for this ETP session.  

i. If an endpoint sends a URI for an unsupported type of data object, 
the other endpoint MUST send error 
EDATAOBJECTTYPE_NOTSUPPORTED (16). 

2.  Capabilities-related behavior 1. Relevant endpoint, data object, and/or protocol capabilities MUST be 
specified when the ETP session is established (see Chapter 5) and MUST 
be used/honored as defined in the relevant ETP sub-protocol.  

2. For an explanation of endpoint, data object, and protocol capabilities, see 
Section 3.3. 

a. For the list of global capabilities and related behavior, see Section 
3.3.2. 

3. Section 10.2.3 identifies the capabilities most relevant to this ETP sub-
protocol. Additional details for how to use the protocol capabilities are 
included below in this table and in Section 10.2.1 StoreNotification: 
Message Sequence. 

3.  Message sequence 

See Section 10.2.1.  

1. The Message Sequence section above (Section 10.2.1) describes 
requirements for the main tasks listed there and also defines required 
behavior. 

4.  Plural messages (which includes 
maps) 

1. This protocol uses plural messages. For detailed rules on handling plural 
messages (including ProtocolException handling), see Section 3.7.3. 

5.  For data objects that exceed an 
endpoint's WebSocket message 
size, use the Chunk message. 

1. Some messages in this protocol allow or require a data object to be sent with 
the message. If the size of the data object (bytes) is too large for the 
WebSocket message size (which for some WebSocket libraries can be quite 
small, e.g. 128 kb), an endpoint MAY subdivide the data object and send it in 
"chunks" using the Chunk message defined in this protocol. For information 
on how to handle these binary large objects (BLOBs), see Section 3.7.3.2. 

2. NOTE: Use of Chunk messages DOES NOT address an endpoint's 
MaxDataObjectSize limit.  

3. The specific messages in this protocol that may use Chunk messages are: 

a. ObjectChanged 

6.  Customers must be able to receive 
and consume data objects.  

1. All customer role applications MUST implement support for receiving and 
consuming notifications that include the data objects (that is, all data for the 
object in a format (e.g., XML or JSON) negotiated when establishing the 
session).  

7.  Unsolicited subscriptions 1. The store may automatically configure unsolicited subscriptions to include 
the data objects (i.e., the includeObjectData on the unsolicited 
SubscriptionInfo record may be true). If the customer application does not 
want the data, it can do one of the following: 

a. Unsubscribe and stop receiving the notifications. 

b. Simply ignore the data payloads and get the data manually. 

c. Unsubscribe from the unsolicited subscription and then explicitly create 
the subscription (see Section 10.2.1.1) and set includeObjectData to 
false. 

8.  All behaviors defined in this table 
assume that a valid customer 

1. We are aiming to state these requirements and behaviors as clearly and 
concisely as possible. All required behaviors ("MUST" statements) described 
in the rows below assume: 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 209 

subscription for the correct context 
has been created. 

a. A valid subscription has been created as described in Section◦10.2.1.1.  

b. References to "data object(s)" means "data object(s) within the context 
specified in the subscription". 

c. EXAMPLE: Below in this table where it states "When a store performs a 
PutDataObjects operation, it MUST send an ObjectChanged 
message"; this means, if the customer has a subscription whose scope 
and context includes the data object that was put, then the store must 
send the ObjectChanged message to the subscribed customer.   

2. A valid subscription is one where all of the following conditions are met: 
a. SubscriptionInfo.context is a valid: 

i. ContextInfo.uri references a data object or dataspace that exists 
and is available in the store (i.e., the store will return it if requested 
using Store (Protocol 4) or Dataspaces (Protocol 24)). 

ii. ContextInfo.dataObjectTypes is empty or only includes data 
object types negotiated when establishing the session. 

b. SubscriptionInfo.requestUuid is not already in use by another 
subscription. 

c. SubscriptionInfo.format is a format negotiated when establishing the 
session. 

9.  Notifications are for operations that 
happen in Store (Protocol 4) and 
put header operations in 
GrowingObject (Protocol 6). 

1. The notifications sent in this protocol are based on operations that happen in 
Store (Protocol 4). As such, detailed behaviors that trigger notifications are 
described in Chapter 9 (see Sections 9.2.1 and 9.2.2) an indicated with text 
"NOTIFICATION BEHAVIOR".  

a. RECOMMENDATION: For complete understanding of notification 
behavior, use both Chapters 9 and 10.  

2. Additionally, operations to a growing data object "header" and growing data 
object parts that are themselves data objects in GrowingObject (Protocol 6) 
may trigger a notification in StoreNotification (Protocol 5); these operations 
add and update growing data object headers and add, update, link, unlink 
and delete growing data object parts that are data objects. As such, the 
notification requirements for these operations are the same as for changes to 
data objects as described in Store (Protocol 4) (Chapter 9).  

a. For more information about growing data object operations and 
notifications, see Chapter 11. 

10.  No session survivability for 
subscriptions 

1. If the ETP session is closed or the connection drops, then the store MUST 
cancel notification subscriptions for the dropped customer endpoint. 

2. On reconnect, the customer MUST re-create subscriptions (as explained in 
Section 10.2.1.1).  

a. For information on resuming operations after a disconnect, see 
Appendix: Data Replication and Outage Recovery Workflows. 

11.  Order of notifications 1. For a given data object, the store MUST send notifications in the same order 
that operations are performed in the store.   

a. The intent of this rule is that objects are always "correct" (schema 
compliant), and never left in an inconsistent state. The rule applies 
primarily to contained data objects and growing data objects.  

b. In general, global ordering of notifications is NOT required. However, 
there are some situations where the order of notifications affecting 
multiple objects is important and must be preserved. 

12.  Objects covered by more than one 
subscription 

A customer can create multiple subscriptions on a store. It is possible that the 
same data object is included in more than one subscription.  

1. In this case, the store MUST send one notification per relevant subscription. 
EXAMPLE: If a customer has subscribed to two different scope/contexts that 
include the same data object, then the customer will receive at least 2 
notifications, one for each subscription.  

a. Each notification message includes the requestUuid that uniquely 
identifies each subscription (so a customer can determine which 
subscription resulted in each notification message). 

13.  Sending notifications: general 
requirements 

1. REMINDER: Row 8 

2. Notification messages are those whose name begins with the word "Object". 
Each message's definition/description provides general information for when 
each endpoint role (store or customer) must send each message. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 210 

(EXAMPLE: The store MUST send an ObjectDeleted message, when it 
deletes an object.)  

a. Other rows in this table state additional requirements for specific 
operations and requirements for notifications. 

b. Section 9.2.2 (for Store (Protocol 4) also specifies some 
NOTIFICATION BEHAVIOR in the context of the detailed store 
operation(s) that trigger one or more notifications. 
RECOMMENDATION: Work with this chapter and Chapter 9 together.  

3. A store MUST send all appropriate notifications, including ObjectChanged 
and ObjectDeleted, even if the change was not through an ETP store 
operation. 

4. A store MUST send notifications within its value for 
ChangePropagationPeriod endpoint capability, which MUST be less than or 
equal to the maximum value stated in this specification (see Section 3.3.2.2). 

5. If in the subscription request (SubscribeNotifications message) the 
includeObjectData field was set to true, the store MUST send the object data 
with the notification (for all notifications that include the dataObject field, 
which is included on the ObjectChange record). 

a. For all data objects, the store must observe limits specified by its own 
and the customer's values for the MaxDataObjectSize capability. For 
more information about how this capability works and required behavior, 
see Section 3.3.2.4. 

b. For growing data objects, the store MUST observe limits specified by its 
own and the other customer's values for the MaxPartSize capability. For 
more information about how this capability works and required behavior, 
see Section 3.3.2.5. 

14.  Putting (inserting) and updating 
data objects: Additional 
notification requirements  

1. REMINDER: Row 8.  

2. When a store completes a PutDataObjects operation (in Store (Protocol 4)), 
it MUST send an ObjectChanged message. 

a. Because ETP uses upsert semantics, this message includes 
information about the type of change, which is specified on the 
ObjectChange record, which references the ObjectChangeKind 
enumeration.  

i. If the store inserted (added) a new data object, then it MUST set 
ObjectChangeKind to "insert".  

ii. If the store updated (replaced) an existing data object, then it 
MUST set ObjectChangeKind to "update". 

iii. If the change was caused by an ETP store operation, the store 
MUST differentiate between insert and update. 

iv. If the change was NOT caused by an ETP store operation and the 
store cannot determine if the operation was an insert or update, it 
MUST set ObjectChangeKind to "insert".  NOTE: "insert" was 
chosen because it is the "pessimistic" choice. That is, customers 
using the replication workflow will assume the affected data objects 
and any associated bulk data (channel data, growing object parts, 
data arrays) have been completely replaced. While this may cause 
customers to query more data than is necessary when the 
operation is actually an update, using "insert" and the pessimistic 
assumptions that go with it are necessary in some edge cases to 
achieve eventual consistency between data stores. 

3. If the store adds or updates a data object using 
PutGrowingDataObjectsHeader in GrowingObject (Protocol 6), it MUST 
perform the same actions as specified in Step 2 (above in this table row). 

4. For additional requirements for container and contained data objects, see 
Row 18 below in this table. 

15.  Deleting data objects: additional 
notification requirements 

1. REMINDER: Row 8  

2. When a data object is deleted, the store MUST send an ObjectDeleted 
message and it MUST NOT send any additional notification messages for 
the deleted object.  

a. A delete is an atomic operation; the store MUST perform the delete 
operation and then send notifications. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 211 

b. A store MUST send notifications for only the most recent effective state 
of a data object. So if notifications are queued for a data object, and 
that data object is subsequently deleted, the store MAY discard any 
previous notifications. 

3. If the data object being deleted is the primary data object of a subscription, 
the store MUST also do the following: 

a. MAY send any relevant notifications that may have already been 
queued (i.e., for other data objects in the subscription). 

b. MUST stop any subscriptions for the deleted object by sending the 
SubscriptionEnded message.  

c. After sending the SubscriptionEnded message, MUST NOT send any 
further notifications for the subscription.  

16.  Data objects that can be 
"active": changes to activeStatus 
field 

1. REMINDER: Row 8  

2. Growing data objects, channel data objects, and other data objects that can 
be “active” in ETP have a field named activeStatus, which may have a value 
of "inactive" or "active".  

a. For information about this field and required behavior for setting it to 
"inactive" related to the ActiveTimeoutPeriod capability, see Section 
3.3.2.1. 

b. Behavior that causes the field to be set to "active" are described in the 
protocols in which they occur and summarized in Section 9.2.2, Row 9. 

3. NOTIFICATION BEHAVIOR: When a data object's activeStatus field 
changes, a store MUST send an ObjectActiveStatusChanged notification 
message.  

17.  Entitlement changes to data 
objects 

REMINDER: Row 8 

Many stores grant entitlements (access to data) at the well, wellbore or log level. 
This means: even if a customer-user is subscribed to the correct context, it cannot 
receive notification of the new object (e.g., well or wellbore) until the user is 
granted permission. In this situation, the store MUST do the following: 

1. When the customer is granted access to a data object, the store MUST send 
the ObjectChanged notification message with an ObjectChangeKind of 
authorized. 

Conversely, a customer-user may initially be given access to a data object, only to 
have it later revoked. In this situation, the store MUST do the following: 

1. When the customer’s access to a data object is revoked, the store MUST 
send the ObjectAccessRevoked notification message. 

18.  Container/contained data 
objects: Additional notification 
requirements 

1. REMINDER: Row 8 

2. For definitions of container and contained objects and related concepts, see 
Section 9.1.3. 

3. ETP specifies 2 additional values for ObjectChangeKind for operations on 
container data objects; these notifications pertain to the contained objects 
which may be added (joined) to a container or removed (unjoined) from a 
container. 

a. For details on the behavior that triggers notifications and the 
notifications to send, see Section 9.2.2; for put operations see Row 19, 
for delete operations see Row 25. 

19.  Data objects entering or leaving 
subscription context/scope 

1. REMINDER: Row 8  

2. Certain events in a store may cause new data objects to enter a 
subscription’s scope/context, and other events in a store may cause data 
objects to leave.  
EXAMPLES:  

a. If a subscription’s scope/context is a wellbore data object and all data 
objects associated with the wellbore: new data objects related to the 
wellbore will enter the subscription's scope/context.  

b. Adding a relationship between an existing data object and the wellbore 
will also bring the data object into the subscription’s scope/context.  

c. Deleting data objects associated with the wellbore will remove them 
from the subscription’s scope/context.  

d. Similarly, removing a relationship between the wellbore and an existing 
data object will remove it from the subscription’s scope/context. 

3. When data objects enter the scope/context of a subscription, the store MUST 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 212 

 

10.2.3 StoreNotification: Capabilities  

The table below lists key capabilities for this protocol. The protocol capabilities are all defined here. For 
this protocol, one particularly crucial endpoint capability is defined here.  

 For protocol-specific behavior relating to using these capabilities in this protocol, see Section 10.2.2, 
StoreNotification: General Requirements. 

 For definitions for endpoint and data object capabilities, see the links in the table. 

 For general information about the types of capabilities and how they may be used, see Section 3.3. 

 

send an ObjectChanged notification with ObjectChangeKind set to 
“joinedSubscription”. 

4. When data objects leave the scope/context of a subscription, the store 
MUST send an ObjectChanged notification with ObjectChangeKind set to 
“unjoinedSubscription”. 

20.  Ending subscriptions 1. REMINDER: Row 8  

2. A store MUST end a customer’s subscription to store notifications when any 
of these events occur: 

a. The customer cancels the subscription by sending an 
UnsubscribeNotifications message. 

b. The primary data object for the subscription (i.e., the data object 
identified by the URI in the context field of the subscription’s 
SubscriptionInfo record) is deleted. 

c. The customer loses access to the primary data object for the 
subscription. 

3. When ending a subscription: 

a. The store MUST send the SubscriptionEnded message either as a 
response to a customer's UnsubscribeNotifications request or as a 
notification. 

i. The store MUST include a human readable reason why the 
subscription was ended in the UnsubscribeNotifications 
message.  

4. When a store ends a subscription in response to a customer’s 
UnsubscribeNotifications request, the store MAY discard any queued 
notifications for the subscription. 

5. When a store end’s a subscription WITHOUT a customer request: 

a. If the subscription’s primary data object was deleted and it was in the 
subscription’s scope (i.e., scope was self, sourcesOrSelf or 
targetsOrSelf), the store MUST first send an ObjectDeleted message 
for the primary data object before it sends the SubscriptionEnded 
message. The store MAY discard any other queued notifications for the 
subscription. 

b. If the customer lost access to the subscription’s primary data object and 
it was in the subscription’s scope, the store MUST send an 
ObjectAccessRevoked message for the primary data object before it 
sends the SubscriptionEnded message. The store MAY discard any 
other queued notifications for the subscription. 

6. After it sends the SubscriptionEnded message, the store MUST NOT send 
any further notifications for the subscription. 

7. After a subscription has ended, the store MUST NOT restart it, even if the 
subscription was created by the store on behalf of the customer with the 
UnsolicitedStoreNotifications message. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 213 

StoreNotification (Protocol 5): Capabilities 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

Endpoint Capabilities  

(For definitions of each endpoint capability, see Section 3.3.) 

   

NOTE: Many endpoint capabilities are "universal", used in all or 

most of the ETP protocols. For more information, see Section 
3.3.2. 

Behavior associated with other endpoint capabilities are defined in 
relevant chapters.  
EXAMPLE: The capabilities defined for limiting ETP sessions 

between 2 endpoints are discussed in 
Section 4.3, How a Client Establishes a WebSocket Connection 

to an ETP Server. 

   

MaxPartSize: The maximum size in bytes of each data object part 

allowed in a standalone message or a complete multipart 
message. Size in bytes is the total size in bytes of the 
uncompressed string representation of the data object part in the 
format in which it is sent or received. 

long byte 
<number of 
bytes> 

Min: 10,000 
bytes 

Data Object Capabilities    

ActiveTimeoutPeriod: (This is also an endpoint capability.)  

The minimum time period in seconds that a store keeps the active 
status (activeStatus field in ETP) for a data object as “active” after 
the most recent update causing the data object’s active status to 
be set to true. For growing data objects, this is any change to its 
parts. For channels, this is any change to its data points.  

This capability can be set for an endpoint and/or for a data object. 
A data object-specific value overrides an endpoint-specific value. 

long second 
<number of 
seconds> 

Default: 3,600 

MIN: 60 seconds 

MaxContainedDataObjectCount: The maximum count of 

contained data objects allowed in a single instance of the data 
object type that the capability applies to.  

EXAMPLE: If this capability is set to 2000 for a ChannelSet, then 
the ChannelSet may contain a maximum of 2000 Channels. 

long Count 
<count of objects> 

MIN: Should be 
specified per 
domain 

SupportsGet 

For definitions and usage rules for this data object capability, see 

Section 3.3.4. 

   

Protocol Capabilities    

MaxDataObjectSize: (This is also an endpoint capability and a 

data object.) The maximum size in bytes of a data object allowed in 
a complete multipart message. Size in bytes is the size in bytes of 
the uncompressed string representation of the data object in the 
format in which it is sent or received. 

This capability can be set for an endpoint, a protocol, and/or a data 
object. If set for all three, here is how they generally work:  

 An object-specific value overrides an endpoint-specific value.  

 A protocol-specific value can further lower (but NOT raise) the 
limit for the protocol.  

long byte 
<number of 
bytes> 

 

MIN: 100,000 
bytes 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 214 

StoreNotification (Protocol 5): Capabilities 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

EXAMPLE: A store may wish to generally support sending and 

receiving any data object that is one megabyte or less with the 
exceptions of Wells that are 100 kilobytes or less and Attachments 
that are 5 megabytes or less.  A store may further wish to limit the 
size of any data object sent as part of a notification in 
StoreNotification (Protocol 5) to 256 kilobytes. 

MaxResponseCount: The maximum total count of responses 

allowed in a complete multipart message response to a single 
request. 

long count 
<count of 
responses> 

MIN: 10,000 

MaxSubscriptionSessionCount: The maximum total count of 

concurrent subscriptions allowed in a session. The limit applies 
separately for each protocol with the capability.  

EXAMPLE: Different values can be specified for StoreNotification 

(Protocol 5) and GrowingObjectNotification (Protocol 7). 

long count 
<count of 
subscriptions> 

MIN: 100 

 
 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 215 

10.3 StoreNotification: Message Schemas 

This section provides a figure that displays all messages defined in StoreNotification (Protocol 5). 
Subsequent sub-sections provide an example schema for each message and definitions of the data fields 
contained in each message. 

 
Figure 19: StoreNotification: message schemas 

10.3.1 Message: UnsubscribeNotifications 

A customer sends to a store to cancel one or more existing subscriptions to notifications, which may be 
either:  

 a subscription that the customer previously requested with the SubscribeNotifications message. 

 a subscription created by the store using the UnsolicitedStoreNotifications message. 

The store MUST respond with the SubscriptionEnded message (Section 10.3.5).  

class StoreNotification

«Message»
ObjectChanged

+ change: ObjectChange
+ requestUuid: Uuid

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 2
MultiPart = True
SenderRole = s tore

notes
A store sends to a customer to notify the customer that an
object has been created (added) or changed within the
context of a subscription  (the details of which are
specified in a SubscriptionInfo record of a
SubscribeNotifications or UnsolicitedStoreNotifications
message).
A store MUST send this message for operations that occur
in Store (Protocol 4) using the PutDataObjects message
and for operations that occur in GrowingObject (Protocol
6) using the PutGrowingDataObjectsHeader message.
A store may also be required to send this message in
response to other events, such as deleting a contained
data object and granting a customer access to a data
object.
NOTE: This message can be sent as a related set of
messages (multipart=true). When setting up a
subscription, the customer has the option to request that
the data object be sent with this notification. If the data
object size (bytes) is larger than will fit in the WebSocket
message size, then the sender must be able to sub-divide
the data object and send it using the Chunk message,
which requires multiple messages (parts).

«Message»
ObjectDeleted

+ changeTime: long
+ requestUuid: Uuid
+ uri : s tring

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 3
MultiPart = Fa lse
SenderRole = s tore

notes
A store sends to a customer to notify it that an object has
been deleted within the context a subscription (the details
of which are specified in a SubscriptionInfo record of a
SubscribeNotifications or UnsolicitedStoreNotifications
message).
A store MUST send this message for operations that occur
in Store (Protocol 4) using the DeleteDataObjects
message. A store may also be required to send this in
response to other events, such as when a contained data
object is pruned when putting a container data object into
the store.

«Message»
UnsubscribeNotifications

+ requestUuid: Uuid

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 4
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store to cancel one or more
existing subscriptions to notifications, which may be
either:
- a subscription that the customer previously
requested with the SubscribeNotifications message.
- a subscription created by the store using the
UnsolicitedStoreNotifications message.

The store MUST respond with the SubscriptionEnded
message.

«Message»
ObjectAccessRevoked

+ changeTime: long
+ requestUuid: Uuid
+ uri : s tring

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 5
MultiPart = Fa lse
SenderRole = s tore

notes
A  store sends this notification message to a customer
(user) to indicate that access to a data object (included in
the context and scope of the subscription) has been
revoked.
NOTE: The store MUST send this message ONLY if the
customer (user) is connected when access is revoked. If
the customer (user) is NOT CONNECTED to the store
when the access is revoked, the store DOES NOT send
this message.

«Message»
SubscribeNotifications

+ request: SubscriptionInfo [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 6
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store as a request to subscribe to
notifications about changes (updates, additions, deletions
and others) for one or more data objects in the store. The
"success only" response to this message is the
SubscribeNotificationsResponse message.
- The message contains a map of SubscriptionInfo
records (one for each subscription), which identifies
specific data fields that must be provided to correctly
create each subscription.
- The SubscriptionInfo record uses the ContextInfo
record, which specifies a starting URI for each request and
other information to specify (or limit) the context of the
notification subscription.
StoreNotification (Protocol 5) works based on the notion of
the data model as a graph. For an explanation of this
concept and related definitions, see Section 8.1.1.

«Message»
SubscriptionEnded

+ reason: s tring [0..1]
+ requestUuid: Uuid

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 7
MultiPart = Fa lse
SenderRole = s tore

notes
The store MUST send to a customer as a confirmation
response to the customer's UnsubscribeNotifications
message.
If the store stops a customer’s subscription on its own
without a request from the customer (e.g., if the primary
data object in the subscription has been deleted), the
store MUST send this message to notify the customer that
the subscription has been stopped. When sent as a
notification, there MUST only be one message in the
multi-part notification.
The store MUST provide a human readable reason why the
subscription was stopped.

«Message»
UnsolicitedStoreNotifications

+ subscriptions : SubscriptionInfo [1..n] (array)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 8
MultiPart = Fa lse
SenderRole = s tore

notes
This message is an array of any unsolicited subscriptions
that have been made by the store on the customer's
behalf. This message allows the store to inform the
customer about the creation or alteration of items in the
store, which the customer has not specifically requested
but which are contractually required.
If a store has created these unsolicited subscriptions,
when the customer connects to the store, the store MUST
send this message to the customer.
NOTE: The store may configure unsolicited subscriptions
to send object data with notifications. The customer can
check the includeObjectData field on the SubscriptionInfo
record to determine if this is the case or not. For more
information, see Section 10.2.2.

«Message»
Chunk

+ blobId: Uuid
+ data: bytes
+ fina l : boolean

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 9
MultiPart = True
SenderRole = s tore

notes
A message used when a data object (being sent in a
message from store to customer OR customer to store) is
too large for the negotiated WebSocket message size limit
(MaxWebSocketMessagePayloadSize) for the session
(which for some WebSocket libraries can be quite small,
e.g. 128 kb).
This Chunk message:

1. Is used in Store (Protocol 4), StoreNotification
(Protocol 5), and StoreQuery (Protocol 14).
2. Can be used in conjunction with any request,
response or notification message that allows or requires a
data object to be sent with the message. Such messages
contain a field called dataObjects, which is a map
composed of the ETP data type DataObject. If the data
object size (bytes) exceeds the maximum negotiated
WebSocket size limit for the session, and you want to send
it with the message, you MUST use Chunk messages.
3. The DataObject type (record) contains an optional
Binary Large Object (BLOB) ID (blobId). If you must divide
a data object into multiple chunks, you MUST assign a
blobId and the dataObject field MUST NOT contain any
data.
4. Use a set of Chunk message to send small portions of
the data object (small enough to fit into the negotiated
WebSocket size limit for the session). Each Chunk
message MUST contain its assigned "parent" BlobId and a
portion of the data object.
5. For endpoints that receive these messages, to
correctly "reassemble" the data object (BLOB): use the
blobId, and the messageId (which indicates the message
sequence, because ETP (via WebSocket) guarantees
messages to be delivered in order), and final (flag that
indicates the last chunk that comprises a particular data
object).
6. Chunk messages for different data objects MUST NOT
be interleaved within the context of one multipart
message operation. If more than one data object must be
sent using Chunk messages, the sender MUST finish
sending each data object before sending the next one. To
indicate the last Chunk message for one data object, the
sender MUST set the final flag to true.

For more information on how to use the Chunk message,
see Section 3.7.3.2.

«Message»
SubscribeNotificationsResponse

+ success : s tring [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 10
MultiPart = True
SenderRole = s tore

notes
A store MUST send this "success only" message to a
customer as confirmation of a successful operation in
response to a SubscribeNotifications message. It is a
map that lists the subscriptions that the store
successfully created.
These "success only" response messages have been
added to ETP to support more efficient operations of
customer role software.

«Message»
ObjectActiveStatusChanged

+ activeStatus : ActiveStatusKind
+ changeTime: long
+ requestUuid: Uuid
+ resource: Resource

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 11
MultiPart = Fa lse
SenderRole = s tore

notes
A store sends to a customer to notify it that the active
status of a data object has changed within the context of
subscription (the details of which are specified in a
SubscriptionInfo record of a SubscribeNotifications or
UnsolicitedStoreNotifications message).



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 216 

Message Type ID: 4 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0.) 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

requestUuid The UUID of the subscription that is being 
canceled. Each subscription was assigned a 
UUID by the customer requesting it, when the 
subscription was created (in the SubscriptionInfo 
record) or was assigned in an 
UnsolicitedStoreNotifications message.  

Must be of type Uuid (Section 23.6). 

Uuid 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.StoreNotification", 
     "name": "UnsubscribeNotifications", 
     "protocol": "5", 
     "messageType": "4", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "requestUuid", "type": "Energistics.Etp.v12.Datatypes.Uuid" } 
     ] 
} 

  

10.3.2 Message: ObjectChanged 

A store sends to a customer to notify the customer that an object has been created (added) or changed 
within the context of a subscription (the details of which are specified in a SubscriptionInfo record of a 
SubscribeNotifications or UnsolicitedStoreNotifications message).  

A store MUST send this message for operations that occur in Store (Protocol 4) using the 
PutDataObjects message and for operations that occur in GrowingObject (Protocol 6) using the 
PutGrowingDataObjectsHeader message.  

A store may also be required to send this message in response to other events, such as deleting a 
contained data object and granting a customer access to a data object. 

NOTE: This message can be sent as a related set of messages (multipart=true). When setting up a 
subscription, the customer has the option to request that the data object be sent with this notification. If 
the data object size (bytes) is larger than will fit in the WebSocket message size, then the sender must be 
able to sub-divide the data object and send it using the Chunk message, which requires multiple 
messages (parts).  

Message Type ID: 2 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

change The information that describes the change to the 
data object or identifies a new data object that has 

ObjectChange 1 1 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 217 

Field Name Description Data Type Min Max 

been added. For details of information that must 
be sent, see ObjectChange record.  

The URI in the DataObject record’s Resource 
record MUST be a canonical Energistics data 
object URI; for more information, see Appendix: 
Energistics Identifiers. 

requestUuid The UUID of the subscription request that resulted 
in this notification message being sent.  

The UUID was assigned by the customer when 
the subscription was requested and created (in 
the SubscriptionInfo record) or by an 
UnsolicitedStoreNotifications message. 

Must be of type Uuid (Section 23.6). 

Uuid 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.StoreNotification", 
     "name": "ObjectChanged", 
     "protocol": "5", 
     "messageType": "2", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { "name": "change", "type": "Energistics.Etp.v12.Datatypes.Object.ObjectChange" }, 
         { "name": "requestUuid", "type": "Energistics.Etp.v12.Datatypes.Uuid" } 
     ] 
} 

  

10.3.3 Message: ObjectDeleted 

A store sends to a customer to notify it that an object has been deleted within the context a subscription 
(the details of which are specified in a SubscriptionInfo record of a SubscribeNotifications or 
UnsolicitedStoreNotifications message).  

A store MUST send this message for operations that occur in Store (Protocol 4) using the 
DeleteDataObjects message. A store may also be required to send this in response to other events, 
such as when a contained data object is pruned when putting a container data object into the store. 

Message Type ID: 3 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: store 

Field Name Description Data Type Min Max 

uri The URI of the data object that was deleted.  

This MUST be a canonical Energistics data object 
URI; for more information, see Appendix: 
Energistics Identifiers. 

string 1 1 

changeTime The time the change occurred in the store. This is 
the value from the deletedTime field on the 
DeletedResource record. 

It must be a UTC dateTime value, serialized as a 
long, using the Avro logical type timestamp-micros 
(microseconds from the Unix Epoch, 1 January 
1970 00:00:00.000000 UTC). 

long 1 1 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 218 

Field Name Description Data Type Min Max 

requestUuid The UUID of the subscription request that resulted 
in this notification message being sent.  

The UUID was assigned by the customer when 
the subscription was requested and created (in 
the SubscriptionInfo record) or by an 
UnsolicitedStoreNotifications message. 

Must be of type Uuid (Section 23.6). 

Uuid 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.StoreNotification", 
     "name": "ObjectDeleted", 
     "protocol": "5", 
     "messageType": "3", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "uri", "type": "string" }, 
         { "name": "changeTime", "type": "long" }, 
         { "name": "requestUuid", "type": "Energistics.Etp.v12.Datatypes.Uuid" } 
     ] 
} 

  

10.3.4 Message: ObjectAccessRevoked 

A store sends this notification message to a customer (user) to indicate that access to a data object 
(included in the context and scope of the subscription) has been revoked.  

NOTE: The store MUST send this message ONLY if the customer (user) is connected when access is 
revoked. If the customer (user) is NOT CONNECTED to the store when the access is revoked, the store 
DOES NOT send this message.  

Message Type ID: 5 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: store 

Field Name Description Data Type Min Max 

uri The URI of the data object for which access was 
revoked.  

This MUST be a canonical Energistics data object 
URI; for more information, see Appendix: 
Energistics Identifiers. 

string 1 1 

changeTime The time the change occurred in the store.  

It must be a UTC dateTime value, serialized as a 
long, using the Avro logical type timestamp-micros 
(microseconds from the Unix Epoch, 1 January 
1970 00:00:00.000000 UTC). 

long 1 1 

requestUuid The UUID of the subscription request that resulted 
in this notification message being sent.  

The UUID was assigned by the customer when 
the subscription was requested and created (in 
the SubscriptionInfo record) or by an 
UnsolicitedStoreNotifications message. 

Uuid 1 1 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 219 

Field Name Description Data Type Min Max 

Must be of type Uuid (Section 23.6). 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.StoreNotification", 
     "name": "ObjectAccessRevoked", 
     "protocol": "5", 
     "messageType": "5", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "uri", "type": "string" }, 
         { "name": "changeTime", "type": "long" }, 
         { "name": "requestUuid", "type": "Energistics.Etp.v12.Datatypes.Uuid" } 
     ] 
} 

  

10.3.5 Message: SubscriptionEnded 

The store MUST send to a customer as a confirmation response to the customer's 
UnsubscribeNotifications message. 

If the store stops a customer’s subscription on its own without a request from the customer (e.g., if the 
primary data object in the subscription has been deleted), the store MUST send this message to notify the 
customer that the subscription has been stopped. When sent as a notification, there MUST only be one 
message in the multi-part notification. 

The store MUST provide a human readable reason why the subscription was stopped. 

Message Type ID: 7 

Correlation Id Usage: When sent as a response: MUST be set to the messageId of the 
UnsubscribeNotifications message that this message is a response to. When sent as a notification: 
MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: store 

Field Name Description Data Type Min Max 

reason A reason why the subscriptions have been 
stopped. 

String 1 1 

requestUuid The UUID of the subscription the store is ending. 
These UUIDs were assigned by the customer 
when the subscription was requested (in the 
SubscriptionInfo record) or by an 
UnsolicitedStoreNotifications message.  

Must be of type Uuid (Section 23.6). 

Uuid 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.StoreNotification", 
     "name": "SubscriptionEnded", 
     "protocol": "5", 
     "messageType": "7", 
     "senderRole": "store", 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 220 

     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "reason", "type": "string" }, 
         { "name": "requestUuid", "type": "Energistics.Etp.v12.Datatypes.Uuid" } 
     ] 
} 

  

10.3.6 Message: SubscribeNotifications 

A customer sends to a store as a request to subscribe to notifications about changes (updates, additions, 
deletions and others) for one or more data objects in the store. The "success only" response to this 
message is the SubscribeNotificationsResponse message. 

 The message contains a map of SuscriptionInfo records (one for each subscription), which identifies 
specific data fields that must be provided to correctly create each subscription. 

 The SubscriptionInfo record uses the ContextInfo record, which specifies a starting URI for each 
request and other information to specify (or limit) the context of the notification subscription. 

StoreNotification (Protocol 5) works based on the notion of the data model as a graph. For an explanation 
of this concept and related definitions, see Section 8.1.1.  

Message Type ID: 6 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

request General ETP map of subscription requests; the 
details of each request is specified in a 
SuscriptionInfo record and includes information 
such as the context and scope of the request and 
the request UUID that initiated the subscription. 

If both endpoints support alternate URIs for the 
session, the URIs in the ContextInfo records 
MAY be alternate data object or dataspace URIs. 
Otherwise, they MUST be canonical Energistics 
data object or dataspace URIs. For more 
information, see Appendix: Energistics 
Identifiers. 

If alternate URIs are used, the store MUST 
resolve them to canonical URIs and treat the 
subscription as a subscription to the canonical 
URI. 

SubscriptionInfo 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.StoreNotification", 
     "name": "SubscribeNotifications", 
     "protocol": "5", 
     "messageType": "6", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { 
             "name": "request", 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 221 

             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.Object.SubscriptionInfo" } 
         } 
     ] 
} 

  

10.3.7 Message: SubscribeNotificationsResponse 

A store MUST send this "success only" message to a customer as confirmation of a successful operation 
in response to a SubscribeNotifications message. It is a map that lists the subscriptions that the store 
successfully created. 

These "success only" response messages have been added to ETP to support more efficient operations 
of customer role software. 

Message Type ID: 10 

Correlation Id Usage: MUST be set to the messageId of the SubscribeNotifications message that this 
message is a response to.  

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

success  The presence of the map key represents 
success. 

 The associated map string value SHOULD 
be empty because its content is ignored. 

string 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.StoreNotification", 
     "name": "SubscribeNotificationsResponse", 
     "protocol": "5", 
     "messageType": "10", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "success", 
             "type": { "type": "map", "values": "string" } 
         } 
     ] 
} 

  

10.3.8 Message: ObjectActiveStatusChanged 

A store sends to a customer to notify it that the active status of a data object has changed within the 
context of subscription (the details of which are specified in a SubscriptionInfo record of a 
SubscribeNotifications or UnsolicitedStoreNotifications message).  

Message Type ID: 11 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: store 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 222 

Field Name Description Data Type Min Max 

activeStatus Indicates the updated status, which may be 
"active" or "inactive", as defined in 
ActiveStatusKind.  

Statuses are mapped from domain data object 
such as wellbores, channels, and growing data 
objects. For the detailed mapping, see the 
WITSMLv2.0 for ETP v1.2 Implementation 
Specification. 

ActiveStatusKind 1 1 

changeTime The time the change occurred in the store. This is 
the value from storeLastWrite field (for more 
information see Resource).  

It must be a UTC dateTime value, serialized as a 
long, using the Avro logical type timestamp-micros 
(microseconds from the Unix Epoch, 1 January 
1970 00:00:00.000000 UTC). 

long 1 1 

resource The information about the data object as specified 
in the Resource record.  

The URI in the Resource record MUST be a 
canonical Energistics data object URI; for more 
information, see Appendix: Energistics 
Identifiers. 

Resource 1 1 

requestUuid The UUID of the subscription request that resulted 
in this notification message being sent.  

The UUID that was assigned by the customer 
when the subscription was requested and created 
(in the SubscriptionInfo record) or by an 
UnsolicitedStoreNotifications message. 

Must be of type Uuid (Section 23.6). 

Uuid 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.StoreNotification", 
     "name": "ObjectActiveStatusChanged", 
     "protocol": "5", 
     "messageType": "11", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "activeStatus", "type": 
"Energistics.Etp.v12.Datatypes.Object.ActiveStatusKind" }, 
         { "name": "changeTime", "type": "long" }, 
         { "name": "resource", "type": "Energistics.Etp.v12.Datatypes.Object.Resource" }, 
         { "name": "requestUuid", "type": "Energistics.Etp.v12.Datatypes.Uuid" } 
     ] 
} 

  

10.3.9 Message: UnsolicitedStoreNotifications 

This message is an array of any unsolicited subscriptions that have been made by the store on the 
customer's behalf. This message allows the store to inform the customer about the creation or alteration 
of items in the store, which the customer has not specifically requested but which are contractually 
required.  

If a store has created these unsolicited subscriptions, when the customer connects to the store, the store 
automatically sends it to the customer.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 223 

NOTE: The store may configure unsolicited subscriptions to send object data with notifications. The 
customer can check the includeObjectData field on the SubscriptionInfo record to determine if this is the 
case or not. For more information, see Section 10.2.2.  

Message Type ID: 8 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: store 

Field Name Description Data Type Min Max 

subscriptions An array of SubscriptionInfo records, each of 
which identifies the details of an unsolicited 
subscription. Each record includes information 
such the context and scope of the subscription, 
and the request UUID that initiated a subscription. 

The URI in the ContextInfo record MUST be a 
canonical Energistics data object URI; for more 
information, see Appendix: Energistics 
Identifiers. 

SubscriptionInfo 1 n 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.StoreNotification", 
     "name": "UnsolicitedStoreNotifications", 
     "protocol": "5", 
     "messageType": "8", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         {  
             "name": "subscriptions", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.Object.SubscriptionInfo" } 
         } 
     ] 
} 

  

10.3.10 Message: Chunk 

A message used when a data object (being sent in a message from store to customer OR customer to 
store) is too large for the negotiated WebSocket message size limit 
(MaxWebSocketMessagePayloadSize) for the session (which for some WebSocket libraries can be quite 
small, e.g. 128 kb).  

This Chunk message:  

1. Is used in Store (Protocol 4), StoreNotification (Protocol 5), and StoreQuery (Protocol 14). 
2. Can be used in conjunction with any request, response or notification message that allows or requires 

a data object to be sent with the message. Such messages contain a field called dataObjects, which 
is a map composed of the ETP data type DataObject. If the data object size (bytes) exceeds the 
maximum negotiated WebSocket size limit for the session, and you want to send it with the message, 
you MUST use Chunk messages. 

3. The DataObject type (record) contains an optional Binary Large Object (BLOB) ID (blobId). If you 
must divide a data object into multiple chunks, you MUST assign a blobId and the dataObject field 
MUST NOT contain any data. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 224 

4. Use a set of Chunk message to send small portions of the data object (small enough to fit into the 
negotiated WebSocket size limit for the session). Each Chunk message MUST contain its assigned 
"parent" BlobId and a portion of the data object. 

5. For endpoints that receive these messages, to correctly "reassemble" the data object (BLOB): use 
the blobId, and the messageId (which indicates the message sequence, because ETP (via 
WebSocket) guarantees messages to be delivered in order), and final (flag that indicates the last 
chunk that comprises a particular data object). 

6. Chunk messages for different data objects MUST NOT be interleaved within the context of one 
multipart message operation. If more than one data object must be sent using Chunk messages, the 
sender MUST finish sending each data object before sending the next one. To indicate the last 
Chunk message for one data object, the sender MUST set the final flag to true. 

For more information on how to use the Chunk message, see Section 3.7.3.2.  

Message Type ID: 9 

Correlation Id Usage: MUST be set to the messageId of the ObjectChanged message that resulted in 
this Chunk message being created. 

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

blobId The BLOB ID assigned by an endpoint when a 
data object being sent in a request, response, or 
notification message must be subdivided into 
multiple chunks. Each Chunk message that 
comprises a BLOB must contain the blobId of its 
"parent" BLOB.  

The blobId: 

 is entered in the DataObject record 
referenced in the dataObjects field of the 
request, response, or notification message. 

 must be of type Uuid (Section 23.6).  

Uuid 1 1 

data The data that comprises a chunk (portion) of the 
data object/BLOB. 

bytes 1 1 

final Flag to indicate that this is the final message of a 
set of Chunk messages that comprise one 
particular data object. 

boolean 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.StoreNotification", 
     "name": "Chunk", 
     "protocol": "5", 
     "messageType": "9", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { "name": "blobId", "type": "Energistics.Etp.v12.Datatypes.Uuid" }, 
         { "name": "data", "type": "bytes" }, 
         { "name": "final", "type": "boolean" } 
     ] 
} 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 225 

11 GrowingObject (Protocol 6)  
ProtocolID: 6 

Defined Roles: store, customer 

GrowingObject (Protocol 6) allows customer applications to operate independently on the two main 
elements that comprise a growing data object: its "header" (or parent) data object and its set of parts, 
which are index-based (i.e., either time or depth). (For a definition of growing data object, see Section 
11.1.1.) 

The ability to operate separately on the header and set of parts supports use cases and workflows that 
minimize traffic on the wire. For example, an end-user of a customer application can get a list of only 
headers to review, and then determine which headers they want to get some or all of the parts for.  

GrowingObject (Protocol 6) defines messages that allow a customer to work with growing data object 
headers, individual parts, or a range of parts, independently of one another. The combination of these 
messages lets customers: 

 Edit existing growing data objects, by editing the header, the set of parts, or both.  

 To edit growing data objects a customer MUST use GrowingObject (Protocol 6) but some 
operations on growing data objects MAY be done with Store (Protocol 4) (see below on this 
page).   

 Add new growing data objects.  

 Request metadata about the parts in growing data objects. 

 Do a full range of operations on the set of parts: including get, put, delete and do similar operations 
on a specified range of parts.  

 Determine what intervals of growing data objects have changed while disconnected, which helps 
guide "catch up" operations and minimizes the likelihood of having to get "all data" again.   

NOTE: All of these operations work the same for all growing data objects, regardless of their current 
design. That is, all growing data objects (e.g., in WITSML v2.0) are NOT currently designed identically, 
but all are handled with Protocol 6. 

Each Energistics domain standard defines its growing data objects; for the list of growing data objects, 
see an ML's ETP implementation specification. 

Other ETP sub-protocols that may be used with GrowingObject (Protocol 6): 
 To subscribe to notifications of changes to growing data object parts that occur in Protocol 6, use 

GrowingObjectNotification (Protocol 7) (Chapter 12). (These two protocols work together similarly as 
Store (Protocol 4) and StoreNotification (Protocol 5).)  

 NOTE: Use of the PutGrowingDataObjectsHeader message in this protocol primarily triggers 
notifications in StoreNotification (Protocol 5)—not Protocol 7. This difference is because this 
message actually creates or updates the growing data object (i.e., the header, which is also 
called the parent growing data object), not parts. 

 Store (Protocol 4) allows some operations on a "complete" growing data object (complete = the 
growing data object "header" and all its parts). It is possible to add (insert, but NOT update), get or 
delete the "complete" growing data object. See Chapter 9. 

 To query the parts of a growing data object, see GrowingObjectQuery (Protocol 16) (Chapter 17). 

NOTE: Beginning with WITSML v2.0, Logs are no longer categorized as growing data objects (they were 
in WITSML v1.4.1.1) but are explicitly defined using the Channel, ChannelSet and Log data objects. To 
edit channel data, you MUST use protocols specifically designed for channels (see ChannelSubscribe 
(Protocol 21), Chapter 19 and ChannelDataLoad (Protocol 22), Chapter 20).  

This chapter includes main sections for:  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 226 

 Key ETP concepts that are important to understanding how this protocol is intended to work (see 
Section 11.1).   

 Required behavior, which includes: 

 Description of the message sequence for main tasks, along with required behavior, use of 
capabilities, and possible errors (see Section 11.2.1).  

 Other functional requirements (not covered in the message sequence) including use of additional 
endpoint, data object, and protocol capabilities for preventing and protecting against aberrant 
behavior (see Section◦11.2.2). 

- Definitions of the endpoint, data object, and protocol capabilities used in this protocol (see 
Section 11.2.2.2). 

 Sample schemas of the messages defined in this protocol (which are identical to the Avro schemas 
published with this version of ETP). However, only the schema content in this specification includes 
documentation for each field in a schema (see Section 11.3).  

11.1 GrowingObject: Key Concepts 

This section defines key concepts that are important to understand for using this protocol.  

11.1.1 What is a Growing Data Object and how is it Handled in ETP? 

For the definition of an Energistics data object, see Section 25.1 (in Appendix: Energistics Identifiers). 

A "growing data object" refers to a data object that gets added to (or grows) over time, it is characterized 
by:  

 A relatively large number of occurrences of recurring data that is indexed to time or depth. 

 Additional occurrences of recurring data that are inserted (or updated) over time. 

By design, an Energistics' growing data object has: 

 a "header" portion, which is also called the "parent" data object, which contains the identifying and 
shared information that is less likely to change over time.  

 its set of parts, which are the indexed-based set that gets added to and edited over time, which is 
how the object "grows".  

These data objects typically exist in the drilling domain and are defined in WITSML, such as trajectories 
(grows as new trajectory stations are added) and "mud logs" (now called wellbore geology). "Growing" is 
in contrast to "static" data objects, which are called this because they typically change only when people, 
processes, and/or software change them. 

Each Energistics domain standard defines its growing data objects; for the list of growing data objects, 
see an ML's ETP implementation specification.  

NOTE: Beginning with WITSML v2.0, Logs are no longer categorized as growing data objects (they were 
in WITSML v1.4.1.1) but are explicitly defined using the Channel, ChannelSet and Log data objects. To 
edit channel data, you MUST use protocols specifically designed for channels (see ChannelSubscribe 
(Protocol 21, Chapter 19 and ChannelDataLoad (Protocol 22), Chapter 20).  

11.1.2 Most Actions are on the "Parts" in the Context of One "Parent" Data Object 

GrowingObject (Protocol 6) has 3 main kinds of messages, one for each kind of data the protocol 
operates on: parts, ranges of parts, and headers. Each message name contains the word "parts", "range" 
or "header" depending on the type of data it was designed to handle.  

Key message types and related facts include:  

 Most "part" and "range" messages are operations for the parts or ranges of parts in one growing data 
object. (EXCEPTION: GetPartsMetadata returns metadata for a list of growing data objects, not just 
one data object.) That is, each part is sent in the context of one "parent" data object and involves 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 227 

sending/receiving one or more object fragments in a format (e.g., XML or JSON) that comprise the 
growing parts of the data object. The parent data object is always referenced by its URI.  

 Each individual part in a growing data object is identified by a UID that must be unique within the 
context of the parent data object. NOTE: The application that first creates a growing data object 
assigns its UUID (for more information see Section 25.2); the application that first creates parts of 
a growing data object assigns part UIDs. 
NOTE: Some parts are also data objects themselves. These parts have both a UID and a UUID. 
GrowingObject (Protocol 6) references these parts by their UID, NOT their UUID. 

 A range of parts is specified with an indexInterval, which is defined in the relevant messages in 
this document.  

 "header" messages are get or put operations for one or more growing data object(s), each one 
identified by its URI.  

 Put header messages MAY include parts when first adding a growing data object to a store.  

 Put header messages MUST NOT include parts when updating an existing growing data object 
header in a store.  

 Get header messages do NOT return parts.  

 As stated above, if an application creates a growing data object, that application must assign the 
growing data object's UUID. 

- If any parts are included when creating the growing data object, the application must also assign 
UIDs to the parts. 

11.1.3 An Update Operation on a Range of Parts is an Atomic Operation 

This protocol defines a message named ReplacePartsByRange, which allows a customer to specify a 
range of parts to be deleted and (optionally) replaced with another specified set of parts.  

This operation is an atomic operation, which means the entire request either succeeds or fails. 
Operational details are described below in this chapter.  

11.1.4 Change Annotations 

A change annotation is an ETP data structure (ChangeAnnotation record; see Section 23.34.18) that 
describes a range of data that has changed (historical data changes) in a store. ETP stores use 
ChangeAnnotation records to track changes to channel data and parts in growing data objects. A 
ChangeAnnotation includes the inclusive range of data affected by the change and the timestamp 
associated with the change. 

IMPORTANT: When data is appended to a channel or growing data object, no ChangeAnnotation is 
created.  

When a customer reconnects to a store, it can request change annotations to help understand what has 
changed while it was disconnected and determine necessary actions based on the information.  

For more information on how change annotations are used, see Appendix: Data Replication and 
Outage Recovery Workflows. 

This section includes these sub-sections: 
 11.1.4.1 Definitions for ChangeAnnotation-Related Behavior 

 11.1.4.2 Overview of How Change Annotations Work  

For information on how to create and manage ChangeAnnotation records, see these sections (which are 
in the General Requirements section, Section 11.2.2): 

 11.2.2.2 Rules for Creating Change Annotations for Channel Data Objects 

 11.2.2.3 Rules for Creating Change Annotations for Growing Data Objects 

 11.2.2.4 Rules for Merging Change Annotations 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 228 

11.1.4.1 Definitions for ChangeAnnotation-Related Behavior  
The following definitions are used to explain store behavior for creating and maintaining 
ChangeAnnotation records in response to changes to channel data and growing data object parts. 

IMPORTANT: Pay careful attention to these definitions. They were deliberately and carefully chosen to 
allow optimized store behavior. 

Term Definition 

Adjacent  Two ranges are adjacent when the end index of one is equal to the start index of 
the other.  

 Two ChangeAnnotations records are adjacent if the ranges defined by their 
interval fields are adjacent. 

IMPORTANT: Even though ChangeAnnotation records may be adjacent, store 

customers MUST consider the entire interval in a ChangeAnnotation to be affected 
by the change, including the end index. When ChangeAnnotation records are 
adjacent, store customers MUST consider the changeTime for channel data points or 

non-interval parts (e.g., WITSML TrajectoryStations) at the index value shared by 
both ChangeAnnotation records to be the most recent changeTime of the two 
records. 

Append An append is when new data points or parts are added to the “end” of a channel or 
growing data object such that: 

1. No added data point or part overlaps the existing data range. 

2. For increasing data, all added data points and parts have a primary index value 
or start index value that is greater than or equal to the end index of the existing 
data range. 

3. For decreasing data, all added data points and parts have a primary index value 
or start index value that is less than or equal to the end index of the existing data 
range. 

Covering A range covers an index value if the index value is: 

 For increasing data, greater than or equal to the range’s start index and less than 
or equal to the range’s end index. 

 For decreasing data, less than or equal to the range’s start index and greater than 
or equal to range’s end index. 

A range covers another range if it covers both the start and end index of the other 
range. 

Decreasing data Data for a channel or growing data object is decreasing if the direction field on the 
IndexMetadataRecord for the primary index is set to “Decreasing”.  

With decreasing data, the end index is less than or equal to the start index for all data 
ranges. This includes the data range for the channel or growing data object. This also 
includes the interval field on any ChangeAnnotation record for the channel or 
growing data object. 

Increasing Data Data for a channel or growing data object is increasing if the direction field on the 
IndexMetadataRecord for the primary index is set to “Increasing”.  

With increasing data, the end index is greater than or equal to the start index for all 
data ranges. This includes the data range for the channel or growing data object. 
This also includes the interval field on any ChangeAnnotation record for the channel 
or growing data object. 

Inside An index value is inside a range if: 

 For increasing data, strictly greater than the range’s start index and strictly less 
than the range’s end index. 

 For decreasing data, strictly less than the range’s start index and strictly greater 
than the range’s end index. 

If range A’s start index and end index are both inside range B, then range A is inside 
range B. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 229 

Term Definition 

Overlapping Range A and Range B overlap when they are NOT adjacent and any index value is 
in both Range A and Range B. That is, when any of the following are true: 

1. Range A’s start index is the same as range B’s start index. 

2. Range A’s end index is the same as range B’s end index. 

3. Range A’s start index or end index are inside Range B. 

4. Range B’s start index or end index are inside Range A. 

Two ChangeAnnotations records overlap if the ranges defined by their interval 
fields overlap. 

NOTE: Adjacent ranges and adjacent ChangeAnnotation records do NOT overlap 

each other. 

Prepend A prepend is when new data points or parts are added to the “start” of a channel or 
growing data object such that: 

1. No added data point or part overlaps the existing data range. 

2. For increasing data, all added data points and parts have a primary index value 
or end index value that is less than or equal to the start index of the existing data 
range. 

3. For decreasing data, all added data points and parts have a primary index value 
or end index value that is greater than or equal to the start index of the existing 
data range. 

 

11.1.4.2 Overview of How Change Annotations Work 
Stores must persist only one ChangeAnnotation for any range of data. ChangeAnnotation records 
MAY be adjacent, but they MUST NOT overlap.  

Stores must merge any overlapping ChangeAnnotation records. When this happens, the store must use 
the most recent change time for any annotations that are merged together. A store may also choose to 
combine non-overlapping intervals together, which may simplify the bookkeeping needed for the store at 
the expense of having customers potentially request additional data. Additionally, a store may age out or 
remove ChangeAnnotation records with a changeTime that is older than the store’s 
ChangeRetentionPeriod. 

When an ETP customer connects to a store, it should request ChangeAnnotation records for any 
channel or growing data objects that it wants to inspect for changes to previously known data. A customer 
must assume any data covered by the range of a ChangeAnnotation interval to be affected by the 
change at the time in the annotation, even if some of the data was unaffected by the change. 

11.2 GrowingObject: Required Behavior 

This section contains functional and non-functional requirements for this protocol. It is organized in these 
sub-sections: 

 Message Sequence. Summarizes all messages defined by this protocol, identifies main tasks that 
can be done with this protocol and describes the response/request pattern for the messages needed 
to perform the tasks, including usage of ETP-defined capabilities, error scenarios, and resulting ETP 
error codes.  

 General Requirements. Identifies high-level (across ETP) and protocol-wide general behavior and 
rules that must be observed (in addition to behavior specified in Message Sequence), including usage 
of ETP-defined endpoint, data object and protocol capabilities, error scenarios, and resulting error 
codes.  

 Capabilities. Lists and defines the ETP-defined parameters most relevant for this sub-protocol. ETP 
defines these parameters to set necessary limits to help prevent aberrant behavior (e.g., sending 
oversized messages or sending more messages than an endpoint can handle).  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 230 

Prerequisites for using this protocol:  
 An ETP session has been established using Core (Protocol 0) as described in Chapter 5. 

 The customer has the URIs for the growing data objects of interest, which may found using Discovery 
(Protocol 3) or may come out of band of ETP (e.g., in an email).  

11.2.1 GrowingObject: Message Sequences 

This section explains the basic message sequence for main tasks to be done using this protocol and 
includes related key behaviors. The following General Requirements section provides additional 
requirements and rules for how this protocol works.   

The following table lists all messages defined in this sub-protocol, the basic request/response usage 
patterns per ETP role, and whether it may be multipart. The detailed content of each message is 
explained in the Message Schema section. 

GrowingObject (Protocol 6): 
Basic Message-Response flow by ETP Role 

Message sent by customer Response Message from store 

GetPartsMetadata: Request for parts metadata for a list 
of growing data objects. 

GetPartsMetadataResponse (multipart): The list of growing 
data objects and parts metadata for each that the store could 
return. 

GetGrowingDataObjectsHeader: Request for header 
information only for a list of growing data objects. 

GetGrowingDataObjectsHeaderResponse (multipart): The list 
of growing data object header information that the store could 
return. 

PutGrowingDataObjectsHeader: Request to add or 
update the header information for a list of growing data 
objects; each object is identified by a URI and includes 
the header data being inserted or updated. 

PutGrowingDataObjectsHeaderResponse (multipart): The list 
of growing data object headers that the store successfully 
inserted or updated. 

GetParts: Request for the list of parts in one parent 
growing data object, each part identified by a UID. 

GetPartsResponse (multipart): The list of parts and data for 
each that the store could return. 

PutParts: Request to add or update one or more parts 
in one parent growing data object; each part is identified 
by its UID and includes the new part data to be 
inserted/updated in the store. 

PutPartsResponse (multipart): The list of parts that the store 
successfully inserted or updated. 

DeleteParts: Request to delete one or more parts in 
one parent growing data object, each part identified by a 
UID. 

DeletePartsResponse (multipart): The list of parts that the 
store successfully deleted. 

GetPartsByRange: Request to retrieve a range of parts 
as specified by the start and end index of an interval. 

GetPartsByRangeResponse (multipart): The list of parts and 
data for each that were in the specified interval. 

ReplacePartsByRange (multipart): Request to delete a 
range of parts as specified by the start and end index of 
an interval and (optionally) specify a set of parts to 
replace the deleted parts.  

ReplacePartsByRangeResponse: Empty message (no data 
fields) that indicate the operation completed. 

GetChangeAnnotations: A request for changes to the 
parts of a specified list of growing data objects since a 
specific time. 

GetChangeAnnotationsResponse: (multipart): The list of 
changed intervals, per the request. 

 

11.2.1.1 To get parts metadata for one or more growing data objects:  
1. The customer MUST send the store the GetPartsMetadata message (Section 11.3.1), which 

contains a map whose values MUST each be the URI of a growing data object that the customer 
wants to get parts metadata for. 

2. For the growing data objects that the store successfully returns parts metadata for, it MUST send one 
or more GetPartsMetadataResponse map response messages (Section 11.3.2), which contains a 
map whose values are PartsMetadataInfo records (Section 23.34.17).  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 231 

a. For more information on how map response messages work, see Section 3.7.3. 

3. For the URIs it does NOT successfully return parts metadata for, the store MUST send one or more 
map ProtocolException messages, where values in the errors field (a map) are appropriate errors, 
such as ENOT_FOUND (11).  

a. For more information on how ProtocolException messages work with plural messages, see 
Section 3.7.3. 

11.2.1.2 To get the headers for one or more growing data objects:  
1. The customer MUST send the store the GetGrowingDataObjectsHeader message (Section 11.3.3), 

which contains a map whose values MUST be the URI of a growing data object that the customer 
wants to get header information for. 

2. For the URIs it successfully returns growing data object header information for, the store MUST send 
one or more GetGrowingDataObjectsHeaderResponse map response messages (Section 11.3.4) 
where the map values are DataObject records (Section 23.34.5) with the growing data object URIs 
and header data.  

a. For more information on how map response messages work, see Section 3.7.3. 

3. For the URIs it does NOT successfully return growing data object header information for, the store 
MUST send one or more map ProtocolException messages where values in the errors field (a map) 
are appropriate errors, such as ENOT_FOUND (11).  

a. For more information on how ProtocolException messages work with plural messages, see 
Section 3.7.3. 

11.2.1.3 To get the parts for one growing data object:  
1. The customer MUST send the store the GetParts message (Section 11.3.1), which contains the URI 

of the parent growing data object and a map whose values MUST be the part UIDs for each part the 
customer wants to get.  

2. For the UIDs it successfully returns parts for, the store MUST send one or more GetParts map 
response messages (Section 11.3.2) where the map values are ObjectPart records with the part 
UIDs and data.  

a. For more information on how map response messages work, see Section 3.7.3. 

b. Order of parts returned. The store is expected to respect the order specified by an Energistics 
domain standard (e.g., WITSML). For more information, see the ML's ETP implementation 
specification. 

i. The part order SHOULD be stable. For example, if there are two trajectory stations with the 
same measured depth, the store should return these in a consistent order across all 
requests. RECOMMENDATION: Use the same order as in GrowingObjectQuery (Protocol 
16) for the FindPartsResponse message. For more information, see Section 14.1.2.1. 

3. For the UIDs it does NOT successfully return parts for, the store MUST send one or more map 
ProtocolException messages where values in the errors field (a map) are appropriate errors, such 
as ENOT_FOUND (11).  

a. For more information on how ProtocolException messages work with plural messages, see 
Section 3.7.3. 

11.2.1.4 To get a range of parts (interval) for one growing data object:  
1. The customer MUST send the store the GetPartsByRange message (Section 11.3.11), which 

contains the URI of the parent growing data object, the index interval (which specifies the range of 
interest), and a flag to includeOverlappingIntervals.  

a. For more information on how overlapping intervals work, see Section 11.2.2.1. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 232 

2. If the store successfully returns parts from the request interval, it MUST send one or more 
GetPartsByRangeResponse messages (Section 11.3.12), each of which contains an array of UIDs 
and data for each part that the store could return.  

a. The store MUST limit the total count of parts returned to the customer's value for 
MaxResponseCount protocol capability.  

b. The customer MAY notify the store of responses that exceed this limit by sending error 
ERESPONSECOUNT_EXCEEDED (30).  

c. If a store's value for MaxResponseCount protocol capability is smaller than a customer's value, a 
store MAY further limit the total count of parts to its value. 

d. If a store is unable to return all parts to a request due to exceeding the lower of the customer's or 
the store's value for MaxResponseCount protocol capability, the Store MUST terminate the 
multipart response by sending error ERESPONSECOUNT_EXCEEDED (30). 

i. A store MUST NOT send ERESPONSECOUNT_EXCEEDED until it has sent 
MaxResponseCount parts. 

3. If the store has no parts in the request interval, it MUST send a GetPartsByRangeResponse 
message with the FIN bit set and the parts field set to an empty array.  

4. If the store does NOT successfully return parts or a GetPartsByRangeResponse with an empty 
parts array, it MUST send a non-map ProtocolException message with an appropriate error, such 
as EREQUEST_DENIED (6). 

11.2.1.5 To add or update the headers for one or more growing data objects:  
1. The customer MUST send the store the PutGrowingDataObjectsHeader message (Section 11.3.7), 

which contains a map whose values MUST be the URIs of the growing data objects that the customer 
wants to add (insert) or update and the data for each. 

a. REMINDER: ETP uses "upsert" semantics, so all put operations are a complete replace of any 
existing data. For more information, see Section 9.1.1. 

b. A customer MUST honor the store's MaxDataObjectSize capability. For more information, see 
Section 3.3.2.4. 

c. When adding a new growing data object, the growing data object MAY include parts. When 
updating an existing growing data object, the growing data object MUST NOT include parts. For 
additional details on required behavior when adding parts, see Section 11.2.1.6. 

d. When a growing data object includes parts, the customer MUST honor the store’s MaxPartSize 
capability. For more information, see Section 3.3.2.5. 

2. For growing data object headers it successfully puts (add to/replace in the store), the store MUST 
send one or more PutGrowingDataObjectsHeaderResponse map response messages (Section 
11.3.8).  

a. For more information on how map response messages work, see Section 3.7.3. 

b. The store MUST send this message AFTER it performs these operations: 

i. If the growing data object does not exist in the store, the store MUST add it. If the growing 
data object includes parts, the store MUST follow the same rules defined for Store (Protocol 
4) when creating a growing data object that includes parts as described in Section 9.2.2, 
Row◦21. If the parts are themselves also data objects, the store MUST also follow the rules 
described in Section 9.2.2, Row 22.   

ii. If the growing data object does exist in the store and the customer included parts in the 
update, the store MUST reject the update and send error 
EUPDATEGROWINGOBJECT_DENIED (23). 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 233 

iii. If the growing data object does exist in the store, the store MUST replace the entire existing 
header with the information the customer provided in the PutGrowingDataObjectsHeader 
message. 

iv. Store-managed fields on the Resource only (storeCreated and storeLastWrite) MUST be 
updated for these operations; for more information, see Section 11.2.2, Row 8. 

c. Successful put header operations MAY trigger notifications in StoreNotification (Protocol 5) 
(because putting a header = inserting or updating a data object). For more information, see 
Section 10.2.2, Row 9. 

d. NOTIFICATION BEHAVIOR: When a put header operation succeeds and includes parts, the 
store MUST send PartsChanged notifications as described in Section 11.2.1.6 for the added or 
updated parts. 

3. For growing data object headers the store does NOT successfully put, it must send a 
ProtocolException message with errors field (map) whose values MUST be the URIs of the growing 
data objects from the request that could not be added and an appropriate error code for each, for 
example, EREQUEST_DENIED (6).  

a. For more information about use of ProtocolException messages with plural messages, see 
Section 3.7.3. 

4. After adding a growing data object header, a customer can use the PutParts, DeleteParts and 
ReplacePartsByRange messages to add and edit a growing data object's parts.  

11.2.1.6 To add or update one or more parts for one growing data object:  
1. The customer MUST send the store the PutParts message (Section 11.3.5), which contains the URI 

of the parent growing data object and a map whose values MUST be the UIDs and data for each part 
that the customer wants to add (insert) or update. 

a. PutParts represents a set of distinct add or update operations. It does not explicitly operate on a 
range of data. To operate on a range of data, use ReplacePartsByRange. 

b. REMINDER: ETP uses "upsert" semantics, so all put operations are a complete replace of any 
existing data. For more information, see Section 9.1.1. 

2. For the parts it successfully puts (add to/replace in the store), the store MUST send one or more 
PutPartsResponse map response messages (Section 11.3.6). 

a. For more information on how map response messages work, see Section 3.7.3. 

b. The store MUST send this message AFTER it performs these operations: 

i. If the parts do not exist in the store, the store MUST add them.   

1. If the parts are themselves also data objects, adding new parts MUST NOT exceed the 
store’s value for MaxContainedDataObjectCount data object capability for the parent 
growing data object type. For each part that would exceed this limit, the store MUST NOT 
add the part. The store MUST instead send ELIMIT_EXCEEDED (12). 

ii. If the parts do exist, the store MUST replace them with the information the customer provided 
in the PutParts message. 

iii. For BOTH i and ii, the store MUST do the following: 

1. If the parts are themselves also data objects, the store MUST also follow these rules for 
the parts: 

a. The rules for putting data objects into a store defined in Section 9.2.1.2. 

b. The store MUST link any parts not previously in the growing data object to the 
growing data object. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 234 

c. The additional rules for putting parts that are data objects into a store defined in 
Section 9.2.2, Row 23. 

2. Update the storeLastWrite field on the growing data object's Resource. For more 
information, see Section 11.2.2, Row 8. 

3. Update the activeStatus field on the growing data object. For more information, see 
Section 11.2.2, Row 9. 

4. Create appropriate ChangeAnnotation records. For more information, see Section 
11.2.2.3. 

3. For the parts it does NOT successfully put, the store MUST send one or more map 
ProtocolException messages where values in the errors field (a map) are appropriate errors, such 
as EREQUEST_DENIED (6). 

a. For more information on how ProtocolException messages work with plural messages, see 
Section 3.7.3. 

4. NOTIFICATION BEHAVIOR: The store MUST send a PartsChanged notification message with a 
type (objectChangeKind) of "insert" or "update". 

a. If the parts are themselves also data objects, for any parts that were newly linked to the growing 
data objects, the store MUST send an ObjectChanged notification with ObjectChangeKind set to 
“joined”. 

b. When a PutParts message both inserts and updates parts, 2 PartsChanged notifications must 
be sent: one for the inserted parts and one for the updated parts. 

c. A store MUST send a notification for only the most recent effective state of a part. So if multiple 
insert or update changes to a part since the notifications were sent for the part, the store MAY 
send only one notification. 

i. If the part is in a range that will be included in a ReplacePartsByRange message, 
PartsChanged MUST NOT be sent. Instead, the part MUST be included in the 
PartsReplacedByRange message. 

ii. If the part will NOT be included in a ReplacePartsByRange and it was inserted since the 
most recent insert or update notification was sent, the store MUST send an insert notification 
with the timestamp of the most recent insert or update change. 

iii. Otherwise, the store MUST send an update notification with the timestamp of the most recent 
update. 

d. Notifications are sent in GrowingObjectNotification (Protocol 7). For more information on rules for 
populating/sending notifications and why notification behavior is specified here, see Section 
11.2.2, Row 5. 

e. When the parts in a PutParts message are themselves also data objects, the store MUST also 
send ObjectChanged notification messages in StoreNotification (Protocol 5) as described in 
Section 9.2.1.2 and Section 9.2.2. 

11.2.1.7 To delete one or more parts from one growing data object:  
1. The customer MUST send the store the DeleteParts message (Section 11.3.9), which contains the 

URI of the parent growing data object and the map whose values MUST be the part UIDs that the 
customer wants to delete. 

a. When the parts in a DeleteParts message are themselves data objects, the store MUST also 
treat DeleteParts as a request to delete (NOT prune or unjoin) the data objects. 

2. For the parts it successfully deletes, the store MUST send one or more DeletePartsResponse map 
response messages (Section 11.3.10).  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 235 

a. For more information on how map response messages work, see Section 3.7.3. 

b. The store MUST send this message AFTER it performs these operations: 

i. Update the storeLastWrite field on the growing data object's Resource. For more 
information, see Section 11.2.2, Row 8. 

ii. Update the activeStatus field on the growing data object. For more information, see Section 
11.2.2, Row 9. 

iii. Create appropriate ChangeAnnotation records. For more information, see Section 11.2.2.3. 

iv. If the parts are themselves also data objects, the store MUST also follow these rules for the 
parts: 

1. The rules for deleting data objects from a store defined in Section 9.2.1.3. 

2. The additional rules for deleting contained data objects defined in Section 9.2.2, Row 25. 

3. The additional rules for deleting parts that are data objects from a store defined in 
Section 9.2.2, Row 27. 

3. For the parts it does NOT successfully delete, the store MUST send one or more map 
ProtocolException messages where values in the errors field (a map) are appropriate errors, such 
as ENOT_FOUND (11) or EREQUEST_DENIED (6).  

a. For more information on how ProtocolException messages work with plural messages, see 
Section 3.7.3. 

4. NOTIFICATION BEHAVIOR: The store MUST send a PartsDeleted notification message. 

a. A store MUST send a notification for only the most recent effective state of a part. So if 
notifications are queued, and the part is subsequently deleted, the store MAY discard any 
previous notifications. 

b. If the part is in a range that will be included in a ReplacePartsByRange message, 
PartsChanged MUST NOT be sent. Instead, the part MUST be included in the 
PartsReplacedByRange message. 

c. Notifications are sent in GrowingObjectNotification (Protocol 7). For more information on rules for 
populating/sending notifications and why notification behavior is specified here, see Section 
11.2.2. 

d. When the parts in a DeleteParts message are themselves also data objects, the store MUST 
also send ObjectDeleted notification messages in StoreNotification (Protocol 5) as described in 
Section 9.2.1.3 and Section 9.2.2. 

11.2.1.8 To delete a range of parts (interval) and (optionally) replace it with another range of 
parts: 

1. The customer MUST send the store the ReplacePartsByRange message (Section 11.3.15), which 
contains these fields: uri, which MUST be the URI of the parent growing data object from which the 
parts are to be deleted; deleteInterval, which MUST specify he index interval for the range of parts to 
be deleted; parts, which is an array that MUST identify the UIDs and data for each part that is to be 
added (i.e., the new parts that will replace the parts that have been deleted); and the 
includeOverlappingIntervals flag.  

a. The number of parts deleted DOES NOT have to equal the number of parts added. 

b. If the parts field is left empty, then the message is a delete request for the interval specified in 
deleteInterval.  

c. For information on how overlapping intervals work, see Section 11.2.2.1.  

d. When the parts deleted by a ReplacePartsByRange message are themselves data objects, the 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 236 

store MUST also treat ReplacePartsByRange as a request to delete (NOT prune or unjoin) the 
data objects. 

2. ReplacePartsByRange is an atomic operation: the entire request either succeeds or fails.  

a. The store MUST delete the range of parts specified in deleteInterval and replace it with the parts 
specified in parts.  

i. If the parts are themselves also data objects, the store MUST also follow these rules for the 
deleted parts: 

1. The rules for deleting data objects from a store defined in Section 9.2.1.3. 

2. The additional rules for deleting contained data objects defined in Section 9.2.2, Row 25. 

3. The additional rules for deleting parts that are data objects from a store defined in 
Section 9.2.2, Row 27. 

ii. If the parts are themselves also data objects, the store MUST also follow these rules for the 
replacement parts: 

1. The rules for putting data objects into a store defined in Section 9.2.1.2. 

2. The store MUST link any parts not previously in the growing data object to the growing 
data object. 

3. The additional rules for parts that are data objects into the store defined in Section 9.2.2, 
Row 23. 

iii. If it completes these operations successfully, it MUST send a 
ReplacePartsByRangeResponse message (Section 11.3.16), which is a "success only" 
message indicating that the store has successfully completed the entire operation as 
requested. 

b. If any replacement part is NOT covered by the deleteInterval, the store MUST fail the operation 
and send EINVALID_OPERATION (32). NOTE: includeOverlappingIntervals DOES NOT allow 
replacement parts to overlap the deleteInterval. They MUST always be covered by the 
deleteInterval. 

c. If the parts are themselves data objects and adding the replacement parts would exceed the 
store’s value for MaxContainedDataObjectCount data object capability for the parent growing 
data object type, the store MUST fail the operation and send ELIMIT_EXCEEDED (12). 

d. After deleting the range of parts specified in deleteInterval, if any replacement parts would have 
the same UID as a part still in the growing data object, the store MUST fail the operation and 
send EINVALID_OPERATION (32). That is, replacement parts MUST ONLY replace parts that 
are deleted by the message. 

e. If the operation fails, the store MUST:  

i. Rollback the entire request. That is, the store MUST be in the state it was in before receiving 
the ReplacePartsByRange message.  

ii. Send a non-map ProtocolException message with an appropriate error code such as 
EREQUEST_DENIED (6). 

3. NOTIFICATION BEHAVIOR: The store MUST send a PartsReplacedByRange notification 
message. 
a. A store MUST send a notification for only the most recent effective state of a part. So if 

notifications are queued: 

i. If the parts affected by a ReplacePartsByRange message were PREVIOUSLY affected by 
PutParts or DeleteParts messages before PartsReplacedByRange is sent, the store MAY 
discard the previous notifications and only send PartsReplacedByRange. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 237 

ii. If the parts affected by a ReplacePartsByRange message were LATER affected by other 
PutParts or DeleteParts messages before PartsReplacedByRange is sent, the store MAY 
discard the later notifications and only send PartsReplacedByRange with changeTime set to 
the most recent change covered by range included in the message. 

iii. If a range is affected by more than one ReplacePartsByRange message before 
PartsReplacedByRange is sent, a store MAY choose to only send one 
PartsReplacedByRange message that covers the combined range of all relevant 
ReplacePartsByRange messages with changeTime set to the most recent relevant 
timestamp. 

iv. When combining multiple notifications into a single PartsReplacedByRange message, the 
store MUST set includeOverlappingIntervals to false, set the deletedInterval to the smallest 
range that covers all affected parts, and include as replacement parts any existing parts 
covered by the message’s deletedInterval. 

b. Notifications are sent in GrowingObjectNotification (Protocol 7). For more information on rules for 
populating/sending notifications and why notification behavior is specified here, see Section 
11.2.2. 

c. When the parts deleted by a ReplacePartsByRange message are themselves also data objects, 
the store MUST also send ObjectDeleted notification messages in StoreNotification (Protocol 5) 
as described in Section 9.2.1.3 and Section 9.2.2. 

11.2.1.9 To determine what has changed in a store after a disconnect (using 
ChangeAnnotations):  

This process can be used by a customer anytime it first connects to a store and wants to determine latest 
changes on the parts/interval in growing data objects of interest (it must have the growing data object's 
URI). (There are similar processes for channel and other data objects; for more information about related 
workflows, see Appendix: Data Replication and Outage Recovery Workflows.) 

ETP has no session survivability. So if a session is interrupted (e.g., a satellite connection drops), using 
this process makes it easier for a customer to determine what has changed while disconnected, get any 
changed data it requires, and resume operations that were in process when the dropped session 
happened—with a reduced likelihood of NOT having to "resend all data from the beginning" (i.e., all data 
from before the session dropped).  

1. The customer MUST reconnect (as described in Chapter 5) and MAY want to get parts metadata 
using the process described in Section 11.2.1.1.  

2. To determine what has changed while disconnected, the customer MUST send the store a 
GetChangeAnnotations message (Section 11.3.17).  

a. This message contains a map whose values MUST be the URIs of growing data objects to get 
change annotations for. In the message, the customer MUST also enter a "changes since" time 
(that is, the customer wants all changes since this time, which should be based on the time the 
customer was last sure it received data from the store) and indicate if it wants all change 
annotations or only the latest change annotation for each growing data object. 

i. The "changes since" time (sinceChangeTime field) MUST BE equal to or more recent than 
the store's ChangeRetentionPeriod endpoint capability. 

3. For URIs it successfully returns change annotations for, the store MUST respond with one or more 
GetChangeAnnotationsResponse map response messages (Section 11.3.18). 

a. For more information on how map response messages work, see Section 3.7.3. 

b. The map values in each message are ChangeResponseInfo records (Section 23.34.19), which 
contains a time stamp for when the response was sent and the ChangeAnnotation records 
(Section 23.34.18) for a growing data object. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 238 

i. Each ChangeAnnotation record contains a timestamp for when the change occurred in the 
store and the interval of the growing data object that changed. (NOTE: Change annotations 
keep track ONLY of the interval that changed, NOT the actual data that changed).  

c. For information about how the store tracks and manages these change annotations, see 
Section◦11.2.2, Row 15).  

4. For the URIs it does NOT successfully return change annotations for, the store MUST send one or 
more map ProtocolException messages where values in the errors field (a map) are appropriate 
errors. 

a. For more information on how ProtocolException messages work with plural messages, see 
Section 3.7.3. 

5. Based on information in the GetChangeAnnotationsResponse message, the customer MAY:  

a. Use the GetPartsByRange message to retrieve intervals of interest that have changed (as 
described in Section 11.2.1.4).  

b. Re-establish growing data object or growing data object parts notification subscriptions that were 
in place when a session was disconnected, (see Sections 10.2.1.1 and 12.2.1.1, respectively).  

11.2.2 GrowingObject: General Requirements 

In addition to the basic message sequence described in the previous section, this protocol has the 
additional requirements listed in the table below. For easy reference, the rows and behaviors in this table 
are numbered. 

NOTE: This table has been organized to reduce redundancy but also to help developers more easily 
locate specific requirements. EXAMPLE: There are rows with general requirements that apply to all 
protocols (e.g., Rows 1–2), rows for general requirements for this protocol, and (possibly) additional rows 
with additional requirements for specific types of operations.  

Row# Requirement Description 

1.  ETP-wide behavior that MUST be 
observed in all protocols 

1. Requirements for general behavior consistent across all of ETP are defined in 
Chapter 3. This behavior includes information such as: all details of message 
handling (such as message headers, handling compression, use of message IDs 
and correlation IDs, requirements for plural and multipart message patterns) use 
of acknowledgements, general rules for sending ProtocolException messages, 
URI encoding, serialization and more. RECOMMENDATION: Read Chapter 3 
first. 

2. For information about Energistics identifiers and prescribed ETP URI formats, see 
Appendix: Energistics Identifiers. 

a. In MOST cases, endpoints performing operations in this protocol MUST use 
the canonical Energistics URI. For more information, see Section 3.7.4. 

3. For the complete list of error codes defined by ETP, see Chapter 24. 

4. ALL operations in an ETP session are performed on the set of supported data 
object types that were negotiated to be used when the session was initiated 
and established. 

a. The client and server exchange the list of data object types in the 
supportedDataObjects field of the RequestSession and OpenSession 
messages in Core (Protocol 0). For more information, see Chapter 5. 

b. In general, the list of supported objects for a session will most likely be the 
intersection of the data objects that the server supports and the data objects 
that the client requested for the ETP session. 

c. A store MUST support all messages (in each supported ETP sub-protocol) 
for each supported data object, whether the data object is supported 
explicitly or by wild card. 

d. An endpoint MUST only send messages with the URI of a data object that is 
a type supported by the other endpoint for this ETP session.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 239 

Row# Requirement Description 

i. If an endpoint sends a URI for an unsupported type of data object, the 
other endpoint MUST send error 
EDATAOBJECTTYPE_NOTSUPPORTED (16). 

2.  Capabilities-related behavior 1. Relevant endpoint, data object, and/or protocol capabilities MUST be specified 
when the ETP session is established (see Chapter 5) and MUST be used/honored 
as defined in the relevant ETP sub-protocol.  

2. For an explanation of endpoint, data object, and protocol capabilities, see Section 
3.3. 

a. For the list of global capabilities and related behavior, see Section 3.3.2. 

3. Section 11.2.2.2 identifies the capabilities most relevant to this ETP sub-protocol. 
Additional details for how to use the protocol capabilities are included below in this 
table and in Section 11.2.1 GrowingObject: Message Sequence. 

4. Endpoint Capability MaxPartSize must be honored for most requests and 
response in this protocol. For the general behavior that must be applied, see 
Section 3.3.2.5. 

3.  Message Sequence 

See Section 11.2.1. 

1. The Message Sequence section above (Section 11.2.1) describes requirements 
for the main tasks listed there and also defines required behavior.  

4.  Plural messages (which includes 
maps) 

1. This protocol uses plural message. For detailed rules on handling plural 
messages (including handling of ProtocolException messages), see Section 
3.7.3. 

5.  Notifications 1. This chapter explains events (operations) in GrowingObject (Protocol 6) that 
trigger the store to send notifications, which the store sends using 
StoreNotification (Protocol 5) and/or GrowingObjectNotification (Protocol 6). 
However, statements of NOTIFICATION BEHAVIOR are here in this chapter, in 
the context of the detailed explanation of the behavior that triggers the notification. 

2. Notification behavior is described here using MUST. However, the store MUST 
ONLY send notifications IF AND ONLY IF there is a customer subscribed to 
notifications for an appropriate context (i.e., a context that includes the data 
object) and the store MUST ONLY send notifications to those customers that are 
subscribed to appropriate contexts. 

a. For more information on data object notifications, see Chapter 10 
StoreNotification (Protocol 5). 

b. For information on notifications for parts in growing data objects, see 
Chapter◦12 GrowingObjectNotification (Protocol 7). 

6.  Growing data object operations 
that may be performed using Store 
(Protocol 4) 

1. To perform all operations listed in this row, a customer MUST use messages in 
Store (Protocol 4); for more information, see Chapter 9.  
a. To add (insert) a new growing data object and its parts in one 

operation, a customer MUST use a PutDataObjects message. See Section 
9.2.1.2. 
i. A customer MAY add a growing data object using GrowingObject 

(Protocol 6) by first adding the growing data object header and then 
adding the parts. For more information, see Sections 11.2.1.5 and 
11.2.1.6. 

b. To get a growing data object and its parts in one operation, a customer 
MUST use a GetDataObjects message. See Section 9.2.1.1. 

c. To delete a growing data object, a customer MUST use a 
DeleteDataObjects message. See Section 9.2.1.3. 

i. A growing data object CANNOT be deleted using GrowingObject 
(Protocol 6), only Store (Protocol 4).  

7.  Growing data object operations 
that MUST be performed using 
GrowingObject (Protocol 6)  

1. To perform all operations listed in this row, a customer MUST use messages in 
GrowingObject (Protocol 6):  
a. All "updates" to growing data objects, for header and parts information.  
b. All operations (additions, edits, deletes) on parts only in the context of one 

growing data object.  
c. For the list of all tasks that can be done in this protocol and how they work, 

see Section 11.2.1. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 240 

Row# Requirement Description 

8.  Store Behavior: Updates to 
storeCreated and storeLastWrite 
fields. 

1. Each Resource in ETP has these two fields: storeCreated and storeLastWrite.   
a. These fields appear ONLY on the Resource NOT on the data object and are 

used in workflows for eventual consistency between 2 stores.  
b. For more information about these fields, see Section 3.12.5.2 and their 

definitions/required format in Resource (see Section 23.34.11).   
2. For operations in GrowingObject (Protocol 6) that ADD a new data object (e.g., 

PutGrowingDataObjectsHeader), the store MUST do both of these: 
a. Set the storeCreated field to the time that the header was added in the store.  
b. Set the storeLastWrite to the same time as storeCreated. 

3. For operations in GrowingObject (Protocol 6) that result in ANY CHANGE to the 
growing data object—header or its parts—the store MUST update the 
storeLastWrite field with the time of the change in the store.  

9.  Store Behavior: Updates to 
activeStatus field 

1. The Resource (Section 23.34.11) associated with each data object in ETP has an 
activeStatus field. 

a. This field appears ONLY on the Resource NOT on the data object. There 
MAY be an equivalent element on the data object. The mapping between 
activeStatus and the data object element is defined by the relevant ML 
implementation guide. 

b. For growing data objects, this field may have a value of "active" or "inactive". 

c. For information about this field and behavior related to setting it to "inactive" 
related to the ActiveTimeoutPeriod capability, see Section 3.3.2.1. 

2. If a growing data object’s activeStatus has a value of "inactive" and messages in 
this ETP sub-protocol begin operations that change the growing data object's 
parts data (e.g., appends data with a PutParts message or replaces a range with 
a ReplacePartsByRange message), the store MUST do the following: 

a. Set the growing data object's activeStatus to "active". 

b. Reset the timer for the ActiveTimeoutPeriod capability. 

c. NOTIFICATION BEHAVIOR: Send an ObjectActiveStatusChanged 
notification message for the growing data object in StoreNotification 
(Protocol 5). For more information, see Section 10.2.2, Row 16. 

3. If a growing data object is added/inserted (e.g., in Store (Protocol 4) or with 
PutGrowingDataObjectsHeader) the store MUST set activeStatus to "inactive" 
(the default). 

10.  Store Behavior: Immutable 
elements and attributes 

Some elements and attributes on Energistics growing data object headers and parts 
are immutable. That is, the values for these elements and attributes are set when the 
growing data object header or part is created, and the values cannot be changed after 
that. Examples of these are a data object’s UUID, a part’s UID, and the unit of measure 
for the index value of a part. 

Observe these rules for immutable elements and attributes: 

1. When the customer creates the growing data object header or part, the store 
MUST use the values provided by the customer for these elements and attributes. 

2. If a customer attempts to update an existing growing data object header or part 
and provides different values for immutable elements or attributes, the store 
MUST reject the update and send error EREQUEST_DENIED (6). 

3. If a customer needs to change the values of any immutable elements or attributes 
on a growing data object header, the customer MUST first delete the entire 
growing data object and then recreate it with the correct values, re-adding parts 
as required. 

4. If a customer needs to change the values of any immutable elements or attributes 
on a growing data object part, the customer MUST first delete the part and then 
recreate it with the correct values. 

11.  All URIs used in this protocol must 
resolve to a growing data object  

 

1. All URIs specified in messages in this protocol MUST resolve to a data object that 
is a growing data object; if the URI does not resolve to a growing data object, the 
store MUST send error ENOTGROWINGOBJECT (6001).  
a. Data objects that are growing data objects are identified in the relevant ML's 

ETP implementation specification.  
2. For the messages listed below, the URI specified MUST resolve to a single 

growing data object (the parent growing data object for the specified parts or 
ranges); if it does not, send error ENOTGROWINGOBJECT (6001)  

GetParts GetPartsResponse 

PutParts PutPartsResponse 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 241 

Row# Requirement Description 

DeleteParts DeletePartsResponse 

GetPartsByRange GetPartsByRangeResponse 

ReplacePartsByRange ReplacePartsByRangeResponse 
 

12.  Indexes for growing data objects 1. Indexes for growing data objects MUST be only "DateTime" or "MeasuredDepth".  
NOTE: ChannelIndexKind enumerates the type of indexes for both growing data 
objects and channel data objects. ETP specifies additional index kinds that may 
be used for channel indexes only. 

13.  Index Metadata 1. A growing data object’s index metadata MUST be consistent: 

a. All parts MUST have the same index unit and the same vertical datum. 

b. The index units and vertical datums in the growing data header MUST match 
the parts. 

c. The index units and vertical datums MUST match the index unit and vertical 
datum in the PartsMetadataInfo record. 

2. For growing data objects that do not explicitly store the index metadata in the 
growing data object header: 

a. The index metadata for the growing data object is derived from the first part 
in the growing data object as defined in the relevant ML implementation 
guide. 

b. When a growing data object does not yet have any parts, the 
PartsMetadataInfo record MUST be populated as follows: 

i. indexKind, direction, and, optionally, indexPropertyKindUri MUST be 
set to the correct value based on the type of data object (e.g., 
MeasuredDepth and increasing for Trajectories). 

ii. startIndex and endIndex in interval MUST be null. 

iii. uom, depthDatum, and both uom and datum in interval MUST all be 
empty strings. 

iv. name MUST be set. 

3. When sending messages, both the store AND the customer MUST ensure that all 
index metadata and data derived from index metadata are consistent in all fields 
in the message, including in XML or JSON object data or part data. 

a. EXAMPLE: The uom and depthDatum in an IndexInterval record MUST be 
consistent with the data object’s index metadata. 

b. EXAMPLE: Data object elements related to index values in growing data 
object headers (e.g., MdMn and MdMx on a WITSML 2.0 Trajectory) and 
parts (e.g., Md on a WITSML 2.0 TrajectoryStation) MUST be consistent with 
each other AND the data object’s index metadata. 

c. A store MUST reject requests with inconsistent index metadata with an 
appropriate error such as EINVALID_OBJECT (14) or 
EINVALID_ARGUMENT (5). 

14.  Range operations/messages 1. Messages with the words "ByRange" in their name perform operations on the 
range of parts included in a specified index interval. No individual parts are listed; 
therefore, no UIDs are used.  

2. For information on how overlapping range operations work, see Section 11.2.2.1. 

15.  Store Behavior: Creating and 
managing change annotations 

1. For a definition of change annotations and related terms, see Section 11.1.4. 

2. For the requirements on how to create and manage change annotations for 
growing data objects, See Sections 11.2.2.3, 11.2.2.4, and 11.2.2.5 

3. A store MUST track annotations globally, NOT per user, customer, or endpoint. 

a. There is NO requirement for the store to remember the data that changed, 
ONLY the interval where a change occurred and the time. 

4. A store MUST create annotations (ChangeAnnotation records) for the following 
operations: 

a. When a range of parts data is replace or deleted:  

i. The change annotation must reflect the full range of the delete 
operation.  

5. Managing change intervals and annotations: 

a. A store MUST retain ChangeAnnotation records for its 
ChangeRetentionPeriod endpoint capability.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 242 

Row# Requirement Description 

b. For change intervals that overlap, a store MUST combine the annotations 
into 1 change interval/change annotation and set the changeTime to the 
changeTime of the most recent of those annotations that were combined. 

c. A store MAY combine annotations over time as it sees fit. This behavior is 
recommended: 

i. Small changes near each other (indexes/intervals), SHOULD be 
bundled together into a single change interval.  

ii. Bundling SHOULD occur in a manner that promotes efficient data 
transfer and honors load limits. 

 

11.2.2.1 Overlapping Interval Range Operations 
As an alternative to listing each individual part to be operated on, ETP provides functionality to specify 
range or interval (which is defined by a start and end index) and the operation is performed on all parts 
that are within that interval. This functionality is included in messages that have the words "ByRange" in 
their name.  

However, some growing data objects (e.g., wellbore geology (previously known as mud log) have "parts" 
that represent a range, as opposed to a single point. These "range parts" are identified by having 
start/end or top/base type elements for their relevant indices. The issue with having a range part (vs. a 
single point) is how to handle "ByRange" operations when only a portion of the range part overlaps the 
specified interval of interest (i.e., the request interval). 

When specifying operations with intervals, it is possible to specify whether "range parts" that partially 
overlap the indices of the request interval are included or not in the operation by using the 
includeOverlappingIntervals flag. 

11.2.2.1.1 EXAMPLE 
A growing data object has these 3 "range parts": 

 Range Part 1: 1,000 to 2,000 ft 

 Range Part 2: 2,000 to 3,000 ft 

 Range Part 3: 3,000 to 4,000 ft 

A "ByRange" request specifies an interval (request interval) of 1,500 to 3,500 ft.  

 If the includeOverlappingIntervals flag is true, all 3 range parts are included in the operation (because 
a portion or each range part overlaps the request interval).  

 EXAMPLE: In the ReplacePartsByRange message, if includeOverlappingIntervals flag is true, 
the store will delete any range part that overlaps the deleteInterval, so all 3 range parts. 

 If the includeOverlappingIntervals flag is false, only Range Part 2 is included in the operation (where 
the minimum and maximum points that define the range part are wholly contained in the request 
interval).  

 EXAMPLE: In the ReplacePartsByRange message, if includeOverlappingIntervals flag is false, 
the store will delete only range part that are completely contained in the deleteInterval, so only 
Range Part 2.  

11.2.2.1.2 Logic for how IncludeOverlappingIntervals Works 
This section explains the general logic for how the includeOverlappingIntervals flag works. The 
StartIndex/EndIndex represents the request interval and mdTop/mdBase represents the range part in the 
growing data object.  

NOTE: Operations/checks are inclusive of the startIndex and endIndex parameters ( >=,  <=). 

includeOverlappingIntervals: true (default behavior) 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 243 

Definition: "Range parts" are affected where ANY part of their interval overlaps with the request interval. 
There are 4 cases of how an object may or may not overlap, or be contained within the request interval. 
The table below shows the logic that addresses these cases.  

A. Range part falls completely within the request interval 

B. mdTop is inside the request interval, but mdBase is outside 

C. mdTop is outside the request interval, but mdBase is inside 

D. both mdTop and mdBase are outside the request interval, but the range part SPANS the request 
interval.  

 

Logic  Case(s) Addressed 

(mdtop >= startIndex && mdTop <= endIndex) A & B 

|| (mdBase >= startIndex && mdBase <= endIndex) A & C 

|| (mdtop <= startIndex && mdBase >= endIndex) D 

 
NOTE: && indicates AND Operation, || indicates OR operation. 

includeOverlappingIntervals: false 
Range parts are affected only where their interval is wholly contained within the request interval. Any 
partially overlapping range parts are ignored. The following logic applies to all ByRange operations (get, 
put, and delete):  

mdTop >= startIndex && mdTop <= endIndex  

&& mdBase >= startIndex && mdBase <= endIndex 

11.2.2.2 Rules for Creating Change Annotations for Channel Data Objects 
Figure 20 illustrates some common types of changes to channel data and how a store may or must 
create or update ChangeAnnotation records in response to them. 

 
Figure 20: Example showing how change annotations (CA) work over time for channels. Blue box = channel 
data, white box with red label = change annotation. The size of the white box is intended to show that the 
annotation is for the entire corresponding channel (blue box). 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 244 

The table below describes how stores create ChangeAnnotation records in different scenarios for 
channel data objects. 

IMPORTANT: ChangeAnnotation records MUST be created based on the type of change that happens 
and NOT solely based on the ETP message used. For example, ReplaceRange in ChannelDataLoad 
(Protocol 22) may replace data at the start, in the middle, or at the end of a channel’s data range. 

IMPORTANT: The table explains how to create ChangeAnnotation records in response to customer 
requests. Whenever new records overlap each other or existing records, the store MUST merge the 
overlapping records together. In addition, the store MAY merge non-overlapping records. For rules 
governing merging ChangeAnnotation records, see Section 11.2.2.4.  

CHANNEL Data Objects: Scenarios for how Stores Create ChangeAnnotations 

Change Type Primary Indexes 
Affected? 

Annotation 
Created? 

Annotation 
Range 

Annotation 
Timestamp 

Data Appended: new 
data appended; 
existing data unaffected  

For increasing data, 
end index increases. 

For decreasing data, 
end index decreases. 

No 
  

Data Prepended: new 
data prepended; 
existing data unaffected 

For increasing data, 
start index decreases. 

For decreasing data, 
start index increases. 

Yes (required) Range between new 
and old start index. 

Time when store 
prepended data. 

Range Deleted 
Covering End Index: 
existing data removed; 
no data added or 
changed 

For increasing data, 
end index decreases. 

For “decreasing” data, 
end index increases. 

Yes (required) Range between new 
and old end index. 

Time when store 
deleted data. 

Range Deleted 
Covering Start Index: 
existing data removed; 
no data added or 
changed 

For increasing data, 
start index increases. 

For decreasing data, 
start index decreases. 

Yes (required) Range between new 
and old start index. 

Time when store 
deleted data. 

Range Deleted Inside 
Existing Data Range: 
existing data removed; 
no data added or 
changed 

No. Yes (required) changedInterval from 
request. 

Time when store 
deleted data. 

All Data Deleted: 
existing data removed; 
no data added or 
changed 

Start and end indexes 
become null. 

Yes (required) Range between old 
start and end index. 

Time when store 
deleted data. 

Range Replaced 
Covering End Index: 
existing data removed; 
replacement data 
added  

End index may increase 
or decrease. 

Yes (required) Smallest range 
covering: 

a) range between new 
and old end index, and 

b) added data range. 

Time when store 
replaced data. 

Range Replaced 
Covering Start Index: 
existing data removed; 

Start index may 
increase or decrease. 

Yes (required) Smallest range 
covering: 

Time when store 
replaced data. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 245 

CHANNEL Data Objects: Scenarios for how Stores Create ChangeAnnotations 

Change Type Primary Indexes 
Affected? 

Annotation 
Created? 

Annotation 
Range 

Annotation 
Timestamp 

replacement data 
added 

a) range between new 
and old start index, and 

b) added data range. 

Range Replaced 
Inside Existing Data 
Range: existing data 
removed; replacement 
data added 

No. Yes (required) changedInterval from 
request. 

Time when store 
replaced range. 

All Data Replaced: 
existing data removed; 
replacement data 
added 

Both start and end 
indexes may increase 
or decrease. 

Yes (required) Range between old 
start and end index. 

 

 

11.2.2.3 Rules for Creating Change Annotations for Growing Data Objects 
Figure 21 illustrates some common types of changes to growing data object parts and how a store may 
or must create or update ChangeAnnotation records in response to them. 

 
Figure 21: Example showing how change annotations (CA) work over time for growing data objects. Blue 
boxes = growing data object parts, white box with red label = change annotations. The size of the white box 
is intended to show that change annotations could potentially exist anywhere in the full range of data 
covered by the parts, and the red boxes show the actual ranges of data covered by change annotations. 

The table below describes how stores create ChangeAnnotation records in different scenarios for 
growing data objects. 

IMPORTANT: ChangeAnnotation records MUST be created based on the type of change that happens 
and NOT solely based on the ETP message used. For example, ReplacePartsByRange in 
GrowingObject (Protocol 6) may replace parts at the start, in the middle or at the end of a growing data 
object’s data range. The PutParts and DeleteParts messages may cause multiple types of changes that 
result in multiple ChangeAnnotation records being created. 

IMPORTANT: The table explains how to create ChangeAnnotation records in response to customer 
requests. Whenever new records overlap each other or existing records, the store MUST merge the 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 246 

overlapping records together. In addition, the store MAY merge non-overlapping records. For rules 
governing merging ChangeAnnotation records, see Section 11.2.2.4.  

GROWING Data Objects: Scenarios for how Stores Create ChangeAnnotations 

Change Type Indexes 
Affected? 

Annotation 
Created? 

Annotation 
Range 

Annotation 
Timestamp 

Part(s) Appended: 
new part(s) appended; 
existing parts 
unaffected. 

End index increases. No 
  

Part(s) Prepended: 
new part(s) prepended; 
existing parts 
unaffected. 

Start index decreases. Yes (required) Range between new 
and old start index. 

Time when store 
prepended parts. 

Part(s) Added 
Covering End Index: 
new part(s) added; 
existing parts 
unaffected. 

End index may 
increase. 

Yes (required) Smallest range 
covering start and end 
index of each added 
part. 

Time when store 
added parts. 

Part(s) Added 
Covering Start Index: 
new part(s) added; 
existing parts 
unaffected. 

Start index may 
decrease. 

Yes (required) Smallest range 
covering start and end 
index of each added 
part. 

 

Time when store 
added parts. 

Part(s) Added Inside 
Existing Data Range: 
new part(s) added; 
existing parts 
unaffected. 

No. Yes (required, 
one per part) 

Range of each added 
part. 

Time when store 
added each part. 

Part(s) Updated: 
existing part(s) 
updated; no parts 
added or deleted. 

Both start and end 
indexes may increase 
or decrease 

Yes (required, 
one per part) 

Range of each updated 
part. 

Time when store 
updated each 
part. 

Part(s) Deleted 
Covering End Index: 
existing part(s) deleted; 
no parts added or 
updated. 

End index may 
decrease. 

Yes (required) Smallest range 
covering: 

a) range between new 
and old end index, and 

b) start and end index 
of each deleted part. 

Time when store 
deleted parts. 

Part(s) Deleted 
Covering Start Index: 
existing part(s) deleted; 
no parts added or 
updated. 

Start index may 
increase. 

Yes (required) Smallest range 
covering: 

a) range between new 
and old start index, and 

b) start and end index 
of each deleted part. 

Time when store 
deleted parts. 

Part(s) Deleted Inside 
Existing Data Range: 
existing part(s) deleted; 

No. Yes (required, 
one per part) 

Range of each deleted 
part. 

Time when store 
deleted each 
part. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 247 

GROWING Data Objects: Scenarios for how Stores Create ChangeAnnotations 

Change Type Indexes 
Affected? 

Annotation 
Created? 

Annotation 
Range 

Annotation 
Timestamp 

no parts added or 
updated. 

Range Deleted 
Covering End Index: 
existing parts removed; 
no parts added or 
changed. 

End index decreases. Yes (required) Smallest range 
covering: 

a) start index of 
deleteInterval from 
request, 

b) range between new 
and old end index, and 

c) start and end index 
of each deleted part. 

Time when store 
deleted data. 

Range Deleted 
Covering Start Index: 
existing parts removed; 
no parts added or 
changed. 

Start index increases. Yes (required) Smallest range 
covering: 

a) end index of 
deleteInterval from 
request, 

b) range between new 
and old start index, and 

c) start and end index 
of all deleted parts. 

Time when store 
deleted data. 

Range Deleted Inside 
Existing Data Range: 
existing parts removed; 
no parts added or 
changed. 

No. Yes (required) Smallest range 
covering: 

a) deleteInterval from 
request, and 

b) start and end index 
of each deleted part. 

Time when store 
deleted data. 

All Parts Deleted: 
existing parts removed; 
no parts added or 
changed. 

Start and end indexes 
become null. 

Yes (required) Range between old 
start and end index. 

Time when store 
deleted data. 

Range Replaced 
Covering End Index: 
existing parts removed; 
replacement parts 
added.  

End index may increase 
or decrease. 

Yes (required) Smallest range 
covering: 

a) start index of 
deleteInterval from 
request, 

b) range between new 
and old end index, 

c) start and end index 
of each added part, and 

d) start and end index 
of each deleted part. 

Time when store 
replaced data. 

Range Replaced 
Covering Start Index: 
existing parts removed; 

Start index may 
increase or decrease. 

Yes (required) Smallest range 
covering: 

Time when store 
replaced data. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 248 

GROWING Data Objects: Scenarios for how Stores Create ChangeAnnotations 

Change Type Indexes 
Affected? 

Annotation 
Created? 

Annotation 
Range 

Annotation 
Timestamp 

replacement parts 
added. 

a) end index of 
deleteInterval from 
request, 

b) range between new 
and old start index, 

c) start and end index 
of each added part, and 

d) start and end index 
of each deleted part. 

Range Replaced 
Inside Existing Data 
Range: existing parts 
removed; replacement 
parts added. 

No. Yes (required) Range that was 
deleted. 

Time when store 
replaced range. 

All Parts Replaced: 
existing parts removed; 
replacement parts 
added. 

Both start and end 
indexes may increase 
or decrease 

Yes (required) Smallest range 
covering: 

a) Range between new 
and old start index, and 

b) start and end index 
of each added part. 

 

 

11.2.2.4 Rules for Merging Change Annotations 
The table below explains how a store may or must merge ChangeAnnotation records in different 
scenarios. 

 When creating new records, stores MUST apply the required rules in this table for overlapping 
ChangeAnnotation records.  

 At any time (including when creating new records), stores MAY apply the optional rules in this table 
for merging non-overlapping intervals. 

Rules for Merging ChangeAnnotation Records 

Scenario Annotations 
Merged? 

Merged Range Merged Timestamp 

Overlapping 
Annotations 

Yes (required) Smallest range covering the 
range of each merged 
annotation. 

Most recent timestamp of 
merged annotations. 

Adjacent Annotations Merging is optional Smallest range covering the 
range of each merged 
annotation. 

Most recent timestamp of 
merged annotations. 

Other Annotations Merging is optional Smallest range covering the 
range of each merged 
annotation. 

Most recent timestamp of 
merged annotations. 

 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 249 

11.2.2.5 Additional Rules for Change Annotations 
The following additional rules also apply to ChangeAnnotation records: 

1. A store MUST create and merge ChangeAnnotation records even if the data was not changed 
through an ETP store operation. 

2. A store MUST retain any ChangeAnnotation records that are created for its value for the 
ChangeRetentionPeriod capability, which MUST be greater than or equal to the minimum value 
stated in this specification (see Section 9.2.3). 

a. ChangeAnnotation records MUST be retained by a store endpoint for at least the 
ChangeRetentionPeriod as long as there is at least one session connected to it. It is STRONGLY 
recommended to always retain ChangeAnnotation records for the ChangeRetentionPeriod. 

b. If a store is unable to retain ChangeAnnotation records for the full ChangeRetentionPeriod (e.g., 
because the store application restarted and it has no persistent storage for tombstones), the store 
MUST advise customers of the earliest timestamp ChangeAnnotation records are available in 
the earliestRetainedChangeTime field in either OpenSession or RequestSession. 

3. Not every store will be able to accurately track changeTime for ChangeAnnotation records over long 
periods of time. For example, they may lose track of this information if the store application is 
restarted. The minimum requirements to enable eventual consistency workflows are that: 

a. changeTime on a ChangeAnnotation MUST ALWAYS be equal to or more recent than the 
change to that data interval. 

b. changeTime on any ChangeAnnotation record for a data object MUST ALWAYS be equal to or 
less recent than the data object's storeLastWrite and equal to or more recent than the data 
object's storeCreated. This includes when the change was not done through an ETP store 
operation. 

c. When the change happens through an ETP store operation, the store MUST set changeTime 
to the actual change time. 

d. If a store loses track of which ChangeAnnotation records are associated with a data object, the 
store MUST do all of the following: 

i. Delete all ChangeAnnotation records associated with the data object. 

ii. Set the data object’s storeCreated and, if required, storeLastWrite to a time after the most 
recent data change. 

iii. Send any appropriate notifications in response to these changes. 

11.2.3 GrowingObject: Capabilities 

The table below lists key capabilities for this protocol. The protocol capabilities are all defined here. For 
this protocol, two particularly crucial endpoint capabilities are defined here.  

 For protocol-specific behavior related to using these capabilities in this protocol, see Sections 11.2.1 
and 11.2.2. 

 For definitions for endpoint and data object capabilities, see the links in the table. 

 For general information about the types of capabilities and how they may be used, see Section 3.3. 

GrowingObject (Protocol 6): Capabilities 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

Endpoint Capabilities  

(For definitions of each endpoint capability, see Section 3.3.) 

   



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 250 

GrowingObject (Protocol 6): Capabilities 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

NOTE: Many endpoint capabilities are "universal", used in all or 

most of the ETP protocols. For more information, see Section 
3.3.2. 

Behavior associated with other endpoint capabilities are 
defined in relevant chapters.  
EXAMPLE: The capabilities defined for limiting ETP 
sessions between 2 endpoints are discussed in 
Section 4.3, How a Client Establishes a WebSocket 

Connection to an ETP Server. 

   

ChangeRetentionPeriod: The minimum time period in seconds 

that a store retains the canonical URI of a deleted data object and 
any change annotations for channels and growing data objects.  
RECOMMENDATION: This period should be as long as is feasible 

in an implementation. When the period is shorter, the risk is that 
additional data will need to be transmitted to recover from outages, 
leading to higher initial load on sessions.  

long Seconds 

Value units: 

<number of 
seconds> 

Default: 86,400 

MIN: 86,400  

MaxPartSize: The maximum size in bytes of each data object part 

allowed in a standalone message or a complete multipart 
message. Size in bytes is the total size in bytes of the 
uncompressed string representation of the data object part in the 
format in which it is sent or received. 

long byte 
<number of 
bytes> 

Min: 10,000 
bytes 

Data Object Capabilities  
(For definitions of each data object capability, see Section 3.3.4.) 

   

ActiveTimeoutPeriod: (This is also an endpoint capability.)  

The minimum time period in seconds that a store keeps the 
GrowingStatus for a growing data object or channel "active" after 
the last new part or data point resulting in a change to the data 
object's end index was added to the data object. 

This capability can be set for an endpoint and/or for a data object. 
A data object-specific value overrides an endpoint-specific value. 

long second 
<number of 
seconds> 

Default: 3,600 

MIN: 60 seconds 

MaxDataObjectSize: (This is also a protocol and endpoint 

capability.) The maximum size in bytes of a data object allowed in 
a complete multipart message. Size in bytes is the size in bytes of 
the uncompressed string representation of the data object in the 
format in which it is sent or received. 

This capability can be set for an endpoint, a protocol, and/or a data 
object. If set for all three, here is how they generally work:  

 An object-specific value overrides an endpoint-specific value.  

 A protocol-specific value can further lower (but NOT raise) the 
limit for the protocol.  

EXAMPLE: A store may wish to generally support sending and 

receiving any data object that is one megabyte or less with the 
exceptions of Wells that are 100 kilobytes or less and Attachments 
that are 5 megabytes or less. A store may further wish to limit the 
size of any data object sent as part of a notification in 
StoreNotification (Protocol 5) to 256 kilobytes. 

long bytes 
<number of 
bytes> 

 

MIN: 100,000 
bytes 

SupportsGet, SupportsPut    



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 251 

GrowingObject (Protocol 6): Capabilities 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

For definitions and usage rules for each of these data object 

capabilities, see Section 3.3.4. 

Protocol Capabilities    

MaxResponseCount: The maximum total count of responses 

allowed in a complete multipart message response to a single 
request. 

long count 
<count of 
responses> 

MIN: 10,000 

 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 252 

11.3 GrowingObject: Message Schemas 

This section provides a figure that displays all messages defined in GrowingObject (Protocol 6). 
Subsequent sub-sections provide an example schema for each message and definitions of the data fields 
contained in each message. 

 

class GrowingObject

«Message»
PutParts

+ format: s tring = xml
+ parts : ObjectPart (map)
+ uri : s tring

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 5
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store to add or update one or more
parts (or items) in a growing data object. The "success
only" response to this message is the PutPartsResponse
message.

«Message»
GetPartsByRange

+ format: s tring = xml
+ includeOverlappingInterva ls : boolean
+ indexInterva l : IndexInterva l
+ uri : s tring

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 4
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store to get a list of parts in one
growing data object within a specified index range. It is an
array of requests. The response to this message is the
GetPartsByRangeResponse message.

«Message»
GetPartsResponse

+ format: s tring = xml
+ parts : ObjectPart (map)
+ uri : s tring

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 6
MultiPart = True
SenderRole = s tore

notes
A  store sends to the customer in response to a GetParts
message. It is a map of the parts of the growing data
object that the store could return.

«Message»
DeleteParts

+ uids : s tring (map)
+ uri : s tring

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 1
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store to delete one or more parts in
one growing data object. The "success only" response to this
message is the DeletePartsResponse  message.

«Message»
GetParts

+ format: s tring = xml
+ uids : s tring (map)
+ uri : s tring

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 3
MultiPart = Fa lse
SenderRole = customer

notes
A  customer sends to a store to get one or more parts (or
items) in a growing data object. The response to this is the
GetPartsResponse message.

«Message»
ReplacePartsByRange

+ deleteInterva l : IndexInterva l
+ format: s tring = xml
+ includeOverlappingInterva ls : boolean
+ parts : ObjectPart (array)
+ uri : s tring

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 7
MultiPart = True
SenderRole = customer

notes
A customer sends to a store to delete a range of parts in a
growing object, and (optionally) replace them with the data
provided in the parts field.
- The number of parts deleted DOES NOT have to equal
the number of parts added.
- To make this a delete operation (for the parts in the
deleteInterval), leave the parts field empty (i.e., provide NO
replacement data).
This message should not be used to only append new parts
to a growing object. To append new parts, use the PutParts
message.
The "success only" response to this message is the
ReplacePartsByRangeResponse message.
NOTE: If there are multiple messages in this multipart
request, then the index range (startIndex, endIndex) for all
message that compose the multi-part request MUST be the
same.

«Message»
GetPartsMetadataResponse

+ metadata: PartsMetadataInfo [0..n] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 9
MultiPart = True
SenderRole = s tore

notes
A store sends to a customer as a response to a
GetPartsMetadata message.

«Message»
GetPartsMetadata

+ uris : s tring [1..n] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 8
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to store to request the metadata one or
more growing data objects and their respective parts. The
response to this message is GetPartsMetadataResponse.

«Message»
GetPartsByRangeResponse

+ format: s tring = xml
+ parts : ObjectPart (array)
+ uri : s tring

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 10
MultiPart = True
SenderRole = s tore

notes
Sent from a store to a customer as a response to a
GetPartsByRange message.

«Message»
DeletePartsResponse

+ success : s tring [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 11
MultiPart = True
SenderRole = s tore

notes
A store MUST send this "success only" message to a
customer as confirmation of a successful operation in
response to a DeleteParts  message.
- These "success only" response messages have been
added to ETP to support more efficient operations of
customer role software.

«Message»
PutPartsResponse

+ success : s tring [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 13
MultiPart = True
SenderRole = s tore

notes
A store MUST send this "success only" message to a
customer as confirmation of a successful operation in
response to a PutParts  message.
- These "success only" response messages have been
added to ETP to support more efficient operations of
customer role software.

«Message»
GetGrowingDataObjectsHeader

+ format: s tring = xml
+ uris : s tring [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 14
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store to request the header portion
only (not the parts) of one or more growing data objects.
The response to this message is the
GetGrowingDataObjectsHeaderResponse.

«Message»
GetGrowingDataObjectsHeaderResponse

+ dataObjects : DataObject [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 15
MultiPart = True
SenderRole = s tore

notes
A store sends to a customer in response to a
GetGrowingDataObjectsHeader. It contains a map of the
growing data object headers that the store could return.

«Message»
PutGrowingDataObjectsHeader

+ dataObjects : DataObject [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 16
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store to add or update the header
information for one or more growing data objects. The
"success only" response to this message is the
PutGrowingDataObjectsHeaderResponse message.
NOTE: ETP uses "upsert" semantics so the "update"
operation is always a complete replacement of an existing
data object. For more information, see Section 9.1.1.
Use of this message is the only way to UPDATE the header
information in a growing data object. A customer can use
either this message or PutDataObjects in Store (Protocol 4)
to add (insert) a growing data object and its parts in one
operation; however, all updates (to the header or parts)
MUST be done using the messages in GrowingObject
(Protocol 6).

«Message»
PutGrowingDataObjectsHeaderResponse

+ success : s tring [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 17
MultiPart = True
SenderRole = s tore

notes
A store MUST send this "success only" message to a
customer as confirmation of a successful operation in
response to a PutGrowingDataObjectsHeader message.
These "success only" response messages have been added
to ETP to support more efficient operations of customer role
software. Errors MUST be handled using the
ProtocolException message, as defined elsewhere in the ETP
Specification.

«Message»
ReplacePartsByRangeResponse

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 18
MultiPart = Fa lse
SenderRole = s tore

notes
A store MUST send this "success only" message to a
customer as confirmation of a successful operation in
response to a ReplacePartsByRange  message.
ReplacePartsByRange is an atomic operation; the entire
operation must execute correctly or the entire operation
fails.
- These "success only" response messages have been
added to ETP to support more efficient operations of
customer role software.

«Message»
GetChangeAnnotations

+ latestOnly: boolean = fa lse
+ s inceChangeTime: long
+ uris : s tring [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 19
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store to get change annotations for
the growing data objects listed in this message. The
response to this message is the
GetChangeAnnotationsResponse message.
A change annotation identifies the interval(s) in a growing
data object that have changed and the time that the change
happened in the store. They are used in recovering from
unplanned outages (connection drops). For more
information, see Appendix: Data Replication and Outage
Recovery Workflows.
The store tracks changes "globally" (NOT per user, customer
or endpoint). Also a store MAY combine annotations over
time, as it sees fit. For more information on how change
annotations work for growing data objects, see Section
11.2.1.9.

«Message»
GetChangeAnnotationsResponse

+ changes : ChangeResponseInfo [1..n] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 20
MultiPart = True
SenderRole = s tore

notes
A store MUST send to a customer in response to a
GetChangeAnnotations message.
The store tracks changes "globally" (NOT per user, customer
or endpoint). Also a store MAY combine annotations over
time, as it sees fit. For more information on how change
annotations work for growing data objects, see Section
11.2.1.9.



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 253 

Figure 22: GrowingObject: message schemas 

11.3.1 Message: GetParts 

A customer sends to a store to get one or more parts (or items) in a growing data object. The response to 
this is the GetPartsResponse message.  

Message Type ID: 3 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

uri MUST be the URI of the "parent" growing data 
object to which the parts belong. For example: in 
WITSML, a Trajectory is a growing data object 
and each TrajectoryStation is a part. You MUST 
specify the URI of the Trajectory object and the 
UID for each TrajectoryStation (part) you want.  

If both endpoints support alternate URIs for the 
session, this MAY be an alternate data object 
URI. Otherwise, this MUST be a canonical 
Energistics data object URI. For more information, 
see Appendix: Energistics Identifiers. 

string 1 1 

format Specifies the format (e.g., XML or JSON) in which 
you want to receive data for the requested parts. 
This MUST be a format that was negotiated when 
establishing the session. 

Currently, ETP MAY support "xml" and "json". 
Other formats may be supported in the future, and 
endpoints may agree to use custom formats. 

string 1 1 

uids General ETP map where each value MUST be the 
UID of a part in the parent growing data object. 

string 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObject", 
     "name": "GetParts", 
     "protocol": "6", 
     "messageType": "3", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "uri", "type": "string" }, 
         { "name": "format", "type": "string", "default": "xml" }, 
         { 
             "name": "uids", 
             "type": { "type": "map", "values": "string" } 
         } 
     ] 
} 

  

11.3.2 Message: GetPartsResponse 

A store sends to the customer in response to a GetParts message. It is a map of the parts of the growing 
data object that the store could return.  

Message Type ID: 6 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 254 

Correlation Id Usage: MUST be set to the messageId of the GetParts message that this message is a 
response to.  

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

uri The URI of the "parent" growing data object. For 
example: in WITSML, a Trajectory is a growing 
data object and each TrajectoryStation is a part. 

This MUST be a canonical Energistics data object 
URI; for more information, see Appendix: 
Energistics Identifiers. 

string 1 1 

format Specifies the format (e.g., XML or JSON) of the 
data for the parts being sent in this message. This 
MUST match the format in the GetParts request. 

Currently, ETP MAY support "xml" and "json". 
Other formats may be supported in the future, and 
endpoints may agree to use custom formats. 

string 1 1 

parts General ETP map of ObjectPart records, one for 
each part the store could return, which each 
contains the UID for a part and its associated 
data.  

ObjectPart 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObject", 
     "name": "GetPartsResponse", 
     "protocol": "6", 
     "messageType": "6", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { "name": "uri", "type": "string" }, 
         { "name": "format", "type": "string", "default": "xml" }, 
         { 
             "name": "parts", 
             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.Object.ObjectPart" } 
         } 
     ] 
} 

  

11.3.3 Message: GetGrowingDataObjectsHeader 

A customer sends to a store to request the header portion only (not the parts) of one or more growing 
data objects. The response to this message is the GetGrowingDataObjectsHeaderResponse. 

Message Type ID: 14 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0.  

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

uris General ETP map where each value MUST be the 
URI for each growing data object "header" to be 
retrieved.  

string 1 * 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 255 

Field Name Description Data Type Min Max 

If both endpoints support alternate URIs for the 
session, this MAY be an alternate data object 
URI. Otherwise, this MUST be a canonical 
Energistics data object URI. For more information, 
see Appendix: Energistics Identifiers. 

format Specifies the format (e.g., XML or JSON) in which 
you want to receive data for the requested 
growing data object headers. This MUST be a 
format that was negotiated when establishing the 
session. 

Currently, ETP MAY support "xml" and "json". 
Other formats may be supported in the future, and 
endpoints may agree to use custom formats. 

string 1 1 

  

Avro Source 

  
{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObject", 
     "name": "GetGrowingDataObjectsHeader", 
     "protocol": "6", 
     "messageType": "14", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { 
             "name": "uris", 
             "type": { "type": "map", "values": "string" } 
         }, 
         { "name": "format", "type": "string", "default": "xml" } 
     ] 
} 

  

11.3.4 Message: GetGrowingDataObjectsHeaderResponse 

A store sends to a customer in response to a GetGrowingDataObjectsHeader. It contains a map of the 
growing data object headers that the store could return.  

Message Type ID: 15 

Correlation Id Usage: MUST be set to the messageId of the GetGrowingDataObjectsHeader message 
that this message is a response to. 

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

dataObjects General ETP map of DataObject records, one 
each for each growing data object "header" the 
store could return. 

DataObject 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObject", 
     "name": "GetGrowingDataObjectsHeaderResponse", 
     "protocol": "6", 
     "messageType": "15", 
     "senderRole": "store", 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 256 

     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "dataObjects", 
             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.Object.DataObject" } 
         } 
     ] 
} 

  

11.3.5 Message: PutParts 

A customer sends to a store to add or update one or more parts (or items) in a growing data object. The 
"success only" response to this message is the PutPartsResponse message. 

Message Type ID: 5 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0.  

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

uri MUST be the URI of the "parent" growing data 
object where you want to add or update parts. For 
example: in WITSML, a Trajectory is a growing 
data object and each TrajectoryStation is a part. 
You MUST specify the URI of the Trajectory 
object and the UID for each TrajectoryStation 
(part) that you want to put.  

If both endpoints support alternate URIs for the 
session, this MAY be an alternate data object 
URI. Otherwise, this MUST be a canonical 
Energistics data object URI. For more information, 
see Appendix: Energistics Identifiers. 

string 1 1 

parts General ETP map of ObjectPart records, one for 
each part being put. It contains the UID for each 
part and the data being put. Each part MUST be 
identified by a UID, which MUST be unique within 
the growing data object. 

ObjectPart 1 1 

format Specifies the format (e.g., XML or JSON) of the 
data for the parts being sent in this message. This 
MUST be a format that was negotiated when 
establishing the session. 

Currently, ETP MAY support "xml" and "json". 
Other formats may be supported in the future, and 
endpoints may agree to use custom formats. 

string 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObject", 
     "name": "PutParts", 
     "protocol": "6", 
     "messageType": "5", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "uri", "type": "string" }, 
         { "name": "format", "type": "string", "default": "xml" }, 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 257 

         { 
             "name": "parts", 
             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.Object.ObjectPart" } 
         } 
     ] 
} 

  

11.3.6 Message: PutPartsResponse 

A store MUST send this "success only" message to a customer as confirmation of a successful operation 
in response to a PutParts message.  

These "success only" response messages have been added to ETP to support more efficient operations 
of customer role software. 

Message Type ID: 13 

Correlation Id Usage: MUST be set to the messageId of the PutParts message that this message is a 
response to.  

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

success  The presence of the map key represents 
success. 

 The associated map string value SHOULD 
be empty because its content is ignored. 

string 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObject", 
     "name": "PutPartsResponse", 
     "protocol": "6", 
     "messageType": "13", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "success", 
             "type": { "type": "map", "values": "string" } 
         } 
     ] 
} 

  

11.3.7 Message: PutGrowingDataObjectsHeader 

A customer sends to a store to add or update the header information for one or more growing data 
objects. The "success only" response to this message is the PutGrowingDataObjectsHeaderResponse 
message.  

NOTE: ETP uses "upsert" semantics so the "update" operation is always a complete replacement of an 
existing data object. For more information, see Section 9.1.1. 

Use of this message is the only way to UPDATE the header information in a growing data object. A 
customer can use either this message or PutDataObjects in Store (Protocol 4) to add (insert) a growing 
data object and its parts in one operation; however, all updates (to the header or parts) MUST be done 
using the messages in GrowingObject (Protocol 6).  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 258 

Message Type ID: 16 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

dataObjects General ETP map of the growing data object 
"headers" to be added/updated; it is a map of 
DataObject records, one for each growing data 
object. NOTE: DataObject encapsulates the 
Resource, which is where the URI for each 
growing data object MUST be entered.  

 If the growing data object is to be created, 
the DataObject record MAY include both the 
header and parts. 

 If the growing data object exists, the 
DataObject record MUST NOT include 
parts. 

The URIs in the Resource records MUST be 
canonical Energistics data object URIs; for more 
information, see Appendix: Energistics 
Identifiers. 

DataObject 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObject", 
     "name": "PutGrowingDataObjectsHeader", 
     "protocol": "6", 
     "messageType": "16", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { 
             "name": "dataObjects", 
             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.Object.DataObject" } 
         } 
     ] 
} 

  

11.3.8 Message: PutGrowingDataObjectsHeaderResponse 

A store MUST send this "success only" message to a customer as confirmation of a successful operation 
in response to a PutGrowingDataObjectsHeader message.  

These "success only" response messages have been added to ETP to support more efficient operations 
of customer role software. Errors MUST be handled using the ProtocolException message, as defined 
elsewhere in the ETP Specification. 

Message Type ID: 17 

Correlation Id Usage: MUST be set to the messageId of the PutGrowingDataObjectsHeader message 
that this message is a response to. 

Multi-part: True 

Sent by: store 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 259 

Field Name Description Data Type Min Max 

success  The presence of the map key represents 
success. 

 The associated map string value SHOULD 
be empty because its content is ignored. 

string 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObject", 
     "name": "PutGrowingDataObjectsHeaderResponse", 
     "protocol": "6", 
     "messageType": "17", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "success", 
             "type": { "type": "map", "values": "string" } 
         } 
     ] 
} 

  

11.3.9 Message: DeleteParts 

A customer sends to a store to delete one or more parts in one growing data object. The "success only" 
response to this message is the DeletePartsResponse message. 

Message Type ID: 1 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0.  

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

uri MUST be the URI of the "parent" growing data 
object from which you want to delete parts. For 
example: in WITSML, a Trajectory is a growing 
data object and each TrajectoryStation is a part. 
You MUST specify the URI of the Trajectory 
object and the UID for each TrajectoryStation 
(part) that you want to delete.  

If both endpoints support alternate URIs for the 
session, these MAY be alternate data object 
URIs. Otherwise, they MUST be canonical 
Energistics data object URIs. For more 
information, see Appendix: Energistics 
Identifiers. 

string 1 1 

uids General ETP map whose values must be the UID 
of the parts that are being deleted in the parent 
growing data object.  

string 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObject", 
     "name": "DeleteParts", 
     "protocol": "6", 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 260 

     "messageType": "1", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "uri", "type": "string" }, 
         { 
             "name": "uids", 
             "type": { "type": "map", "values": "string" } 
         } 
     ] 
} 

  

11.3.10 Message: DeletePartsResponse 

A store MUST send this "success only" message to a customer as confirmation of a successful operation 
in response to a DeleteParts message.  

These "success only" response messages have been added to ETP to support more efficient operations 
of customer role software. 

Message Type ID: 11 

Correlation Id Usage: MUST be set to the messageId of the DeleteParts message that this message is 
a response to.  

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

success  The presence of the map key represents 
success. 

 The associated map string value SHOULD 
be empty because its content is ignored. 

string 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObject", 
     "name": "DeletePartsResponse", 
     "protocol": "6", 
     "messageType": "11", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "success", 
             "type": { "type": "map", "values": "string" } 
         } 
     ] 
} 

  

11.3.11 Message: GetPartsByRange 

A customer sends to a store to get a list of parts in one growing data object within a specified index range. 
It is an array of requests. The response to this message is the GetPartsByRangeResponse message. 

Message Type ID: 4 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 261 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

uri MUST be the URI for the parent growing data 
object for the parts being requested. For example: 
in WITSML, a Trajectory is a growing data object 
and each TrajectoryStation is a part.  

If both endpoints support alternate URIs for the 
session, these MAY be alternate data object 
URIs. Otherwise, they MUST be canonical 
Energistics data object URIs. For more 
information, see Appendix: Energistics 
Identifiers. 

string 1 1 

indexInterval The index interval as defined in IndexInterval for 
the list of parts you want to get:  

 If the StartIndex is specified as NULL, then 
the server MUST assume a value of negative 
infinity. 

 If the endIndex is specified as NULL, then 
the server MUST assume a value of positive 
Infinity. 

 The ending index for the get range MUST be 
NULL or >= startIndex or you MUST send 
error EINVALID_ARGUMENT (5). 

IndexInterval 1 1 

format Specifies the format (e.g., XML or JSON) in which 
you want to receive data for the requested parts. 
This MUST be a format that was negotiated when 
establishing the session. 

Currently, ETP MAY support "xml" and "json". 
Other formats may be supported in the future, and 
endpoints may agree to use custom formats. 

string 1 1 

includeOverlappingIntervals Some growing data objects (e.g., wellbore 
geology (previously known as mud log)) have 
"parts" that represent a range, as opposed to a 
single point. The issue with having a range part 
(vs. a single point) is how to handle "ByRange" 
operations when only a portion of the range part 
overlaps the specified interval of interest (request 
interval) (in this message the indexInterval).  

Use this flag to specify if the range operation is 
inclusive or exclusive for range parts that overlap 
the request interval. For more information on how 
overlapping ranges works, see Section 11.2.2.1.  

 If true, then any range part that overlaps the 
request interval is affected (included in the 
requested operation). 

 If false, then only range parts that fall 
completely within the request interval are 
affected (included in the requested 
operation). 

boolean 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObject", 
     "name": "GetPartsByRange", 
     "protocol": "6", 
     "messageType": "4", 
     "senderRole": "customer", 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 262 

     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "uri", "type": "string" }, 
         { "name": "format", "type": "string", "default": "xml" }, 
         { "name": "indexInterval", "type": 
"Energistics.Etp.v12.Datatypes.Object.IndexInterval" }, 
         { "name": "includeOverlappingIntervals", "type": "boolean" } 
     ] 
} 

  

11.3.12 Message: GetPartsByRangeResponse 

Sent from a store to a customer as a response to a GetPartsByRange message.  

Message Type ID: 10 

Correlation Id Usage: MUST be set to the messageId of the GetPartsByRange message that this 
message is a response to.  

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

uri MUST be the URI of the "parent" growing data 
object to which the parts belong. For example: in 
WITSML, a Trajectory is a growing data object 
and each TrajectoryStation is a part. You MUST 
specify the URI of the Trajectory object and the 
UID for each TrajectoryStation (part) you want.  

This MUST be a canonical Energistics data object 
URI; for more information, see Appendix: 
Energistics Identifiers. 

string 1 1 

format Specifies the format (e.g., XML or JSON) of the 
data for the parts being sent in this message. This 
MUST match the format in the GetPartsByRange 
request. 

Currently, ETP MAY support "xml" and "json". 
Other formats may be supported in the future, and 
endpoints may agree to use custom formats. 

string 1 1 

parts An array of ObjectPart records, one for each part 
being returned in this response message. It 
contains the UID and data for each part. 

ObjectPart 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObject", 
     "name": "GetPartsByRangeResponse", 
     "protocol": "6", 
     "messageType": "10", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { "name": "uri", "type": "string" }, 
         { "name": "format", "type": "string", "default": "xml" }, 
         {  
             "name": "parts", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.Object.ObjectPart" } 
         } 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 263 

     ] 
} 

  

11.3.13 Message: GetPartsMetadata 

A customer sends to store to request the metadata one or more growing data objects and their respective 
parts. The response to this message is GetPartsMetadataResponse. 

Message Type ID: 8 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

uris General ETP map where each value MUST be the 
URI of each "parent" growing data object for 
which the customer wants to get parts metadata. 

If both endpoints support alternate URIs for the 
session, these MAY be alternate data object 
URIs. Otherwise, they MUST be canonical 
Energistics data object URIs. For more 
information, see Appendix: Energistics 
Identifiers.  

string 1 n 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObject", 
     "name": "GetPartsMetadata", 
     "protocol": "6", 
     "messageType": "8", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { 
             "name": "uris", 
             "type": { "type": "map", "values": "string" } 
         } 
     ] 
} 

  

11.3.14 Message: GetPartsMetadataResponse 

A store sends to a customer as a response to a GetPartsMetadata message.  

Message Type ID: 9 

Correlation Id Usage: MUST be set to the messageId of the GetPartsMetadata that this message is a 
response to. 

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

metadata General ETP map of PartsMetadataInfo records, 
one for each growing data object that the store 
could successfully return information for.  

PartsMetadataInfo 0 n 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 264 

Field Name Description Data Type Min Max 

The URIs MUST be canonical Energistics data 
object URIs; for more information, see Appendix: 
Energistics Identifiers. 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObject", 
     "name": "GetPartsMetadataResponse", 
     "protocol": "6", 
     "messageType": "9", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "metadata", 
             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.Object.PartsMetadataInfo" } 
         } 
     ] 
} 

  

11.3.15 Message: ReplacePartsByRange 

A customer sends to a store to delete a range of parts in a growing object, and (optionally) replace them 
with the data provided in the parts field. 

 The number of parts deleted DOES NOT have to equal the number of parts added. 

 To make this a delete operation (for the parts in the deleteInterval), leave the parts field empty (i.e., 
provide NO replacement data). 

This message should not be used to only append new parts to a growing object. To append new parts, 
use the PutParts message. 

The "success only" response to this message is the ReplacePartsByRangeResponse message. 

NOTE: If this message is a multipart request, then the index range (startIndex, endIndex) for all message 
that compose the multipart request MUST be the same.  

Message Type ID: 7 

Correlation Id Usage: For the first message, the correlationId MUST be set to 0. If there are multiple 
messages in this multipart request, the correlationId of all successive messages that comprise the 
request MUST be set to the messageId of the first message in this request. 

Multi-part: True 

Sent by: customer 

Field Name Description Data Type Min Max 

uri MUST be the URI of the "parent" growing data 
object to which the parts that are to be deleted 
and replaced belong. For example: in WITSML, a 
Trajectory is a growing data object and each 
TrajectoryStation is a part. You MUST specify the 
URI of the Trajectory object and the UID for each 
TrajectoryStation (part) you want.  

If both endpoints support alternate URIs for the 
session, these MAY be alternate data object 
URIs. Otherwise, they MUST be canonical 
Energistics data object URIs. For more 

string 1 1 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 265 

Field Name Description Data Type Min Max 

information, see Appendix: Energistics 
Identifiers. 

deleteInterval The index interval for the range of parts to be 
deleted as defined in IndexInterval. This is NOT 
the index range of the parts (listed in the parts 
field) that will replace the deleted parts. 

 If the StartIndex is specified as NULL, then 
the server MUST assume a value of negative 
infinity. 

 If the endIndex is specified as NULL, then 
the server MUST assume a value of positive 
Infinity. 

 The ending index for the delete range MUST 
be NULL or >= startIndex or the store MUST 
send error EINVALID_ARGUMENT (5). 

IndexInterval 1 1 

includeOverlappingIntervals Some growing data objects (e.g., wellbore 
geology (previously known as mud log)) have 
"parts" that represent a range, as opposed to a 
single point. The issue with having a range part 
(vs. a single point) is how to handle "ByRange" 
operations when only a portion of the range part 
overlaps the specified interval of interest (request 
interval) (in this message the deleteInterval).  

Use this flag to specify if the range operation is 
inclusive or exclusive for range parts that span the 
request interval. For more information on how 
overlapping ranges works, see Section 11.2.2.1.  

 If true, then any range part that overlaps the 
delete interval is deleted. 

 If false, then only range parts that fall 
completely within the request interval are 
deleted. 

DEFAULT = true 

boolean 1 1 

format Specifies the format (e.g., XML or JSON) of the 
data for the replacement parts being sent in this 
message. This MUST be a format that was 
negotiated when establishing the session. 

Currently, ETP MAY support "xml" and "json". 
Other formats may be supported in the future, and 
endpoints may agree to use custom formats. 

string 1 1 

parts An array of ObjectPart records, each of which 
contains the UID and the data for each part that 
are being added (i.e., the parts that are replacing 
the parts being deleted as specified in the 
deleteInterval field).  

NOTE: If this list is left empty (i.e., the field is an 
empty array), then this message simply deletes 
the parts in the interval specified in the 
deleteInterval field.  

ObjectPart 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObject", 
     "name": "ReplacePartsByRange", 
     "protocol": "6", 
     "messageType": "7", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 266 

     [ 
         { "name": "uri", "type": "string" }, 
         { "name": "deleteInterval", "type": 
"Energistics.Etp.v12.Datatypes.Object.IndexInterval" }, 
         { "name": "includeOverlappingIntervals", "type": "boolean" }, 
         { "name": "format", "type": "string", "default": "xml" }, 
         {  
             "name": "parts", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.Object.ObjectPart" } 
         } 
     ] 
} 

  

11.3.16 Message: ReplacePartsByRangeResponse 

A store MUST send this "success only" message to a customer as confirmation of a successful operation 
in response to a ReplacePartsByRange message.  

ReplacePartsByRange is an atomic operation; the entire operation must execute correctly or the entire 
operation fails.  

These "success only" response messages have been added to ETP to support more efficient operations 
of customer role software. 

Message Type ID: 18 

Correlation Id Usage: MUST be set to the messageId of the FIRST (or only) ReplacePartsByRange 
message in the multi-part request that this message is in response to. 

Multi-part: False 

Sent by: store 

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObject", 
     "name": "ReplacePartsByRangeResponse", 
     "protocol": "6", 
     "messageType": "18", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
      
     ] 
} 

  

11.3.17 Message: GetChangeAnnotations 

A customer sends to a store to get change annotations for the growing data objects listed in this 
message. The response to this message is the GetChangeAnnotationsResponse message. 

A change annotation identifies the interval(s) in a growing data object that have changed and the time that 
the change happened in the store. They are used in recovering from unplanned outages (connection 
drops). For more information, see Appendix: Data Replication and Outage Recovery Workflows. 

The store tracks changes "globally" (NOT per user, customer or endpoint). Also a store MAY combine 
annotations over time, as it sees fit. For more information on how change annotations work for growing 
data objects, see Section 11.2.1.9. 

Message Type ID: 19 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 267 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0.  

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

sinceChangeTime The time that the customer wants changes since, 
which should be based on the time the customer 
was last sure it received data from the store. 

It must be a UTC dateTime value, serialized as a 
long, using the Avro logical type timestamp-micros 
(microseconds from the Unix Epoch, 1 January 
1970 00:00:00.000000 UTC). 

long 1 1 

uris General ETP map where each value MUST be the 
URI of each growing data object for which the 
customer wants to get change annotations. 

If both endpoints support alternate URIs for the 
session, these MAY be alternate data object 
URIs. Otherwise, they MUST be canonical 
Energistics data object URIs. For more 
information, see Appendix: Energistics 
Identifiers. 

string 1 * 

latestOnly If true, it means get the latest (last) change 
annotation only for each of the growing data 
objects listed. 

boolean 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObject", 
     "name": "GetChangeAnnotations", 
     "protocol": "6", 
     "messageType": "19", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "sinceChangeTime", "type": "long" }, 
         { 
             "name": "uris", 
             "type": { "type": "map", "values": "string" } 
         }, 
         { "name": "latestOnly", "type": "boolean", "default": false } 
     ] 
} 

  

11.3.18 Message: GetChangeAnnotationsResponse 

A store MUST send to a customer in response to a GetChangeAnnotations message.  

The store tracks changes "globally" (NOT per user, customer or endpoint). Also a store MAY combine 
annotations over time, as it sees fit. For more information on how change annotations work for growing 
data objects, see Section 11.2.1.9. 

Message Type ID: 20 

Correlation Id Usage: MUST be set to the messageId of the GetChangeAnnotations that this message 
is a response to. 

Multi-part: True 

Sent by: store 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 268 

Field Name Description Data Type Min Max 

changes ETP general map where each value must be a 
ChangeResponseInfo record (which contain the 
change annotations (ChangeAnnotation records)) 
for each of the growing data objects it could return 
them for.  

The URIs used as map keys MUST be canonical 
Energistics data object URIs; for more 
information, see Appendix: Energistics 
Identifiers. 

ChangeResponseInfo 1 n 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObject", 
     "name": "GetChangeAnnotationsResponse", 
     "protocol": "6", 
     "messageType": "20", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "changes", 
             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.Object.ChangeResponseInfo" } 
         } 
     ] 
} 

  

 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 269 

12 GrowingObjectNotification (Protocol 7) 
ProtocolID: 7 

Defined Roles: store, customer 

GrowingObjectNotification (Protocol 7) allows store customers to subscribe to and receive notifications of 
changes to the parts of growing data objects in the store, in an event-driven manner, for events (or 
operations) that occur in GrowingObject (Protocol 6). That is a customer subscribes to one or more 
growing data objects using this protocol, and as parts are added, deleted, or changed (operations that 
happen using messages in GrowingObject (Protocol 6)), that behavior triggers the store to send 
notifications with Protocol 7. The store can also create "unsolicited" subscriptions to part notifications on a 
customer's behalf. 

Other ETP sub-protocols that may be used with GrowingObjectNotification (Protocol 7): 
 The events that trigger notifications in this protocol happen using GrowingObject (Protocol 6). For 

details of operations that trigger notifications, see Chapter 11. 

 To receive notifications for changes to data objects, ETP has similar protocols: Store (Protocol 4) 
where the event/operations occur and StoreNotification (Protocol 5), where customers can subscribe 
to receive notifications about operations on data objects in a specified context (e.g., all the changes 
that happen a well). For information on operations and notifications related to data objects, see 
Chapters 9 and 10. 

IMPORTANT: To subscribe to changes to a growing data object for changes other than to parts, a 
customer MUST subscribe to the growing data object in StoreNotification (Protocol 5). One operation in 
Protocol 6 (PutGrowingDataObjectsHeader) may cause StoreNotification (Protocol 5) to send an 
ObjectChange notification message (with ObjectChangeKind = insert) because 
PutGrowingDataObjectsHeader is adding a new data object. Details are explained below in this chapter 
and in Chapter 10. 

This chapter includes main sections for:  
 Key ETP concepts that are important to understanding how this protocol is intended to work (see 

Section 12.1).   

 Required behavior, which includes: 

 Description of the message sequence for main tasks, along with required behavior and possible 
errors (see Section ).  

 Other functional requirements (not covered in the message sequence) including use of endpoint 
and protocol capabilities for preventing and protecting against aberrant behavior (see 
Section12.2.2). 

- Definitions of the endpoint and protocol capabilities used in this protocol (see Section 12.2.3). 

 Sample schemas of the messages defined in this protocol (which are identical to the Avro schemas 
published with this version of ETP). However, only the schema content in this specification includes 
documentation for each field in a schema (see Section 12.3).  

12.1 GrowingObjectNotification: Key Concepts 

 For key concepts about growing data objects, see Section 11.1. 

 For key concepts about notification subscriptions and how they work in ETP, see Section 10.1.1. 

12.2 GrowingObjectNotification: Required Behavior 

This section contains functional and non-functional requirements for this protocol. It is organized in these 
sub-sections: 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 270 

 Message Sequence. Summarizes all messages defined by this protocol, identifies main tasks that 
can be done with this protocol and describes the response/request pattern for the messages needed 
to perform the tasks, including usage of ETP-defined capabilities, error scenarios, and resulting ETP 
error codes.  

 General Requirements. Identifies high-level (across ETP) and protocol-wide general behavior and 
rules that must be observed (in addition to behavior specified in Message Sequence), including usage 
of ETP-defined endpoint, data object and protocol capabilities, error scenarios, and resulting error 
codes.  

 Capabilities. Lists and defines the ETP-defined parameters most relevant for this sub-protocol. ETP 
defines these parameters to set necessary limits to help prevent aberrant behavior (e.g., sending 
oversized messages or sending more messages than an endpoint can handle).  

Prerequisites for using this protocol:  
 An ETP session has been established using Core (Protocol 0) as described in Chapter 5. 

 The customer has the details of the growing data objects it’s interested in; these details are typically 
found using Discovery (Protocol 3) (Chapter 8) but may also come out of band of ETP (e.g., in an 
email). 

12.2.1 GrowingObjectNotification: Message Sequences 

This section explains the basic message sequence for main tasks to be done using this protocol and 
includes related key behaviors, usage of key capabilities, and possible errors. The following General 
Requirements section provides additional requirements and rules for how this protocol works.   

The following table lists all messages defined in this sub-protocol, the basic request/response usage 
patterns per ETP role, and whether it may be multipart. The detailed content of each message is 
explained in the Message Schema section. 

GrowingObjectNotification (Protocol 7): 

Basic Message-Response flow by ETP Role 

Message from customer Response Message from store 

SubscribePartNotifications: A request to create a 
subscription for notifications to parts in growing data objects. 

SubscribePartNotificationsResponse (multipart): Reply 
listing the subscriptions that were successfully created. 

 UnsolicitedPartNotifications: Automatically sent to a 
customer when it connects to a store where a subscription 
was created for the customer based on out-of-band business 
knowledge (e.g., a contract). 

 Notification messages sent by the store for established 
subscriptions (see details of each message see Section 
12.3): 

PartsChanged 

PartsDeleted 

PartsReplacedByRange (multipart) 

UnsubscribePartNotification: A request to cancel/stop a 
parts subscription (either a requested or unsolicited one). 

PartSubscriptionEnded: Response to an unsubscribe 
request OR notice from the store that it has canceled a 
subscription. 

 

The main tasks in this protocol are subscribing to the appropriate growing data objects in a store to 
receive the desired notifications and canceling/stopping those subscriptions. Once a subscription has 
been created, a store MUST send appropriate notifications based on events in GrowingObject (Protocol 
6).  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 271 

12.2.1.1 To subscribe to notifications about parts in a growing data object (i.e., create a 
subscription):  

1. A customer MUST send a store a SubscribePartNotifications message (Section 12.3.1).  

a. This message is a map of subscription requests. The details of each subscription request is 
specified in the SubscriptionInfo record (Section 23.34.16) each of which uses a ContextInfo 
record (see Section 23.34.15).  

b. The SubscriptionInfo record contains a lot of important information where the customer 
specifies details of the part notification subscription it wants to create, but some key fields worth 
noting here are:  

i. requestUuid, which assigns a UUID to uniquely address each subscription, which can later 
be used to cancel a subscription.  

ii. includeObjectData, a Boolean flag the customer uses to request that added or updated data 
object parts be included with notification messages. By setting this field to true, a customer is 
essentially having growing data object parts streamed to it, as new parts are added to a 
store.  

a. A customer MUST limit the total count of subscriptions in a session to the store's value for the 
MaxSubscriptionSessionCount protocol capability. 

i. The Store MUST deny requests that exceed this limit by sending error 
ELIMIT_EXCEEDED◦(12). 

2. For the requests it successfully creates subscriptions for, the store MUST respond with a one or more 
SubscribePartNotificationsResponse map response messages (Section 12.3.2), which list the 
successful subscriptions that the store has created. 

a. For more information on how map response messages work, see Section 3.7.3. 

b. The store MUST then send notification messages for the subscriptions identified in this response 
message (according to criteria specified in the SubscribePartNotifications message) and 
according to any rules stated in this specification.  

c. For details about general requirements for when to send specific notifications, see Section 12.2.2.  

3. For the requests it does NOT successfully create subscriptions for, the store MUST send one or more 
map ProtocolException messages where values in the errors field (a map) are appropriate errors, 
such as ENOT_FOUND (11) if a request URI could not be resolved.  

a. For more information on how ProtocolException messages work with plural messages, see 
Section 3.7.3. 

4. NOTE: A store can also create "unsolicited" part notification subscriptions on behalf of a customer. 
For more information, see Section 12.2.2 (Row 10).  

5. If a customer sends a ProtocolException message in response to a PartsChanged, PartsDeleted, 
or PartsReplacedByRange message, the store MAY attempt to take corrective action, but the store 
MUST NOT terminate the associated subscriptions. 

12.2.1.2 To unsubscribe (cancel) notifications:  
1. A customer MUST send a store an UnsubscribePartNotification message (Section 12.3.5).  

a. This message must identify the subscription to be cancelled by its request UUID, which the 
customer assigned to the subscription when it was requested or may have been assigned by an 
UnsolicitedPartNotifications message (Section 12.3.8).  

2. If the store successfully cancels the subscription, the store MUST respond with a 
PartSubscriptionEnded message (Section 12.3.7), which holds the request UUID of the subscription 
that was successfully stopped  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 272 

a. The store MUST stop sending any further notifications that were specified in the subscription that 
has now been ended. It's possible that the customer COULD receive a few additional notifications 
that were in process/queued before the subscription was stopped.   

b. A store MUST NOT send any notifications for the subscription after sending 
PartSubscriptionEnded. 

3. If the store could not successfully cancel the subscription, it MUST send a ProtocolException 
message with an appropriate error code (e.g., if the request UUID could not be found by the store 
send ENOT_FOUND (11)).  

4. The store MAY also end a subscription without receiving a customer request. If the store does so, it 
MUST notify the customer by sending a PartSubscriptionEnded message. EXAMPLE:◦This 
happens if the subscription’s context URI refers to a growing data object that is deleted.  

5. Once a customer has canceled a subscription, the store MUST NOT restart it, even if the subscription 
was created by the store on behalf of the customer with UnsolicitedPartNotifications messages.  

a. If the customer wants to restart the subscription, it MUST instead set up a new subscription by 
sending a SubscribePartNotifications message as described in Section 12.2.1.1, using a NEW 
requestUuid. 

12.2.2 GrowingObjectNotification: General Requirements 

In addition to the basic message sequence described in the previous section, this protocol has the 
additional requirements listed in the table below. For easy reference, the rows and behaviors in this table 
are numbered. 

NOTE: This table has been organized to reduce redundancy but also to help developers more easily 
locate specific requirements. EXAMPLE: There are rows with general requirements that apply to all 
protocols (e.g., Rows 1–2), rows for general requirements for this protocol, and (possibly) some rows with 
additional requirements for specific types of operations. 

Row# Requirement Behavior 

1.  ETP-wide behavior that MUST be observed 
in all protocols 

1. Requirements for general behavior consistent across all of ETP are 
defined in Chapter 3. This behavior includes information such as: all 
details of message handling (such as message headers, handling 
compression, use of message IDs and correlation IDs, requirements for 
plural and multipart message patterns) use of acknowledgements, general 
rules for sending ProtocolException messages, URI encoding, 
serialization and more. RECOMMENDATION: Read Chapter 3 first. 

2. For information about Energistics identifiers and prescribed ETP URI 
format, see Appendix: Energistics Identifiers. 

3. For the complete list of error codes defined by ETP, see Chapter 24. 

4. ALL operations in an ETP session are performed on the set of 
supported data object types that were negotiated to be used when 
the session was initiated and established. 

a. The client and server exchange the list of data object types in the 
supportedDataObjects field of the RequestSession and 
OpenSession messages in Core (Protocol 0). For more information, 
see Chapter 5. 

b. In general, the list of supported objects for a session will most likely 
be the intersection of the data objects that the server supports and 
the data objects that the client requested for the ETP session. 

c. A store MUST support all messages (in each supported ETP sub-
protocol) for each supported data object, whether the data object is 
supported explicitly or by wild card. 

d. An endpoint MUST only send messages with the URI of a data object 
that is a type supported by the other endpoint for this ETP session.  

i. If an endpoint sends a URI for an unsupported type of data 
object, the other endpoint MUST send error 
EDATAOBJECTTYPE_NOTSUPPORTED (16). 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 273 

Row# Requirement Behavior 

2.  Capabilities-related behavior 1. Relevant endpoint, data object, and/or protocol capabilities MUST be 
specified when the ETP session is established (see Chapter 5) and MUST 
be used/honored as defined in the relevant ETP sub-protocol.  

2. For an explanation of endpoint, data object, and protocol capabilities, see 
Section 3.3. 

a. For the list of global capabilities and related behavior, see Section 
3.3.2. 

3. Section 12.2.3 identifies the capabilities most relevant to this ETP sub-
protocol. Additional details for using these capabilities are included in 
relevant rows of this table of requirements and Section 12.2.1.  

3.  Message Sequence 

See Section 12.2.1. 

1. The Message Sequence section above (Section 12.2.1) describes 
requirements for the main tasks listed there and also defines required 
behavior. 

4.  Plural messages (which includes maps) 1. This protocol uses plural messages. For detailed rules on handling plural 
messages (including ProtocolException handling), see Section 3.7.3. 

5.  Customers must be able to receive and 
consume data object parts.  

1. All customer role applications MUST implement support for receiving and 
consuming notifications that include the data object parts (that is, all data 
for the object parts in a format (e.g., XML or JSON) negotiated when 
establishing the session).  

6.  All behaviors defined in this table assume 
that a valid customer subscription for the 
correct context has been created. 

1. We are aiming to state these requirements and behaviors as clearly and 
concisely as possible. All behaviors described below assume: 
a. A valid subscription has been created as described in 

Section◦12.2.1.1.  
b. References to "parts" means "parts within the context specified in the 

subscription" which for this protocol must be one growing data object. 
2. A valid parts subscription is one where all of the following conditions are 

met: 
a. SubscriptionInfo.context is a valid: 

i. ContextInfo.uri that references a growing data object that exists 
and is available in the store (i.e., the store will return it if 
requested using Store (Protocol 4)). 

ii. ContextInfo.dataObjectTypes is empty.  
b. SubscriptionInfo.requestUuid is not already in use by another 

subscription. 
c. SubscriptionInfo.format is a format negotiated when establishing 

the session. 
3. Consistent with the previous paragraph (2), for the store to create an 

unsolicited parts subscription, BOTH conditions MUST BE met. 
4. REMINDER: To receive notification of other changes (other than add, 

update, or deleting of parts) to a growing data object, a customer MUST 
subscribe to changes to the growing data in StoreNotification (Protocol 5) 
(Chapter 10).   

7.  No Session Survivability 1. If the ETP session is closed or the connection drops, then the store MUST 
cancel notification subscriptions for the dropped customer endpoint. 

2. On reconnect, the customer MUST re-create subscriptions (see Section 
12.2.1.1).  

3. For information on resuming operations after a disconnect, see Appendix: 
Data Replication and Outage Recovery Workflows. 

8.  Order of Notifications 1. For a given data object, the store MUST send notifications in the same 
order that operations are performed in the store.   

a. The intent of this rule is that objects are always "correct" (schema 
compliant), and never left in an inconsistent state. The rule applies 
primarily to contained data objects and growing data objects.  

b. In general, global ordering of notifications is NOT required. However, 
there are some situations where the order of notifications affecting 
multiple objects is important and must be preserved. 

9.  Objects covered by more than one 
subscription 

A customer can create multiple subscriptions on a store. It is possible that the 
same data object is include in more than one subscription.  

1. In this case, the store MUST send one notification per relevant 
subscription. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 274 

Row# Requirement Behavior 

EXAMPLE: If a customer has subscribed to two different scope/contexts 
that include the same data object, then the customer will receive at least 2 
notifications, one for each subscription.  

a. Each notification message includes the requestUuid that uniquely 
identifies each subscription (so a customer can determine which 
subscription resulted in each notification message).  

10.  Unsolicited subscriptions 1. The store may automatically configure unsolicited part subscriptions to 
include the data object parts (i.e., the includeObjectData on the unsolicited 
SubscriptionInfo record may be true). If the customer application does 
not want the data, it can do one of the following: 
a. Unsubscribe and stop receiving the notifications. 
b. Simply ignore the data payloads and get the data manually. 
c. Unsubscribe from the unsolicited notification and then explicitly 

create the subscription (see Section 12.2.1.1) and set 
includeObjectData to false. 

11.  Sending part notifications: general 
requirements 

1. REMINDER: Row 6 

2. Notification messages are those whose name begins with the word 
"Parts". Each message's definition/description provides general 
information for when the store must send each message. EXAMPLE: 
When a store deletes parts of a growing data object, the store MUST send 
a PartsDeleted message (to all subscribed customers.  

a. Other rows in this table state additional requirements for specific 
operations and requirements for notifications. 

3. A store MUST send all appropriate notifications, including PartsChanged, 
PartsDeleted, and PartsReplacedByRange, even if the change was not 
through an ETP store operation. 

4. A store MUST send notifications within its value for 
ChangePropagationPeriod endpoint capability, which MUST be less than 
or equal to the maximum value stated in this specification (see Section 
3.3.2.2). 

12.  Putting (inserting/adding) and updating 
parts: Additional notification requirements 

1. REMINDER: Row 6 and Row 11. 

2. When a store completes a PutParts operation (in GrowingObject 
(Protocol 6), it MUST send a PartsChanged notification message. 

a. Because ETP uses upsert semantics, this message includes 
information about the type of change, which is specified by the 
ObjectChangeKind enumeration.  

i. If the store inserted (added) a new part, then it MUST set 
ObjectChangeKind to "insert".  

ii. If the store updated (replaced) an existing part, then it MUST set 
ObjectChangeKind to "update". 

iii. If the change was caused by an ETP store operation, the store 
MUST differentiate between insert and update. 

iv. If the change was NOT caused by an ETP store operation and the 
store cannot determine if the operation was an insert or update, it 
MUST set ObjectChangeKind to "insert". NOTE: "insert" was 
chosen because it is the "pessimistic" choice. That is, customers 
using the replication workflow will assume the affected parts have 
been completely replaced. While this may cause customers to 
query more data than is necessary when the operation is actually 
an update, using "insert" and the pessimistic assumptions that go 
with it are necessary in some edge cases achieve eventual 
consistency between data stores 

b. If a single PutParts operation resulted in parts being both inserted 
and updated, the store MUST send 2 notifications: one for inserted 
parts and one for updated parts. 

c. The MaxPartSize endpoint capability MUST be observed. See Row 
15. 

13.  Replacing parts by range: Additional 
notification requirements 

1. REMINDER: Row 6 and Row 11 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 275 

Row# Requirement Behavior 

2. When a range of parts in a store has been updated or deleted, such as 
when the store completes a ReplacePartsByRange operation (in 
GrowingObject (Protocol 6)), it MUST send a PartsReplacedByRange 
notification message. 

a. The MaxPartSize endpoint capability MUST be observed. See Row 
15.  

14.  For notifications that exceed an endpoint’s 
WebSocket message size, send smaller 
notifications 

1. Some notifications in this protocol allow or require data object parts to be 
sent with the message.  

a. If including all required parts in the notification message causes it to 
exceed either endpoint’s value for 
MaxWebSocketMessagePayloadSize endpoint capability, the store 
MUST first attempt to send the parts without data. That is, the data 
field in each ObjectPart record must be an empty array.  

b. If the approach described in Paragraph a. still exceeds the 
MaxWebSocketMessagePayloadSize, the store MUST break the 
notification into several, smaller messages (e.g., each with half of the 
parts) and send those as separate notifications. 

15.  MaxPartSize capability 1. If on a subscription request (SubscriptionInfo record) the 
includeObjectData field was true, the store MUST include the parts data in 
relevant notification messages. 

a. The store MUST limit the size of data object parts in the notifications 
to the lesser the store's and the customer's value for MaxPartSize 
endpoint capability.  

i. If any part would exceed this limit, the store MUST send the part 
without its data. That is, the data field in the ObjectPart record 
must be an empty array. 

b. If the part size exceeds this limit, the customer MAY notify the store 
by sending error EMAXSIZE_EXCEEDED (17). 

16.  Deleting parts: additional requirements 1. REMINDER: Row 6 and Row 11. 
2. When one or more parts are deleted, the store MUST send a 

PartsDeleted message.  
a. A delete is an atomic operation; the store MUST perform the delete 

operation and then send notifications. 

17.  Ending subscriptions 1. REMINDER: Row 6 and Row 11 

2. A store MUST end a customer’s subscription to part notifications when: 

a. The customer cancels the subscription by sending an 
UnsubscribePartNotifications message.  

b. The parent growing data object for the subscription (i.e., the data 
object identified by the URI in the context field of the subscription’s 
SubscriptionInfo record) is deleted. 

c. The customer loses access to the parent growing data object for the 
subscription. 

3. When ending a subscription: 

a. The store MAY discard any queued part notifications for the 
subscription. 

b. The store MUST send a PartSubscriptionEnded message either as 
a response to a customer UnsubscribePartNotifications request or 
as a notification. 

c. The store MUST include a human readable reason why the 
subscription was ended in the PartSubscriptionEnded message.  

4. After sending a PartSubscriptionEnded message, the store MUST NOT 
send any further part notifications for the subscription. 

5. After a subscription has ended, the store MUST NOT restart it, even if the 
subscription was created by the store on behalf of the customer with the 
UnsolicitedPartNotifications message.  

18.  Index Metadata 1. A growing data object’s index metadata MUST be consistent: 

a. All parts MUST have the same index unit and the same vertical 
datum. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 276 

Row# Requirement Behavior 

b. The index units and vertical datums in the growing data header 
MUST match the parts. 

2. When sending messages, both the store AND the customer MUST ensure 
that all index metadata and data derived from index metadata are 
consistent in all fields in the message, including in XML or JSON object 
data or part data. 

a. EXAMPLE: The uom and depthDatum in an IndexInterval record 
MUST be consistent with the channel’s index metadata. 

b. EXAMPLE: Data object elements related to index values in growing 
data object headers (e.g., MdMn and MdMx on a WITSML 2.0 
Trajectory) and parts (e.g., Md on a WITSML 2.0 TrajectoryStation) 
MUST be consistent with each other AND the data object’s index 
metadata. 

 

12.2.3 GrowingObjectNotification: Capabilities 

The table below lists key capabilities for this protocol. The protocol capabilities are all defined here. For 
this protocol, one particularly crucial endpoint capability is defined here.  

 For protocol-specific behavior relating to using these capabilities in this protocol, see Section 12.2.2, 
GrowingObjectNotification: General Requirements. 

 For definitions for endpoint and data object capabilities, see the links in the table. 

 For general information about the types of capabilities and how they may be used, see Section 3.3. 

GrowingObject (Protocol 6): Capabilities 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

Endpoint Capabilities  

(For definitions of each endpoint capability, see Section 3.3.) 

   

NOTE: Many endpoint capabilities are "universal", used in all or 

most of the ETP protocols. For more information, see Section 
3.3.2. 

Behavior associated with other endpoint capabilities are 
defined in relevant chapters.  
EXAMPLE: The capabilities defined for limiting ETP 
sessions between 2 endpoints are discussed in 
Section 4.3, How a Client Establishes a WebSocket 

Connection to an ETP Server. 

   

MaxPartSize: The maximum size in bytes of each data object part 

allowed in a standalone message or a complete multipart 
message. Size in bytes is the total size in bytes of the 
uncompressed string representation of the data object part in the 
format in which it is sent or received. 

long byte 
<number of 
bytes> 

Min: 10,000 
bytes 

Data Object Capabilities  
(For definitions of each data object capability, see Section 3.3.4.) 

   

    

Protocol Capabilities    

MaxSubscriptionSessionCount: The maximum total count of 

concurrent subscriptions allowed in a session. The limit applies 
separately for each protocol with the capability.  

long count 
<count of 
subscriptions> 

MIN: 100 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 277 

GrowingObject (Protocol 6): Capabilities 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

EXAMPLE: Different values can be specified for StoreNotification 

(Protocol 5) and GrowingObjectNotification (Protocol 7). 

 

12.3 GrowingObjectNotification: Message Schemas 

This section provides a figure that displays all messages defined in GrowingObjectNotification (Protocol 
7). Subsequent sub-sections provide an example schema for each message and definitions of the data 
fields contained in each message. 

 

Figure 23: GrowingObjectNotification: message schemas 

12.3.1 Message: SubscribePartNotifications 

A customer sends to a store as a request to subscribe to notifications about changes (updates, additions, 
and deletions) for parts in one or more growing data objects in the store. 

class GrowingObjectNotification

«Message»
PartsDeleted

+ changeTime: long
+ requestUuid: Uuid
+ uids : s tring (array)
+ uri : s tring

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 3
MultiPart = Fa lse
SenderRole = s tore

notes
A store sends to a customer as notification that one or
more parts have been deleted within the context a
subscription (the details of which are specified in a
SubscriptionInfo record of a SubscribePartNotifications
or UnsolicitedPartNotifications message).
A store MUST send this message for operations that
occur in GrowingObject (Protocol 6) using the
DeleteParts message.

«Message»
SubscribePartNotificationsResponse

+ success : s tring [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 10
MultiPart = True
SenderRole = s tore

notes
A store MUST send this "success only" message to a
customer as confirmation of a successful operation in
response to a SubscribePartNotifications message. It
is a map that lists the subscriptions that the store
successfully created.
These "success only" response messages have been
added to ETP to support more efficient operations of
customer role software.

«Message»
PartsChanged

+ changeKind: ObjectChangeKind
+ changeTime: long
+ format: s tring [0..1]
+ parts : ObjectPart (array)
+ requestUuid: Uuid
+ uri : s tring

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 2
MultiPart = Fa lse
SenderRole = s tore

notes
A store sends to a customer as notification that one or
more parts have been created or changed within the
context of its "parent" growing data object that a
customer subscribed to in a SubscribePartNotifications
message.
A store MUST send this message for operations that
occur in GrowingObject (Protocol 6) using the PutParts
message.

«Message»
UnsubscribePartNotification

+ requestUuid: Uuid

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 4
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store to cancel one or more
existing subscriptions to part notifications, which may
be either:
- a subscription that the customer previously
requested with the SubscribePartNotifications message.
- a subscription created by the store using the
UnsolicitedPartNotifications message.
The store MUST respond with the PartSubscriptionEnded
message.

«Message»
PartsReplacedByRange

+ changeTime: long
+ deletedInterva l : IndexInterva l
+ format: s tring [0..1]
+ includeOverlappingInterva ls : boolean
+ parts : ObjectPart (array)
+ requestUuid: Uuid
+ uri : s tring

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 6
MultiPart = True
SenderRole = s tore

notes
A store sends to a customer as notification that a range
of parts in a growing data object was deleted and
replaced with other parts.
- If includeObjectData was set to true on the
SubscribePartNotifications message, then each message
also contains the replaced parts. The notification
provides no indication of how many parts were deleted.
- If includeObjectData was set to false, the store
sends a single message identifying the deleted interval
and identifying the UIDs of any replacement parts.
- A store MUST send this message for operations that
occur in GrowingObject (Protocol 6) using the
ReplacePartsByRange message.

«Message»
SubscribePartNotifications

+ request: SubscriptionInfo [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 7
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store as a request to subscribe to
notifications about changes (updates, additions, and
deletions) for parts in one or more growing data objects
in the store. The "success only" response to this
message is the SubscribePartNotificationsResponse
message.
- The message contains a map of SubscriptionInfo
records (one for each subscription), which identifies
specific data fields that must be provided to correctly
create each subscription.
- The SubscriptionInfo record uses the ContextInfo
record, which specifies a growing data object URI for
each request and other information to specify (or limit)
the context of the notification subscription.
NOTE: An effective and easy way to get parts of a
growing data object "streamed" to you, is to create a
subscription to the parts and set the includeObjectData
flag to true. As new parts are added to the store, the
store sends the PartsChanged message with the data for
each part.

«Message»
PartSubscriptionEnded

+ reason: s tring [0..1]
+ requestUuid: Uuid

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 8
MultiPart = Fa lse
SenderRole = s tore

notes
The store MUST send this message to a customer as a
confirmation response to the customer's
UnsubscribePartNotification message.
- If the store stops a customer’s subscription on its
own without a request from the customer (e.g., if the
primary data object in the subscription has been
deleted), the store MUST send this message to notify
the customer that the subscription has been stopped.
- When sent as a notification, there MUST only be one
message in the multipart notification.
The store MUST provide a human readable reason why
the subscription was stopped.

«Message»
UnsolicitedPartNotifications

+ subscriptions : SubscriptionInfo [1..n] (array)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 9
MultiPart = Fa lse
SenderRole = s tore

notes
This message is an array of any unsolicited parts
subscriptions that have been made by the store on the
customer's behalf. This message allows the store to
inform the customer about the creation or alteration of
growing data object parts in the store, which the
customer has not specifically requested but which are
contractually required.
If a store has created these unsolicited subscriptions,
when the customer connects to the store, the store
MUST send this message to the customer.
NOTE: The store may configure unsolicited subscriptions
to send parts with notifications. The customer can check
the includeObjectData field on the SubscriptionInfo
record to determine if this is the case or not. For more
information, see section 12.2.2.



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 278 

The "success only" response to this message is the SubscribePartNotificationsResponse message.  

 The message contains a map of SuscriptionInfo records (one for each subscription), which identifies 
specific data fields that must be provided to correctly create each subscription. 

 The SubscriptionInfo record uses the ContextInfo record, which specifies a growing data object URI 
for each request and other information to specify (or limit) the context of the notification subscription. 

NOTE: An effective and easy way to get parts of a growing data object "streamed" to you, is to create a 
subscription to the parts and set the includeObjectData flag to true. As new parts are added to the store, 
the store sends the PartsChanged message with the data for each part.  

Message Type ID: 7 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0.  

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

request General ETP map of subscription requests; the 
details of each request is specified in a 
SuscriptionInfo record and includes information 
such as the URI of the subscription’s growing data 
object and the request UUID that initiated the 
subscription. 

The uri field in the ContextInfo in the 
SubscriptionInfo MUST be set to the canonical 
URI for a growing data object. 

If both endpoints support alternate URIs for the 
session, the URIs MAY be alternate data object 
URIs. Otherwise, they MUST be canonical 
Energistics data object URIs. For more 
information, see Appendix: Energistics 
Identifiers. 

If alternate URIs are used, the store MUST 
resolve them to canonical URIs and treat the 
subscription as a subscription to the canonical 
URI. 

SubscriptionInfo 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObjectNotification", 
     "name": "SubscribePartNotifications", 
     "protocol": "7", 
     "messageType": "7", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { 
             "name": "request", 
             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.Object.SubscriptionInfo" } 
         } 
     ] 
} 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 279 

12.3.2 Message: SubscribePartNotificationsResponse 

A store MUST send this "success only" message to a customer as confirmation of a successful operation 
in response to a SubscribePartNotifications message. It is a map that lists the subscriptions that the store 
successfully created.  

These "success only" response messages have been added to ETP to support more efficient operations 
of customer role software.  

Message Type ID: 10 

Correlation Id Usage: MUST be set to the messageId of the SubscribePartNotifications message that 
this message is a response to.  

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

success  The presence of the map key represents 
success. 

 The associated map string value SHOULD 
be empty because its content is ignored. 

string 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObjectNotification", 
     "name": "SubscribePartNotificationsResponse", 
     "protocol": "7", 
     "messageType": "10", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "success", 
             "type": { "type": "map", "values": "string" } 
         } 
     ] 
} 

  

12.3.3 Message: PartsChanged 

A store sends to a customer as notification that one or more parts have been created or changed within 
the context a subscription (the details of which are specified in a SubscriptionInfo record of a 
SubscribePartNotifications or UnsolicitedPartNotifications message).  

A store MUST send this message for operations that occur in GrowingObject (Protocol 6) using the 
PutParts message.  

Message Type ID: 2 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0.  

Multi-part: False 

Sent by: store 

Field Name Description Data Type Min Max 

uri The URI of the "parent" growing data object where 
the change occurred. For example: in WITSML, a 
Trajectory is a growing data object and each 
TrajectoryStation is a part. 

string 1 1 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 280 

Field Name Description Data Type Min Max 

This MUST be a canonical Energistics data object 
URI; for more information, see Appendix: 
Energistics Identifiers. 

requestUuid The UUID of the subscription request that resulted 
in this notification message being sent.  

The UUID was assigned by the customer when 
the subscription was requested and created (in 
the SubscriptionInfo record) or by an 
UnsolicitedPartNotifications message. 

Must be of type Uuid (Section 23.6). 

Uuid 1 1 

changeKind The information describing the change to the parts 
in the data object, which must be one of the 
enumerations specified in ObjectChangeKind. 

ObjectChangeKind 1 1 

changeTime The time the data-change event occurred. This is 
not the time the event happened, but the time that 
the change occurred in the store database. This is 
the value from storeLastWrite field on the “parent” 
growing data object (for more information see 
Resource) and the ChangeAnnotation record 
created for the change.  

It must be a UTC dateTime value, serialized as a 
long, using the Avro logical type timestamp-micros 
(microseconds from the Unix Epoch, 1 January 
1970 00:00:00.000000 UTC). 

long 1 1 

format Specifies the format (e.g., XML or JSON) of the 
parts data being sent. This MUST match the 
format in the SubscriptionInfo record for the 
subscription. 

string 0 1 

parts An array of the UIDs of the parts and optionally 
the data for each (as defined in the ObjectPart 
record) that have been added or updated in the 
growing data object (identified in the uri field 
above).  

The data for each part is only included if the 
customer set includeObjectData to true in the 
subscription request.  

ObjectPart 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObjectNotification", 
     "name": "PartsChanged", 
     "protocol": "7", 
     "messageType": "2", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "uri", "type": "string" }, 
         { "name": "requestUuid", "type": "Energistics.Etp.v12.Datatypes.Uuid" }, 
         { "name": "changeKind", "type": 
"Energistics.Etp.v12.Datatypes.Object.ObjectChangeKind" }, 
         { "name": "changeTime", "type": "long" }, 
         { "name": "format", "type": "string", "default": "" }, 
         {  
             "name": "parts", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.Object.ObjectPart" } 
         } 
     ] 
} 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 281 

12.3.4 Message: PartsDeleted 

A store sends to a customer as notification that one or more parts have been deleted within the context of 
a subscription (the details of which are specified in a SubscriptionInfo record of a 
SubscribePartNotifications or UnsolicitedPartNotifications message). 

A store MUST send this message for operations that occur in GrowingObject (Protocol 6) using the 
DeleteParts message.  

Message Type ID: 3 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0.  

Multi-part: False 

Sent by: store 

Field Name Description Data Type Min Max 

uri The URI of the "parent" growing data object where 
the change occurred. For example: in WITSML, a 
Trajectory is a growing data object and each 
TrajectoryStation is a part. 

This MUST be a canonical Energistics data object 
URI; for more information, see Appendix: 
Energistics Identifiers. 

string 1 1 

requestUuid The UUID of the notification request (e.g., in 
SubscriptionInfo record of the 
SubscribePartNotification message) that resulted 
in this PartsDeleted message being sent. 

Must be of type Uuid (Section 23.6). 

Uuid 1 1 

uids An array of parts (each identified by its UID) that 
have been deleted.  

string 1 1 

changeTime The time the data-change event occurred. This is 
not the time the event happened, but the time that 
the change occurred in the store database. This is 
the value from storeLastWrite field on the “parent” 
growing data object (for more information see 
Resource) and the ChangeAnnotation record 
created for the change.  

It must be a UTC dateTime value, serialized as a 
long, using the Avro logical type timestamp-micros 
(microseconds from the Unix Epoch, 1 January 
1970 00:00:00.000000 UTC). 

long 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObjectNotification", 
     "name": "PartsDeleted", 
     "protocol": "7", 
     "messageType": "3", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "uri", "type": "string" }, 
         { "name": "requestUuid", "type": "Energistics.Etp.v12.Datatypes.Uuid" }, 
         { "name": "changeTime", "type": "long" }, 
         {  
             "name": "uids", 
             "type": { "type": "array", "items": "string" } 
         } 
     ] 
} 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 282 

  

12.3.5 Message: UnsubscribePartNotification 

A customer sends to a store to cancel one or more existing subscriptions to part notifications, which may 
be either:  

 a subscription that the customer previously requested with the SubscribePartNotifications message. 

 a subscription created by the store using the UnsolicitedPartNotifications message. 

The store MUST respond with the PartSubscriptionEnded message.  

Message Type ID: 4 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0.  

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

requestUuid The UUID of the subscription that is being 
canceled. Each subscription was assigned a 
UUID by the customer requesting it, when the 
subscription was created (in the SubscriptionInfo 
record) or was assigned in an 
UnsolicitedPartNotifications message.  

Must be of type Uuid (Section 23.6). 

Uuid 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObjectNotification", 
     "name": "UnsubscribePartNotification", 
     "protocol": "7", 
     "messageType": "4", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "requestUuid", "type": "Energistics.Etp.v12.Datatypes.Uuid" } 
     ] 
} 

  

12.3.6 Message: PartsReplacedByRange 

A store sends to a customer as notification that a range of parts in a growing data object was deleted and 
replaced with other parts. 

 If includeObjectData was set to true on the SubscribePartNotifications message, then each message 
also contains the replaced parts. The notification provides no indication of how many parts were 
deleted. 

 If includeObjectData was set to false, the store sends a single message identifying the deleted 
interval and identifying the UIDs of any replacement parts. 

 A store MUST send this message for operations that occur in GrowingObject (Protocol 6) using the 
ReplacePartsByRange message. 

Message Type ID: 6 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 283 

Correlation Id Usage: For the first message, MUST be set to 0. If there are multiple messages in this 
multipart request, the correlationId of all successive messages that comprise the request MUST be set to 
the messageId of the first message of the multipart request.  

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

uri The URI of the "parent" growing data object from 
which the parts were deleted. For example: in 
WITSML, a Trajectory is a growing data object 
and each TrajectoryStation is a part. 

This MUST be a canonical Energistics data object 
URI; for more information, see Appendix: 
Energistics Identifiers. 

string 1 1 

requestUuid Each subscription was assigned a UUID by the 
customer requesting it, when the subscription was 
created (in the SubscriptionInfo record) or was 
assigned in an UnsolicitedPartNotifications 
message. 

Must be of type Uuid (Section 23.6). 

Uuid 1 1 

changeTime The time the data-change event occurred. This is 
not the time the event happened, but the time that 
the change occurred in the store database. This is 
the value from storeLastWrite field on the “parent” 
growing data object (for more information see 
Resource) and the ChangeAnnotation record 
created for the change.  

It must be a UTC dateTime value, serialized as a 
long, using the Avro logical type timestamp-micros 
(microseconds from the Unix Epoch, 1 January 
1970 00:00:00.000000 UTC). 

long 1 1 

deletedInterval The index interval for the deleted range as 
specified in IndexInterval . This is NOT the index 
range of the parts that replaced the deleted parts. 

IndexInterval 1 1 

includeOverlappingIntervals Specifies if the interval is inclusive or exclusive for 
objects that span the interval.  

For more information, see the Section 11.2.2.1, 
which explains overlapping interval behavior.  

 If true, then any object with any part of it 
crossing the specified range is affected. 

 If false, then only objects that fall completely 
within the range are affected. 

boolean 1 1 

format Specifies the format (e.g., XML or JSON) of the 
data for the replacement parts being sent in this 
message. This MUST match the format in the 
SubscriptionInfo record for the subscription. 

Currently, ETP MAY support "xml" and "json". 
Other formats may be supported in the future, and 
endpoints may agree to use custom formats. 

string 0 1 

parts An array of ObjectPart records., which contain the 
UIDs of the parts that replaced the deleted  

If in the SubscribePartsNotification message, 
the customer: 

 set includeObjectData to true, then the array 
includes each part UID and its associated 
data.  

 set includeObjectData to false, then the array 
contains only the part UIDs. 

ObjectPart 1 1 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 284 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObjectNotification", 
     "name": "PartsReplacedByRange", 
     "protocol": "7", 
     "messageType": "6", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { "name": "uri", "type": "string" }, 
         { "name": "requestUuid", "type": "Energistics.Etp.v12.Datatypes.Uuid" }, 
         { "name": "changeTime", "type": "long" }, 
         { "name": "deletedInterval", "type": 
"Energistics.Etp.v12.Datatypes.Object.IndexInterval" }, 
         { "name": "includeOverlappingIntervals", "type": "boolean" }, 
         { "name": "format", "type": "string", "default": "" }, 
         {  
             "name": "parts", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.Object.ObjectPart" } 
         } 
     ] 
} 

  

12.3.7 Message: PartSubscriptionEnded 

The store MUST send this message to a customer as a confirmation response to the customer's 
UnsubscribePartNotification message. 

If the store stops a customer’s subscription on its own without a request from the customer (e.g., if the 
primary data object in the subscription has been deleted), the store MUST send this message to notify the 
customer that the subscription has been stopped.  

When sent as a notification, there MUST only be one message in the multipart notification. 

The store MUST provide a human readable reason why the subscription was stopped. 

Message Type ID: 8 

Correlation Id Usage: When sent as a response: MUST be set to the messageId of the 
UnsubscribePartNotifications message that this message is a response to. When sent as a notification: 
MUST be ignored and SHOULD be set to 0.  

Multi-part: False 

Sent by: store 

Field Name Description Data Type Min Max 

Reason A reason why the subscriptions have been 
stopped. 

string 1 1 

requestUuid The UUID of the subscription the store is ending. 
These UUIDs were assigned by the customer 
when the subscription was requested (in the 
SubscriptionInfo record) or by an 
UnsolicitedPartNotifications message. 

Must be of type Uuid (Section 23.6). 

Uuid 1 1 

  

Avro Source 

{ 
     "type": "record", 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 285 

     "namespace": "Energistics.Etp.v12.Protocol.GrowingObjectNotification", 
     "name": "PartSubscriptionEnded", 
     "protocol": "7", 
     "messageType": "8", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "reason", "type": "string" }, 
         { "name": "requestUuid", "type": "Energistics.Etp.v12.Datatypes.Uuid" } 
     ] 
} 

  

12.3.8 Message: UnsolicitedPartNotifications 

This message is an array of any unsolicited parts subscriptions that have been made by the store on the 
customer's behalf. This message allows the store to inform the customer about the creation or alteration 
of growing data object parts in the store, which the customer has not specifically requested but which are 
contractually required. 

If a store has created these unsolicited subscriptions, when the customer connects to the store, the store 
MUST send this message to the customer.  

NOTE: The store may configure unsolicited subscriptions to send parts with notifications. The customer 
can check the includeObjectData field on the SubscriptionInfo record to determine if this is the case or 
not. For more information, see section 12.2.2. 

Message Type ID: 9 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0.  

Multi-part: False 

Sent by: store 

Field Name Description Data Type Min Max 

subscriptions An array of SubscriptionInfo records, each of 
which identifies the details of an unsolicited parts 
subscription. Each record includes information 
such as the URI of the subscription’s growing data 
object, and the request UUID that initiated a 
subscription.  

The uri field in the ContextInfo record in the 
SubscriptionInfo record MUST be set to the 
canonical URI for a growing data object. 

The URI in the ContextInfo record MUST be a 
canonical Energistics data object URI for a 
growing data object; for more information, see 
Appendix: Energistics Identifiers. 

SubscriptionInfo 1 n 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObjectNotification", 
     "name": "UnsolicitedPartNotifications", 
     "protocol": "7", 
     "messageType": "9", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         {  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 286 

             "name": "subscriptions", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.Object.SubscriptionInfo" } 
         } 
     ] 
} 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 287 

13 DataArray (Protocol 9) 
ProtocolID: 9 

Defined Roles: store, customer 

Use DataArray (Protocol 9) to transfer large, binary arrays of homogeneous data values. With Energistics 
domain standards, this data is often stored as an HDF5 file. However, this protocol can be used for any 
array data, even if HDF files are not required or used.  

Energistics domain standards have typically store this type of data using HDF5. For example, RESQML 
uses HDF5 to store seismic, interpretation, and modeling data: PRODML-DAS uses HDF5 to store 
distributed acoustic sensing data. As such, the arrays that are transferred with the DataArray protocol are 
logical versions of the HDF5 data sets. 

DataArray (Protocol 9): 

 Supports any array of values of different types (bytes, integer, float, doubles, etc.). In Energistics data 
models, this array data is typically associated with a data object (that is, it is the binary array data for 
the data object).  

 Imposes no limits on the dimensions of the array. Multi-dimensional arrays have no limits to the 
number of dimensions. However, a store may limit the size of a message and therefore the size of the 
arrays it can handle in a single message. For this reason, this protocol provides functionality to 
portion arrays into manageably sized sub-arrays for data transfer. 

 Was designed to support transfer of the data typically stored in HDF5 files but also can be used to 
transfer this type of data when HDF5 files are not required or used.  

This chapter includes main sections for:  
 Key ETP concepts that are important to understanding how this protocol is intended to work (Section 

13.1).   

 Required behavior, which includes: 

 Description of the message sequence for main tasks, along with required behavior and possible 
errors (Section 13.2.1). 

 Other functional requirements (not covered in the message sequence) including use of endpoint 
and protocol capabilities for preventing and protecting against aberrant behavior (Section 13.2.2). 

- Definitions of the endpoint and protocol capabilities used in this protocol (Section 13.2.3). 

 Sample schemas of the messages defined in this protocol (which are identical to the Avro schemas 
published with this version of ETP). However, only the schema content in this specification includes 
documentation for each field in a schema (Section 13.3).  

13.1 DataArray Key Concepts 

This section explains key concepts related to this protocol. 

13.1.1 HDF5 and EPC Files 

The Energistics Common Technical Architecture (CTA) includes these technologies: 

 HDF5 is a data model, a set of open file formats, and libraries designed to store and organize large 
amounts of data for improved speed and efficiency of data processing.  

 Energistics Packaging Convention (EPC) is a file packaging convention based on the Open 
Packaging Conventions (OPC), a widely used container-file technology that allows multiple types of 
files to be bundled together into a single package, which is built on the widely used ZIP file structure. 

EPC provides a way to bundle together multiple files into a single file—referred to as an EPC file, which is 
actually a ZIP file tailored for Energistics use—and to identify the relationships among the contained files, 
for data transfer. If the file set includes large binary arrays, they are stored in one or more HDF5 files. In 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 288 

most cases, the HDF5 files are stored outside the EPC file. To accurately maintain all relationships, the 
package requires use of an external reference to the HDF5 file, which is called an 
EpcExternalPartReference.  

DataArray (Protocol 9) has been designed to get and put data arrays in this context--and also to handle 
this type of array data when no files are required, for example, from endpoint to endpoint. For more 
information about these technologies and their use in the Energistics CTA, see Energistics Online: 
http://docs.energistics.org/#CTA/CTA_TOPICS/CTA-000-018-0-C-sv2100.html and 
http://docs.energistics.org/#ETP/ETP_TOPICS/ETP-000-000-titlepage.html.  

13.2 DataArray: Required Behavior 

This section contains functional and non-functional requirements for this protocol. It is organized in these 
sub-sections: 

 Message Sequence. Summarizes all messages defined by this protocol, identifies main tasks that 
can be done with this protocol and describes the response/request pattern for the messages needed 
to perform the tasks, including usage of ETP-defined capabilities, error scenarios, and resulting ETP 
error codes.  

 General Requirements. Identifies high-level (across ETP) and protocol-wide general behavior and 
rules that must be observed (in addition to behavior specified in Message Sequence), including usage 
of ETP-defined endpoint, data object and protocol capabilities, error scenarios, and resulting error 
codes.  

 Capabilities. Lists and defines the ETP-defined parameters most relevant for this sub-protocol. ETP 
defines these parameters to set necessary limits to help prevent aberrant behavior (e.g., sending 
oversized messages or sending more messages than an endpoint can handle).  

Prerequisites for using this protocol:  
 An ETP session has been established using Core (Protocol 0) as described in Chapter 5. 

 In most cases, when this text refers to providing a URI it is referring to the canonical Energistics URI. 
For more information, see Section 25.3.5. 

13.2.1 DataArray: Message Sequences 

This section explains the basic message sequence for main tasks to be done using this protocol and 
includes related key behaviors and possible errors. The following General Requirements section provides 
additional requirements and rules for how this protocol works.   

The following table lists all messages defined in this sub-protocol, the basic request/response usage 
patterns per ETP role, and whether it may be multipart. The detailed content of each message is 
explained in the Message Schema section (Section 13.3). 

DataArray (Protocol 9): 
Basic Message-Response flow by ETP Role 

Message sent by customer Response Message from store 

GetDataArrayMetadata: Request for metadata 

(dimensions) about one or more data arrays. 

GetDataArrayMetadataResponse (multipart): 

Response that provides the requested metadata. 

GetDataArrays: Request for one or more data arrays. GetDataArraysResponse (multipart): Response 
message containing array data that the store could 
return. 

GetDataSubarrays: Request for one or more sub-

arrays (part of a larger array) of data.  

GetDataSubarraysResponse (multipart): Response 

message containing array data that the store could 
return. 

https://docs.energistics.org/#CTA/CTA_TOPICS/CTA-000-018-0-C-sv2100.html
https://docs.energistics.org/#ETP/ETP_TOPICS/ETP-000-000-titlepage.html


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 289 

DataArray (Protocol 9): 
Basic Message-Response flow by ETP Role 

Message sent by customer Response Message from store 

PutUninitializedDataArrays: Establishes the 

dimensions for an array in a store before sending the 
data for the array.  

PutUninitializedDataArraysResponse (multipart): 

Success only response that the lists the arrays that 
were initialized. 

PutDataArrays: Request to put one or more data 

arrays.  

PutDataArraysResponse (multipart): Success only 

response that the lists the arrays that were added to the 
store. 

PutDataSubarrays: Request to put one or more sub-

arrays of data.  

PutDataSubarraysResponse (multipart): Success only 

response that the lists the sub-arrays that were added 
to the store. 

 

13.2.1.1 To get one or more data arrays: 
1. First a customer needs to determine the type and dimensions of the arrays it is interested in/wants to 

work with. To do this, the customer sends to the store, the GetDataArrayMetadata message (Section 
13.3.11), which is a map whose values are the identifiers of the data arrays of interest. 

a. The identifier is a DataArrayIdentifier record (Section 23.32.3), which consists of a URI that 
identifies a resource that contains the array data and a path within the resource for the array data. 

b. NOTE: The resource is NOT a Resource record. The resource may or may not be an HDF file. 
The URI is not guaranteed to be an Energistics URI. For more information, see the relevant ML 
ETP implementation specification. 

2. The store MUST respond with the GetDataArrayMetadataResponse message (Section 13.3.12), 
which is a map whose values are the metadata (type (e.g., float, integer, string, etc.) indexes and 
dimensions) for the each requested array the store could respond for. 

3. Based on the dimension data provided in the GetDataArrayMetadataResponse message, the 
customer determines: 

a. If the data array is small enough that it can be retrieved with one call, use the GetDataArrays 
message (Section 13.3.1) to list the URIs of the data arrays it wants to retrieve.  

i. The store responds with the GetDataArraysResponse message (Section 13.3.2) with the 
arrays it can return. 

b. If the data arrays are too large to get in one call, then the customer must retrieve the array in 
multiple calls, using GetDataSubarrays messages (Section 13.3.3). Each call typically gets the 
different portions corresponding to a decomposition of the array. According to the size, this 
decomposition can be by columns, planes, sub-cubes, etc. 

i. The store responds with GetDataSubarraysResponse messages (Section 13.3.4), to send the 
data for the arrays of interest in small sub-arrays that the endpoint can handle.  

ii. The customer then "assembles" the GetDataSubarraysResponse messages to process the 
complete array. 

c. For more information on the related protocol capability, MaxDataArraySize, see Section 13.2.2, 
Row 5.  

13.2.1.2 To put one or more data arrays: 
NOTE: ETP uses upsert semantics so the same message is used to add a new or update existing data 
arrays. 

1. For a large array that will not fit in a single message, before a customer can put a data array in a 
store, it must specify the indexes and dimensions of the array. To do this, a customer MUST send to 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 290 

the store the PutUninitializedDataArrays message (Section 13.3.9).  

a. If the array is small enough, this step is not required. 

2. The store MUST respond with a PutUninitializedDataArraysResponse message (Section 13.3.10) 
indicating success of the operation. 

3. Next the customer can add data to the array. Depending on the array size, the customer does one of 
the following:  

a. If the array is small enough, the customer sends a PutDataArrays message (Section 13.3.5) 
which is a map of the arrays and the respective data for each.  

i. For requests that the store successfully completed, the store MUST respond with a 
PutDataArraysResponse message (Section 13.3.6) indicating success of the operation. 

b. If the arrays are too large for one message, the customer MUST send multiple 
PutDataSubarrays messages (Section 13.3.7).  

i. The store MUST process the various sub-array messages to fill the complete data array; for 
requests that it was able to complete, the store MUST respond with a 
PutDataSubarraysResponse message (Section 13.3.8) indicating success of the operation.  

c. For more information on the related protocol capability, MaxDataArraySize, see Section 13.2.2, 
Row 5.  

13.2.1.3 Transactions 
Typically, arrays are not transferred in isolation because they correspond to the binary data associated to 
a data object. All array-put transfers corresponding to the same data object must be successful for the 
data object to be complete, so it is recommended to include transfer of the data object and its arrays in a 
transaction, using Transaction (Protocol 18); see Chapter 18. 

13.2.2 DataArray: General Requirements 

In addition to the basic message sequence described in the previous section, this protocol has the 
additional requirements listed in the table below. For easy reference, the rows and behaviors in this table 
are numbered. 

NOTE: This table has been organized to reduce redundancy but also to help developers more easily 
locate specific requirements. EXAMPLE: There are rows with general requirements that apply to all 
protocols (e.g., Rows 1–2), rows for general requirements for this protocol, and (possibly) additional rows 
with additional requirements for specific types of operations.  

Row# Requirement Behavior 

1.  ETP-wide behavior that MUST be observed 
in all protocols 

1. Requirements for general behavior consistent across all of ETP are 
defined in Chapter 3. This behavior includes information such as: all 
details of message handling (such as message headers, handling 
compression, use of message IDs and correlation IDs, requirements for 
plural and multipart message patterns) use of acknowledgements, 
general rules for sending ProtocolException messages, URI encoding, 
serialization and more. RECOMMENDATION: Read Chapter 3 first. 

2. For information about Energistics identifiers and prescribed ETP URI 
formats, see Appendix: Energistics Identifiers. 

a. In MOST cases, endpoints performing operations in this protocol 
MUST use the canonical Energistics URI. For more information, see 
Section 3.7.4.  

3. For the complete list of error codes defined by ETP, see Chapter 24. 

4. ALL operations in an ETP session are performed on the set of 
supported data object types that were negotiated to be used when 
the session was initiated and established. 

a. The client and server exchange the list of data object types in the 
supportedDataObjects field of the RequestSession and 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 291 

Row# Requirement Behavior 

OpenSession messages in Core (Protocol 0). For more 
information, see Chapter 5. 

b. In general, the list of supported objects for a session will most likely 
be the intersection of the data objects that the server supports and 
the data objects that the client requested for the ETP session. 

c. A store MUST support all messages (in each supported ETP sub-
protocol) for each supported data object, whether the data object is 
supported explicitly or by wild card. 

d. An endpoint MUST only send messages with the URI of a data 
object that is a type supported by the other endpoint for this ETP 
session.  

i. If an endpoint sends a URI for an unsupported type of data 
object, the other endpoint MUST send error 
EDATAOBJECTTYPE_NOTSUPPORTED (16). 

2.  Capabilities-related behavior 1. Relevant endpoint, data object, and/or protocol capabilities MUST be 
specified when the ETP session is established (see Chapter 5) and 
MUST be used/honored as defined in the relevant ETP sub-protocol.  

2. For an explanation of endpoint, data object, and protocol capabilities, see 
Section 3.3. 

a. For the list of global capabilities and related behavior, see Section 
3.3.2. 

3. Section 13.2.3 identifies the capabilities most relevant to this ETP sub-
protocol. Additional details for how to use the protocol capabilities are 
included below in this table and in Section 13.2.1 DataArray: Message 
Sequence. 

3.  Message Sequence 

See Section 13.2.1. 

1. The Message Sequence section above (Section 13.2.1) describes 
requirements for the main tasks listed there and also defines required 
behavior. 

4.  Plural Messages (which includes maps) 1. This protocol uses plural messages. For detailed rules on handling plural 
messages (including ProtocolException handling), see Section 3.7.3. 

5.  Endpoints MUST honor MaxDataArraySize 
protocol capability (for definition, see Section  

13.2.3).  

1. For any get or put operations in this protocol where array data is being 
sent, each endpoint MUST NOT exceed the other's value for 
MaxDataArraySize protocol capability.  

2. If an endpoint's value is exceeded, it MUST deny the request by sending 
error ELIMIT_EXCEEDED (12).  

6.  Transaction (optional) Because data arrays can be large and complex, operations associated with 
them can also be large and complex.  

Endpoints can optionally define a transaction using Transaction (Protocol 18). 
For more information, see Chapter 18.  

7.  Store behavior: updates to a data array's 
storeCreated and storeLastWrite fields 

1. Similarly to a Resource, data arrays have metadata fields named 
storeCreated and storeLastWrite fields, which are maintained by an ETP 
store, primarily to support replication workflows. For more information 
about these fields, see: 
a. Section 23.32.2. 
b. Section 3.12.5.1.  

2. For operations in this protocol that ADD a new data array (e.g. 
PutDataArrays, PutUninitializedDataArrays), the store MUST do both 
of these: 
a. Set the storeCreated field to the time that the array was added in 

the store.  
b. Set the storeLastWrite field to the same time as storeCreated. 

3. For operations in this protocol that UPDATE a data array (e.g. 
PutDataArrays, because ETP uses upsert semantics the same 
message is used to add or update the array), the store MUST update the 
storeLastWrite field with the time that the update happened in the store.  

8.  Updates to data in a data array require an 
update to the data object(s) that reference 
that array. 

1. When a data value in a data array is updated, each data object that 
references the array MUST also be updated.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 292 

Row# Requirement Behavior 

a. At a minimum, the storeLastWrite on the resource for the data 
object MUST be updated. Other changes may be required 
depending on the nature of the change.  

9.  Data Array Metadata: Mapping of logical 
and transport array types 

1. For operations in this protocol where data array metadata must be 
specified (see messages that use DataArrayMetadata record), these 
rules MUST be observed for populating the logicalArrayType and 
transportArrayType fields: 
a. Both fields are required and MUST be populated, each with a value 

from its respective enumeration.  
b. Values for logicalArrayType can only use specific values for 

transportArrayType. For the allowed mapping of values, see Section 
13.2.2.1. 

 

13.2.2.1 Allowed Mappings of Logical Array Types and Transport Array Types 
In the table below, for each enumeration (specified in AnyLogicalArrayType) for the logicalArrayType field 
(left column), the right column specifies the allowed enumerations (specified in AnyArrayType) for the 
transportArrayType field. 

The types in the left column are all the enumerations listed in the AnyLogicalArrayType record (see 
Section 23.1). These types have been specified based on signed/unsigned (U), bit size of the preferred 
sub-array dimension (8, 16, 32, 64 bits), and endianness (LE = little, BE = big).  

The following usage rules apply: 

1. Implementers decide which encoding is best for their data and particular implementation. 

2. Type of "bytes" is a fixed-size encoding. So an 8-bit array uses 1 byte, 16 bit uses 2 bytes, 32 bit 
uses 4 bytes, and 64 bit uses 8 bytes.  

3. Types "arrayOfLong" and "arrayOfInt" follow Avro encoding, which is variable length.  

Logical Array Type 
(AnyLogicalArrayType) 

Allowed Transport Array Type 
(AnyArrayType)  

arrayOfBoolean arrayOfBoolean 

arrayOfInt8 bytes, arrayOfInt, arrayOfLong 

arrayOfUInt8 bytes, arrayOfInt, arrayOfLong 

arrayOfInt16LE bytes, arrayOfInt, arrayOfLong 

arrayOfInt32LE bytes, arrayOfInt, arrayOfLong 

arrayOfInt64LE bytes, arrayOfLong 

arrayOfUInt16LE bytes, arrayOfInt, arrayOfLong 

arrayOfUInt32LE bytes, arrayOfInt, arrayOfLong 

NOTE: When arrayOfInt is used, reinterpret casts 

are required prior to Avro encoding. 

arrayOfUInt64LE bytes, arrayOfLong 

NOTE: When arrayOfLong is used, reinterpret casts 

are required prior to Avro encoding. 

arrayOfFloat32LE arrayOfFloat 

arrayOfDouble64LE arrayOfDouble 

arrayOfInt16BE bytes 

arrayOfInt32BE bytes 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 293 

Logical Array Type 
(AnyLogicalArrayType) 

Allowed Transport Array Type 
(AnyArrayType)  

arrayOfInt64BE bytes 

arrayOfUInt16BE bytes 

arrayOfUInt32BE bytes 

arrayOfUInt64BE bytes 

arrayOfFloat32BE bytes 

arrayOfDouble64BE bytes 

arrayOfString arrayOfString 

arrayOfCustom Not specified. 

13.2.3 DataArray: Capabilities 

The table below lists key capabilities for this protocol. The protocol capabilities are all defined here.  

 For protocol-specific behavior relating to using these capabilities in this protocol, see Section 13.2.2, 
DataArray: General Requirements. 

 For definitions for endpoint and data object capabilities, see the links in the table. 

 For general information about the types of capabilities and how they may be used, see Section 3.3. 

DataArray (Protocol 9): Capabilities 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

Endpoint Capabilities  

(For definitions of each endpoint capability, see Section 3.3.) 

   

NOTE: Many endpoint capabilities are "universal", used in all or 

most of the ETP protocols. For more information, see Section 
3.3.2. 

Behavior associated with other endpoint capabilities are 
defined in relevant chapters.  
EXAMPLE: The capabilities defined for limiting ETP 
sessions between 2 endpoints are discussed in 
Section 4.3, How a Client Establishes a WebSocket 

Connection to an ETP Server. 

   

Protocol Capabilities    

MaxDataArraySize: The maximum size in bytes of a data array 

allowed in a store. Size in bytes is the product of all array 
dimensions multiplied by the size in bytes of a single array 
element. 

long byte 
<number of 
bytes> 

MIN:100,000 

 

 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 294 

13.3 DataArray: Message Schemas 

This section provides a figure that displays all messages defined in DataArray (Protocol 9). Subsequent 
sub-sections provide an example schema for each message and definitions of the data fields contained in 
each message. 

 
Figure 24: DataArray: message schemas 

13.3.1 Message: GetDataArrays 

A customer sends to a store to request one or more full data arrays, each one referenced by a 
DataArrayIdentifier. The response to this message is the GetDataArraysResponse message.  

Message Type ID: 2 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

class DataArray

«Message»
GetDataArrays

+ dataArrays : DataArrayIdenti fier [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 2
MultiPart = Fa lse
SenderRole = customer

notes
A  customer sends to a store to request one or more full data arrays,
each one referenced by a DataArrayIdentifier. The response to this
message is the GetDataArraysResponse message.

«Message»
GetDataArraysResponse

+ dataArrays : DataArray [0..*] (map) = EmptyMap

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 1
MultiPart = True
SenderRole = s tore

notes
A store MUST send to a customer as the response to the GetDataArrays
message. It lists the data arrays that the store could return.

«Message»
GetDataSubarrays

+ dataSubarrays : GetDataSubarraysType [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 3
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store to request one or more portions of a data
array. The response to this message is the GetDataSubarraysResponse
message.

«Message»
GetDataArrayMetadata

+ dataArrays : DataArrayIdenti fier [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 6
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store to request metadata (dimensions) about one
or more data arrays. The response to this is the
GetDataArrayMetadataResponse message.
Use this message first in the message sequence (e.g., before getting an
array), to determine the sizes and datatypes of the arrays.

«Message»
PutDataSubarrays

+ dataSubarrays : PutDataSubarraysType [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 5
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store as requests to put  portions of data arrays
(sub-arrays), when the entire array is too large for the WebSocket
message of an implementation. The "success only" response to this
message is a PutDataSubarraysResponse message.

«Message»
PutDataArrays

+ dataArrays : PutDataArraysType [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 4
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store as a request to put one or more data arrays
in the store. The "success only" response to this message is the
PutDataArraysResponse message.

«Message»
GetDataArrayMetadataResponse

+ arrayMetadata: DataArrayMetadata  [0..*] (map) = EmptyMap

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 7
MultiPart = True
SenderRole = s tore

notes
A store MUST send to a customer with metadata about requested
arrays. It is the response to the GetDataArrayMetadata message.

«Message»
GetDataSubarraysResponse

+ dataSubarrays : DataArray [0..*] (map) = EmptyMap

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 8
MultiPart = True
SenderRole = s tore

notes
A store MUST send to a customer as the response to  the
GetDataSubarrays message. It lists the sub-arrays that the store could
return.

«Message»
PutUninitializedDataArrays

+ dataArrays : PutUnini tia l i zedDataArrayType [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 9
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store as a request to establish the dimensions of
one or more arrays in a store, before it begins sending the sub-arrays of
data (using the PutDataSubarrays message) to populate these arrays.
The "success only" response to this message is the
PutUninitializedDataArraysResponse.

«Message»
PutUninitializedDataArraysResponse

+ success : s tring [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 12
MultiPart = True
SenderRole = s tore

notes
A store MUST send this "success only" message to a customer as
confirmation of a successful operation in response to a
PutUninitializedDataArrays  message.
The purpose of these "success only" response messages is to support
more efficient operations of customer role software.

«Message»
PutDataArraysResponse

+ success : s tring [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 10
MultiPart = True
SenderRole = s tore

notes
A store MUST send this "success only" message to a customer as
confirmation of a successful operation in response to a PutDataArrays
message.
The purpose of these "success only" response messages is to support
more efficient operations of customer role software.

«Message»
PutDataSubarraysResponse

+ success : s tring [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 11
MultiPart = True
SenderRole = s tore

notes
A store MUST send this "success only" message to a customer as
confirmation of a successful operation in response to a
PutDataSubarrays message.
The purpose of these "success only" response messages is to support
more efficient operations of customer role software.



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 295 

Field Name Description Data Type Min Max 

dataArrays A map of DataArrayIdentifier records, one for 
each array being requested; each record identifies 
the URI (uri field) of the resource and the path in 
that resource to the specific array 
(pathInResource field).  

If both endpoints support alternate URIs for the 
session, the URIs MAY be alternate data object 
URIs. Otherwise, they MUST be canonical 
Energistics data object URIs. For more 
information, see Appendix: Energistics 
Identifiers. 

DataArrayIdentifier 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.DataArray", 
     "name": "GetDataArrays", 
     "protocol": "9", 
     "messageType": "2", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { 
             "name": "dataArrays", 
             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.DataArrayTypes.DataArrayIdentifier" } 
         } 
     ] 
} 

  

13.3.2 Message: GetDataArraysResponse 

A store MUST send to a customer as the response to the GetDataArrays message. It lists the data arrays 
that the store could return.  

Message Type ID: 1 

Correlation Id Usage: MUST be set to the messageId of the GetDataArrays message that this message 
is a response to.  

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

dataArrays A map of DataArray records, each of which is 
composed of the dimensions of an array and the 
data for the array. 

DataArray 0 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.DataArray", 
     "name": "GetDataArraysResponse", 
     "protocol": "9", 
     "messageType": "1", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 296 

     [ 
         { 
             "name": "dataArrays", 
             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.DataArrayTypes.DataArray" }, "default": {} 
         } 
     ] 
} 

  

13.3.3 Message: GetDataSubarrays 

A customer sends to a store to request one or more portions of a data array. The response to this 
message is the GetDataSubarraysResponse message. 

Message Type ID: 3 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

dataSubarrays A map of GetDataSubarraysType records, each of 
which has the necessary fields to identify and 
locate the desired sub-arrays.  

If both endpoints support alternate URIs for the 
session, the URIs MAY be alternate data object 
URIs. Otherwise, they MUST be canonical 
Energistics data object URIs. For more 
information, see Appendix: Energistics 
Identifiers. 

GetDataSubarraysType 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.DataArray", 
     "name": "GetDataSubarrays", 
     "protocol": "9", 
     "messageType": "3", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { 
             "name": "dataSubarrays", 
             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.DataArrayTypes.GetDataSubarraysType" } 
         } 
     ] 
} 

  

13.3.4 Message: GetDataSubarraysResponse 

A store MUST send to a customer as the response to the GetDataSubarrays message. It lists the sub-
arrays that the store could return.  

Message Type ID: 8 

Correlation Id Usage: MUST be set to the messageId of the GetDataSubarrays message that this 
message is a response to.  

Multi-part: True 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 297 

Sent by: store 

Field Name Description Data Type Min Max 

dataSubarrays A map of DataArray records, each of which 
contains the dimensions and the data for one sub-
array. 

DataArray 0 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.DataArray", 
     "name": "GetDataSubarraysResponse", 
     "protocol": "9", 
     "messageType": "8", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "dataSubarrays", 
             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.DataArrayTypes.DataArray" }, "default": {} 
         } 
     ] 
} 

  

13.3.5 Message: PutDataArrays 

A customer sends to a store as a request to put one or more data arrays in the store. The "success only" 
response to this message is the PutDataArraysResponse message.  

Message Type ID: 4 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0.  

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

dataArrays A map of PutDataArraysType records, each of 
which contains the identifier and data for each 
array in the request.  

If both endpoints support alternate URIs for the 
session, the URIs MAY be alternate data object 
URIs. Otherwise, they MUST be canonical 
Energistics data object URIs. For more 
information, see Appendix: Energistics 
Identifiers. 

PutDataArraysType 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.DataArray", 
     "name": "PutDataArrays", 
     "protocol": "9", 
     "messageType": "4", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { 

file:///C:/Users/Donna%20Marcotte/Documents/Energistics%202017/2017/ETP%202017-2018/2020/ETP%20Spec/%7b077013902%7d%20/o%20%7deaDocX%20Cross%20ref%7d')


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 298 

             "name": "dataArrays", 
             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.DataArrayTypes.PutDataArraysType" } 
         } 
     ] 
} 

  

13.3.6 Message: PutDataArraysResponse 

A store MUST send this "success only" message to a customer as confirmation of a successful operation 
in response to a PutDataArrays message.  

The purpose of these "success only" response messages is to support more efficient operations of 
customer role software.  

Message Type ID: 10 

Correlation Id Usage: MUST be set to the messageId of the PutDataArrays message that this message 
is a response to.  

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

success  The presence of the map key represents 
success. 

 The associated map string value SHOULD 
be empty because its content is ignored. 

string 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.DataArray", 
     "name": "PutDataArraysResponse", 
     "protocol": "9", 
     "messageType": "10", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "success", 
             "type": { "type": "map", "values": "string" } 
         } 
     ] 
} 

  

13.3.7 Message: PutDataSubarrays 

A customer sends to a store as requests to put portions of data arrays (sub-arrays), when the entire array 
is too large for the WebSocket message of an implementation. The "success only" response to this 
message is a PutDataSubarraysResponse message. 

Message Type ID: 5 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0.  

Multi-part: False 

Sent by: customer 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 299 

Field Name Description Data Type Min Max 

dataSubarrays A map of PutDataSubarraysType records, each of 
which contains the identifier and data for each 
sub-array in the request.  

If both endpoints support alternate URIs for the 
session, the URIs MAY be alternate data object 
URIs. Otherwise, they MUST be canonical 
Energistics data object URIs. For more 
information, see Appendix: Energistics 
Identifiers. 

PutDataSubarraysType 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.DataArray", 
     "name": "PutDataSubarrays", 
     "protocol": "9", 
     "messageType": "5", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { 
             "name": "dataSubarrays", 
             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.DataArrayTypes.PutDataSubarraysType" } 
         } 
     ] 
} 

  

13.3.8 Message: PutDataSubarraysResponse 

A store MUST send this "success only" message to a customer as confirmation of a successful operation 
in response to a PutDataSubarrays message.  

The purpose of these "success only" response messages is to support more efficient operations of 
customer role software. 

Message Type ID: 11 

Correlation Id Usage: MUST be set to the messageId of the PutDataSubarrays message that this 
message is a response to.  

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

success  The presence of the map key represents 
success. 

 The associated map string value SHOULD 
be empty because its content is ignored. 

string 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.DataArray", 
     "name": "PutDataSubarraysResponse", 
     "protocol": "9", 
     "messageType": "11", 
     "senderRole": "store", 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 300 

     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "success", 
             "type": { "type": "map", "values": "string" } 
         } 
     ] 
} 

  

13.3.9 Message: PutUninitializedDataArrays 

A customer sends to a store as a request to establish the dimensions of one or more arrays in a store, 
before it begins sending the sub-arrays of data (using the PutDataSubarrays message) to populate these 
arrays.  

The "success only" response to this message is the PutUninitializedDataArraysResponse.  

Message Type ID: 9 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0.  

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

dataArrays A map of PutUninitializedDataArrayType records, 
each of which contains the identifier and data for 
metadata for each request.  

If both endpoints support alternate URIs for the 
session, the URIs MAY be alternate data object 
URIs. Otherwise, they MUST be canonical 
Energistics data object URIs. For more 
information, see Appendix: Energistics 
Identifiers. 

PutUninitializedDataArrayType 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.DataArray", 
     "name": "PutUninitializedDataArrays", 
     "protocol": "9", 
     "messageType": "9", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { 
             "name": "dataArrays", 
             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.DataArrayTypes.PutUninitializedDataArrayType" } 
         } 
     ] 
} 

  

13.3.10 Message: PutUninitializedDataArraysResponse 

A store MUST send this "success only" message to a customer as confirmation of a successful operation 
in response to a PutUninitializedDataArrays message.  

The purpose of these "success only" response messages is to support more efficient operations of 
customer role software.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 301 

Message Type ID: 12 

Correlation Id Usage: MUST be set to the messageId of the PutUninitializedDataArrays message that 
this message is a response to.  

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

success  The presence of the map key represents 
success. 

 The associated map string value SHOULD 
be empty because its content is ignored. 

string 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.DataArray", 
     "name": "PutUninitializedDataArraysResponse", 
     "protocol": "9", 
     "messageType": "12", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "success", 
             "type": { "type": "map", "values": "string" } 
         } 
     ] 
} 

  

13.3.11 Message: GetDataArrayMetadata 

A customer sends to a store to request metadata (dimensions) about one or more data arrays. The 
response to this is the GetDataArrayMetadataResponse message.  

Use this message first in the message sequence (e.g., before getting an array), to determine the sizes 
and datatypes of the arrays. 

Message Type ID: 6 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

dataArrays A map of DataArrayIdentifier records, one for 
each array being requested; each record identifies 
the URI (uri field) of the resource and the path in 
that resource to the specific array 
(pathInResource field).  

If both endpoints support alternate URIs for the 
session, the URIs MAY be alternate data object 
URIs. Otherwise, they MUST be canonical 
Energistics data object URIs. For more 
information, see Appendix: Energistics 
Identifiers. 

DataArrayIdentifier 1 * 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 302 

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.DataArray", 
     "name": "GetDataArrayMetadata", 
     "protocol": "9", 
     "messageType": "6", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { 
             "name": "dataArrays", 
             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.DataArrayTypes.DataArrayIdentifier" } 
         } 
     ] 
} 

  

13.3.12 Message: GetDataArrayMetadataResponse 

A store MUST send to a customer with metadata about requested arrays. It is the response to the 
GetDataArrayMetadata message. 

Message Type ID: 7 

Correlation Id Usage: MUST be set to the messageId of the GetDataArrayMetadata message that this 
message is a response to.  

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

arrayMetadata A map of DataArrayMetadata records, one for 
each array that the store could return metadata 
for.  

DataArrayMetadata 0 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.DataArray", 
     "name": "GetDataArrayMetadataResponse", 
     "protocol": "9", 
     "messageType": "7", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "arrayMetadata", 
             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.DataArrayTypes.DataArrayMetadata" }, "default": {} 
         } 
     ] 
} 

  

 

 
 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 303 

14 Overview of Query Behavior 
For query functionality, ETP uses query syntax based on parts of the Open Data Protocol (OData) query 
string syntax, specifically OData v4.0. ETP queries use a canonical Energistics data object query URI, 
which may include a query string. (For information about Energistics URI formats, see Appendix: 
Energistics Identifiers.) 

OData is an OASIS standard (https://www.oasis-open.org/standards/#odatav4.0). This query syntax is 
very flexible and powerful, allowing complex queries. 

OData was selected because it is a widely known (introduced in 2007) and maturing standard. Many 
client and server libraries are available for all major platforms.  

This chapter provides general information that is applicable to all query sub-protocols published in the 
current version of ETP. The information in this chapter must be used with the information in the sub-
protocol-specific query chapters, namely: 

 DiscoveryQuery (Protocol 13); see Chapter 15. 

 StoreQuery (Protocol 14); see Chapter 16. 

 GrowingObjectQuery (Protocol 16); see Chapter 17. 

OData resources:  

 OASIS URL Conventions: http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-
conventions.html 

 OData.net libraries: http://www.odata.org/libraries/ 

 Link to Querystring features: http://linqtoquerystring.net/features.html 

How ETP query sub-protocols work: 

 They operate by allowing filtering on specific values in data fields within a resource, data object or 
parts of a growing data object (separate query sub-protocols for each of these as listed above) and 
customer-side pagination, based on OData syntax. 

 They can be seen as companion querying functionality in support of operations in other ETP sub-
protocols. For example: 

 DiscoveryQuery (Protocol 13) has relevant query functionality in support of discovery operations 
(which are defined in Discovery (Protocol 3))  

 StoreQuery (Protocol 14) has relevant query functionality in support of store operations (Store 
(Protocol 4)  

- GrowingObjectQuery (Protocol 16) has relevant query functionality in support of operation on 
parts of a growing data object (GrowingObject (Protocol 6)).  

NOTE: Putting query functionality in separate ETP sub-protocols was a conscious design choice so 
that support of query functionality was optional. REMINDER: The ETP rule is if an application 
supports a protocol, it MUST support ALL functionality in that protocol. But you can choose which 
protocol(s) you choose to support. 

https://www.oasis-open.org/standards/#odatav4.0
file:///C:/Users/Donna%20Marcotte/Documents/Energistics%202017/2017/ETP%202017-2018/2018/OASIS%20URL%20Conventions
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html
file:///C:/Users/Donna%20Marcotte/Documents/Energistics%202017/2017/ETP%202017-2018/2018/OData.net%20libraries
http://www.odata.org/libraries/
http://linqtoquerystring.net/features.html
http://linqtoquerystring.net/features.html
http://linqtoquerystring.net/features.html
file:///C:/Users/Donna%20Marcotte/Documents/Energistics%202017/2017/ETP%202017-2018/2018/%20features
http://linqtoquerystring.net/features.html


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 304 

14.1 Supported Query Options and Requirements 

ETP query syntax supports only OData style filtering and client-side pagination. This section lists 
functional requirements and behaviors that all ETP-enabled applications that implement query protocols 
MUST support.  

14.1.1 Filtering 

The $filter clause allows you to create an expression filtering out objects based on the elements of the 
object. For example, the following statement: 

eml:///witsml20.Channel?$filter=ChannelClass/Title eq 'Gamma'&$top=300 

returns results where the Channel and the element channelClass has a Title with value ‘Gamma’. 

Implementations MUST observe these rules for filtering:   

Canonical data object query URIs ALWAYS include an object type: 

1. The $filter query option filters data objects whose type that matches the data object type in the query 
URI. 

a. All canonical Energistics data object query URIs specify a data object type.  

b. To use $filter, the query URI MUST include a query string with the $filter operator. 

c. URIs containing filters for elements with abstract types are not supported. 

2. Support these OData query options for $filter: 

a. Logical operators: eq, ne, gt, ge, lt, le, and, or, not 

b. Collection Operators: any 

c. Primitive Literals 

d. Precedence grouping with (  ) 

e. String functions: startswith, endswith, contains, tolower, toupper 

14.1.2 Pagination 

Pagination is used to limit the number of elements returned from a query to prevent exceeding limits 
specified by the MaxResponseCount protocol capability, which results in error 
ERESPONSECOUNT_EXCEEDED (30) error. (EXAMPLE: If the customer's MaxResponseCount 
protocol capability is 1,000 and the store has 3,000 objects of interest, the customer can use pagination 
options to limit returned values to groups of 1,000.)  

These pagination query options are supported: 

 $top limits the number of items returned in the result  

 $skip is used to indicate the starting index for the subset.  

ETP implementations MUST observe these rules for pagination: 

1. The values used for $skip and $top MUST be greater than zero.  

2. $skip and $top CAN be used individually or in combination.  

3. The customer MUST specify the pagination, and the server MUST handle the requested pagination. 
EXAMPLE: A query requesting the first 300 objects looks like this: 

eml:///witsml20.Channel$top=300 

4. For pagination to work, the store MUST implement a deterministic sort order and it MUST provide that 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 305 

sort order in the query response.  

a. It is NOT part of the ETP Specification to specify how the server sorts data. 

14.1.2.1 Server Sort Order Requirements 
1. The server MUST provide the sort order attribute in the response message for each of the query 

protocols, using the serverSortOrder field. 

a. For multipart response messages, the serverSortOrder field is valid only in the first response 
message.  

i. In subsequent parts of the multipart response messages, the customer MUST ignore the field 
and the server MAY set it to an empty string. 

2. The values in the serverSortOrder field is a comma-delimited list of:| 
odata path<space>direction tuples  

a. If direction is absent, asc (ascending) is assumed. 

14.2 Unsupported Query Options 

ETP does NOT officially support these OData query options. An individual implementation may use 
these options. (NOTE: This is not a complete list; if you don't see it listed under supported options above 
then it is not supported by ETP).  

 $orderby – sorting  

 $groupby – grouping  

 $select – projection  

 $expand – sub queries 

 $count – result count 

 $format – xml vs. json 

 $search – free text 

 All collection operator 

 Arithmetic operators and functions, e.g. add, sub(tract) 

 Other filter functions, e.g. date and time and geo 

 Complex or collection literals 

14.3 General Behavior for all ETP Query Sub-Protocols 

This section explains the general message sequence and details of how the query syntax works for all 
ETP query sub-protocols. For additional details for a specific query sub-protocols, see the relevant 
chapter (as listed above in this chapter)  

14.3.1 Message Sequence for All ETP Query Sub-Protocols 

Each ETP query sub-protocol has the same two basic messages and MUST follow the same basic 
sequence, which is explained in this section. 

NOTE: The protocol-specific chapters for each of the published ETP query sub-protocols may have 
additional requirement details. For any given query sub-protocol, an implementation MUST honor these 
rules and the rules specified in the Required Behavior section of the related protocol chapter.  

The two messages defined for each query sub-protocol: 

1. A "FindX" message, where X is the appropriate "thing" for that protocol (i.e., For DiscoveryQuery 
(Protocol 13) it's FindResources, for StoreQuery (Protocol 14) it is FindDataObjects, for 
GrowingObjectQuery (Protocol 16) it is FindParts).  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 306 

2. A "FindXResponse" message, where X is the same "thing" in the FindX message (i.e., For 
DiscoveryQuery (Protocol 13) it's FindResourcesResponse, for StoreQuery (Protocol 14) it is 
FindDataObjectsResponse, for GrowingObjectQuery (Protocol 16) it is FindPartsResponse). 

The main message sequence for all query sub-protocols: 

1. To query a store, the customer MUST send the FindX message to the store, which contains a query 
URI, which may contain a query string.  

a. For ETP-allowed OData filtering options, see Section 14.1.1. 

b. For ETP-allowed OData pagination options, see Section 14.1.2. 

c. For other filtering options available on specific messages, see those messages in the query sub-
protocol-specific chapter.  

2. For the resources, data objects or parts the store can successfully return, the store MUST send one 
or more FindXResponse messages. 

a. A store MUST limit the total count of responses to the customer's value for the 
MaxResponseCount protocol capability. 

b. If the store exceeds the customer's MaxResponseCount value, the customer MAY send error 
ERESPONSECOUNT_EXCEEDED (30). (NOTE: Pagination options can be used to avoid this 
error; see Section 14.1.2.) 

c. If a store's MaxResponseCount value is less than the customer's MaxResponseCount value, the 
store MAY further limit the total count of responses (to its value). 

d. If a store cannot return all responses to a request because it would exceed the lower or the 
customer's or the store's value for MaxResponseCount, the store MUST terminate the multipart 
message with error ERESPONSECOUNT_EXCEEDED (30). 

i. A store MUST NOT send RESPONSECOUNT_EXCEEDED (30) until it has sent 
MaxResponseCount responses. 

e. For a query URI that targets a specific resource (i.e., an object qualified by its UUID): if that 
resource is not present, the store MUST send error ENOT_FOUND (11). EXAMPLE: If a query 
specifies in Well ABC, find the channels whose activeStatus = true, and Well ABC (by its URI) 
cannot be found, the store MUST send error ENOT_FOUND (11). 

f. For a URI in a query protocol that targets a collection (i.e., the wells in the store or the wellbores 
of a specific well) or uses a $filter on a collection: if the URI exists (including any objects qualified 
by their UUID in the URI) but the collection or result after evaluating the $filter parameter is an 
empty collection, the store MUST return the FindXResponse message with an empty array. 

For this ETP Query Sub-Protocol… The store MUST respond with this message… 

DiscoveryQuery (Protocol 13) A FindResourcesResponse with an empty array 

StoreQuery (Protocol 14) A FindDataObjectsResponse with an empty array 

GrowingObjectQuery (Protocol 16) A FindPartsResponse with an empty array 

 

14.3.2 Usage Rules for Query Syntax with ETP Query Sub-Protocols 

ETP Implementations MUST observe these rules:  

1. OData queries are case sensitive; if you want case insensitive, you MUST use tolower and toupper 
functions.  

2. If a query includes query options that are NOT supported by the store, the store MUST send error 
ENOTSUPPORTED (7).  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 307 

3. Query results are always bound by a user's permissions for access to any endpoint. 

4. This ETP Specification provides syntax and transport information only. For specific details (e.g., 
which fields are queryable, sort order, etc.) on how to query objects for a specific data model (e.g., 
WITSML, RESQML or PRODML), see that ML's ETP implementation specification.  

5. When a canonical Energistics data object query URI includes a query string, the query string uses 
OData query syntax, for example: 

eml:///witsml20.Channel?$filter=ChannelClass/Title eq 'Gamma' 

a. You can use an instance of a data object as a filter in a query. EXAMPLE: In Well ABC give me 
all the channels with activeStatus = true.  

b. The mapping from ETP to OData entity sets is that an entity set is all data objects of a particular 
type (e.g., well). The types are defined by the underlying ML.  

c. OData property paths used in filters are constructed by concatenating the (nested) element 
names together for the (sub)element used as a filter. In the filter in the above example, 
ChannelClass refers to the ChannelClass element on a Channel, which is a Data Object 
Reference, and Title refers to the Title element within the Data Object Reference. 

d. When an element is ComplexTypeWithSimpleContent (i.e., it is a value with associated 
attributes), then the property path for the value is ElementName/_.  
EXAMPLE: To filter a list of WITSML 2.0 Channels by the value of the NominalHoleSize element, 
a filter could look like this: NominalHoleSize/_ eq 8.5. 

6. Filters are evaluated for the current URI data object type only.  

a. Data object references are NOT resolved or expanded.  

14.3.3 Use of PWLS in Queries 

Practical Well Log Standard (PWLS) is an industry standard stewarded by Energistics. It provides an 
industry-agreed list of logging tool classes and a hierarchy of measurement properties and applies all 
known mnemonics to them. For more information, see Section 3.12.7.  

1. If an ETP store supports the WITSML Channel data object, then it MUST support PropertyKind data 
objects (which are an implementation of PWLS).   

2. Endpoints MUST be able to discover property kind data objects (to determine available property 
kinds) and use the returned property kinds in relevant Discovery, Store and Query operations. 

14.4 Query Examples 

This section contains some query examples. NOTE: Often there is more than one way to do these 
queries. Also, the results of the query may vary depending on the protocol (i.e., DiscoveryQuery vs. 
StoreQuery).  

 Find all channels logged by Schlumberger 

eml:///witsml20.Channel?$filter=LogggingCompanyName eq 'SLB' 

DiscoveryQuery:  multipart message each of which contains the ID (a URI, a UUID, etc.) of a channel  

store query: multipart message each of which contains the channel header of a channel (i.e., it's the data) 

 

 Find all channels for a wellbore 

eml:///witsml20.Channel?$filter=Wellbore/Title eq 'NO 15/9-1' 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 308 

Discovery query: (same as above) 

StoreQuery: same as above 

Returns: dependent on the Protocol you used.   

 Find all channels where channel class is Gamma 

eml:///witsml20.Channel?$filter=ChannelClass/Title eq 'Gamma' 

 Find channel sets where channel class is Gamma and hole size is 8.5 inches 

eml:///witsml20.ChannelSet?$filter=ChannelClass/Title eq 'Gamma' and 

NominalHoleSize/_ eq 8.5 and NominalHoleSize/uom eq 'in' 

NOTE: In NominalHoleSize/_ the /_ convention is the Energistics proposed JSON convention for a 
complex type with simple content.  

 Find channel sets where channel class is Gamma and run number is 5 

eml:///witsml20.ChannelSet?$filter=ChannelClass/Title eq 'Gamma' and RunNumber 

eq '5' 

 Find channel sets where channel class is Surface and run number is 5 

eml:///witsml20.ChannelSet?$filter=ChannelClass/Title eq 'Surface' and 

RunNumber eq '5' 

 Find channel where mnemonic is ROP and hole size is 12.25  

eml:///witsml20.Channel?$filter=Mnemonic eq 'ROP' and NominalHoleSize/_ eq 

12.25 

 Find all channel sets having a channel where mnemonic is BDEP 

eml:///witsml20.ChannelSet?$filter=Channel/any(c:c/Mnemonic eq 'BDEP') 

 Find all rig utilization objects where rig name is Songa Endurance 

eml:///witsml20.RigUtilization?$filter=Rig/Title eq 'Songa Endurance' 

 Find all logs having an extension name value where name is TestValue 

eml:///witsml20.Log?$filter=ExtensionNameValue/any(e:e/Name eq 'TestValue') 

 Find all data objects where a particular data assurance rule has not been met 

eml:///eml21.DataAssuranceRecord?$filter=PolicyName eq 'My Policy' and 

FailingRules/any(r:r/RuleName eq 'My Rule') 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 309 

15 DiscoveryQuery (Protocol 13) 
ProtocolID: 13 

Defined Roles: store, customer 

DiscoveryQuery (Protocol 13) includes a message for querying resources in a store or server. Individual 
queries return a list of one type of resource that meet criteria specified in the request. 

 The main discovery behavior is defined in Discovery (Protocol 3) (Chapter 8).   

 For general concepts and basic functionality related to query behavior in ETP, see Chapter 14 
Overview of Query Behavior. 

This chapter includes main sections for:  
 Key ETP concepts that are important to understanding how this protocol is intended to work (see 

Section 15.1). 

 Required behavior, which includes: 

 Required behavior in addition to the requirements in Chapter 14 (see Section 15.2). 

- Definitions of the endpoint and protocol capabilities used in this protocol (see Section 15.2.3). 

 Sample schemas of the messages defined in this protocol, which are identical to the Avro schemas 
published with this version of ETP. However, only the schema content in this specification includes 
documentation for each field in a schema (see Section 15.3).  

15.1 DiscoveryQuery: Key Concepts 

For key concept relate to how queries work in general in ETP, see Chapter 14.  

15.1.1 Data Model as Graph 

The request message in DiscoveryQuery (Protocol 13) has been developed to work with data models as 
graphs. When understood and used properly, this graph approach allows customers to specify precisely 
and in a single request the desired set of objects to monitor for notifications, thereby reducing traffic on 
the wire.  

 For general definition of a graph, how it works, and key concepts and how they are used as inputs, 
see Section 8.1.1. 

15.2 DiscoveryQuery: Required Behavior 

This section contains functional and non-functional requirements for this protocol. It is organized in these 
sub-sections: 

 Message Sequence. Summarizes all messages defined by this protocol, identifies main tasks that 
can be done with this protocol and describes the response/request pattern for the messages needed 
to perform the tasks, including usage of ETP-defined capabilities, error scenarios, and resulting ETP 
error codes.  

 General Requirements. Identifies high-level (across ETP) and protocol-wide general behavior and 
rules that must be observed (in addition to behavior specified in Message Sequence), including usage 
of ETP-defined endpoint, data object and protocol capabilities, error scenarios, and resulting error 
codes.  

 Capabilities. Lists and defines the ETP-defined parameters most relevant for this sub-protocol. ETP 
defines these parameters to set necessary limits to help prevent aberrant behavior (e.g., sending 
oversized messages or sending more messages than an endpoint can handle).  

Prerequisites for using this protocol:  

 An ETP session has been established using Core (Protocol 0) as described in Chapter 5. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 310 

15.2.1 DiscoveryQuery: Message Sequence 

For the basic message sequence that applies to all query protocols, see Section 14.3.1.  

The following table lists all messages defined in this sub-protocol, the basic request/response usage 
patterns per ETP role, and whether it may be multipart.  

Message sent by customer Response Message from store 

FindResources (Section 15.3.1) Request to 

find all resources that match the specified query 
criteria. 

FindResourcesResponse (multipart) (Section 15.3.2) 

Responses the store could return in response to the 
query. 

 

15.2.2 DiscoveryQuery: General Requirements 

In addition to the basic message sequence described in the previous section, this protocol has the 
additional requirements listed in the table below. For easy reference, the rows and behaviors in this table 
are numbered. 

NOTE: This table has been organized to reduce redundancy but also to help developers more easily 
locate specific requirements. EXAMPLE: There are rows with general requirements that apply to all 
protocols (e.g., Rows 1–2), rows for general requirements for this protocol, and (possibly) additional rows 
with additional requirements for specific types of operations.  

Row# Requirement Behavior 

1.  ETP-wide behavior that MUST be observed 
in all protocols 

1. Requirements for general behavior consistent across all of ETP are 
defined in Chapter 3. This behavior includes information such as: all 
details of message handling (such as message headers, handling 
compression, use of message IDs and correlation IDs, requirements for 
plural and multipart message patterns) use of acknowledgements, 
general rules for sending ProtocolException messages, URI encoding, 
serialization and more. RECOMMENDATION: Read Chapter 3 first. 

2. For information about Energistics identifiers and prescribed ETP URI 
formats, see Appendix: Energistics Identifiers. 

a. In MOST cases, endpoints performing operations in this protocol 
MUST use the canonical Energistics URI. For more information, see 
Section 3.7.4.  

3. For the complete list of error codes defined by ETP, see Chapter 24. 

4. ALL operations in an ETP session are performed on the set of 
supported data object types that were negotiated to be used when 
the session was initiated and established. 

a. The client and server exchange the list of data object types in the 
supportedDataObjects field of the RequestSession and 
OpenSession messages in Core (Protocol 0). For more 
information, see Chapter 5. 

b. In general, the list of supported objects for a session will most likely 
be the intersection of the data objects that the server supports and 
the data objects that the client requested for the ETP session. 

c. A store MUST support all messages (in each supported ETP sub-
protocol) for each supported data object, whether the data object is 
supported explicitly or by wild card. 

d. An endpoint MUST only send messages with the URI of a data 
object that is a type supported by the other endpoint for this ETP 
session.  

i. If an endpoint sends a URI for an unsupported type of data 
object, the other endpoint MUST send error 
EDATAOBJECTTYPE_NOTSUPPORTED (16). 

2.  Capabilities-related behavior 1. Relevant endpoint, data object, and/or protocol capabilities MUST be 
specified when the ETP session is established (see Chapter 5) and 
MUST be used/honored as defined in the relevant ETP sub-protocol.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 311 

Row# Requirement Behavior 

2. For an explanation of endpoint, data object, and protocol capabilities, see 
Section 3.3. 

a. For the list of global capabilities and related behavior, see Section 
3.3.2. 

3. Section 15.2.3 identifies the capabilities most relevant to this ETP sub-
protocol.  

3.  Plural Messages (which includes maps) 1. This protocol uses plural messages. For detailed rules on handling plural 
messages (including ProtocolException handling), see Section 3.7.3. 

4.  Rules specified in Chapter 14 Overview of 
Query Behavior  

1. The general rules and requirements specified in Chapter 14 MUST be 
observed and used with the additional details specific to DiscoveryQuery 
(Protocol 13) (which are specified in the next row.) 

5.  Rules specific to DiscoveryQuery 
(Protocol◦13)  

1. In the FindResourcesResponse message, the store MUST return only 
resources ONLY for the data object type specified in the request (i.e., 
queries in this protocol are limited to one type of data object only). 
EXAMPLE: The following URI returns only channels that meet the filter 
criteria. 
 
eml:///witsml20.Channel?$filter=ChannelClass/Title eq 'Gamma' 

a. Discovery (Protocol 3) returns multiple types of data objects. 
Because of how the OData syntax works, the customer MUST 
specify only one type of data object in the FindResources request 
message.  

2. Query protocols specify a pagination option, which make it possible to 
get results in groups and prevent exceeding MaxResponseCount limits. 
For more information, see Section 14.1.2. 

3. This protocol DOES NOT support querying for parts in a growing data 
object; to do that you MUST use GrowingObjectQuery (Protocol 16) 
(Chapter 17). 

4. When a store navigates the data object graph to 
return Resource records in response to a FindResources request, it 
MUST respect the navigation direction and the navigable edge types 
specified in the scope and context fields in the request. 

a. When the URI in the context includes a query URI with a specific 
data object followed by a data object type, the navigation direction 
and the navigable edge types also apply to the relationships 
between the data object and the data object type specified in the 
URI. 
EXAMPLE: If the query URI is eml:///witsml20.Well(34aa7e1d-
adb6-486b-9100-65412100d24e)/witsml21.Wellbore and the 
navigation direction is targets and the navigable edge types is 
primary, then the query should navigate all Wellbores that are 
sources of primary relationships with witsml20.Well(34aa7e1d-
adb6-486b-9100-65412100d24e) as a target. In this example, the 
query should NOT navigate secondary relationships or primary 
relationships where the Wellbore is the target of a relationship 
where the well is the source. 

 

15.2.3 DiscoveryQuery: Capabilities 

The table below lists key capabilities for this protocol. The protocol capabilities are all defined here.  

 For information on how to use the protocol capability, see Section 14.3.1. 

 For definitions for endpoint and data object capabilities, see the links in the table. 

 For general information about the types of capabilities and how they may be used, see Section 3.3. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 312 

DiscoveryQuery (Protocol 13): Capabilities 

Name: Description Type Units Defaults 
and/or 
MIN/MAX 

Endpoint Capabilities  
(For definitions and usage rules, see Section 3.3.) 

   

NOTE: Many endpoint capabilities are "universal", used in all or most of the ETP protocols. 
For more information, see Section 3.3.2. 

Behavior associated with other endpoint capabilities are defined in relevant chapters.  
EXAMPLE: The capabilities defined for limiting ETP sessions between 2 endpoints are discussed in 
Section 4.3, How a Client Establishes a WebSocket Connection to an ETP Server. 

Data Object Capabilities (See Section 3.3.4)    

ActiveTimeoutPeriod: (This is also an endpoint capability.)  

The minimum time period in seconds that a store keeps the 
GrowingStatus for a growing data object or channel "active" after 
the last new part or data point resulting in a change to the data 
object's end index was added to the data object. 

This capability can be set for an endpoint and/or for a data object. 
A data object-specific value overrides an endpoint-specific value. 

long second 
<number of 
seconds> 

Default: 3,600 

MIN: 60 
seconds 

Protocol Capabilities    

MaxResponseCount: The maximum total count of responses 

allowed in a complete multipart message response to a single 
request.  

long count 

Value units: 

<count of 
responses> 

MIN: 10,000  

 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 313 

15.3 DiscoveryQuery: Message Schemas 

This section provides a figure that displays all messages defined in DiscoveryQuery (Protocol 13). 
Subsequent sub-sections provide an example schema for each message and definitions of the data fields 
contained in each message. 

 
Figure 25: DiscoveryQuery: message schemas 

15.3.1 Message: FindResources 

A customer sends to a store as a query to find all resources that match the specified criteria. The 
response message is the FindResourcesResponse message.  

Message Type ID: 1 

Correlation Id Usage: MUST be ignored and SHOULD be set 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

context As defined in the ContextInfo record, which 
includes the URI of the data object query URI, 
what specific types of data objects are of interest, 
and how many "levels" of relationships in the 
model to discover, among others. It also includes 
the query parameters as specified in Chapter 14. 

The URI MUST be a canonical Energistics data 
object query URI; for more information, see 
Appendix: Energistics Identifiers. 

ContextInfo 1 1 

scope Scope is specified in reference to the URI (which 
is entered in the context field). It indicates which 
direction in the graph that the operation should 
proceed (targets or sources) and whether or not to 
include the starting point (self). The enumerated 
values to choose from are specified in 
ContextScopeKind. 

For definitions of targets and sources, see Section 
8.1.1.  

ContextScopeKind 1 1 

class DiscoveryQuery

«Message»
FindResourcesResponse

+ resources : Resource [0..n] (array) = EmptyArray
+ serverSortOrder: s tring

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 2
MultiPart = True
SenderRole = s tore

notes
A store sends to a customer in response to the
FindResources message; it's the results the store could
return in response to the query.

«Message»
FindResources

+ activeStatusFi l ter: ActiveStatusKind [0..1]
+ context: ContextInfo
+ scope: ContextScopeKind
+ s toreLastWriteFi l ter: long [0..1]

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 1
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store as a query to find all
resources that match the specified criteria. The
response message is the FindResourcesResponse
message.



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 314 

Field Name Description Data Type Min Max 

storeLastWriteFilter Use this to optionally filter the discovery on a date 
when the data object was last written in a 
particular store. The store returns resources 
whose storeLastWrite date/time is GREATER 
than the date/time specified in this filter field.  

Purpose of this field is part of the behavior for 
eventual consistency between 2 stores. 

It must be a UTC dateTime value, serialized as a 
long, using the Avro logical type timestamp-micros 
(microseconds from the Unix Epoch, 1 January 
1970 00:00:00.000000 UTC). 

long 0 1 

activeStatusFilter Use this to optionally filter the query for data 
objects that are currently "active" or "inactive" as 
defined in ActiveStatusKind. 

This field is for WITSML channels and growing 
data objects based on the value in the data 
object's GrowingStatus field, which may be: 

 active = A channel or growing data object is 
actively producing data points. 

 inactive = A channel or growing object is 
offline or not currently producing data points. 

The store returns resources for data objects 
whose GrowingStatus field matches the value 
specified in the activeStatusFilter. 

ActiveStatusKind 0 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.DiscoveryQuery", 
     "name": "FindResources", 
     "protocol": "13", 
     "messageType": "1", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "context", "type": "Energistics.Etp.v12.Datatypes.Object.ContextInfo" }, 
         { "name": "scope", "type": "Energistics.Etp.v12.Datatypes.Object.ContextScopeKind" }, 
         { "name": "storeLastWriteFilter", "type": ["null", "long"] }, 
         { "name": "activeStatusFilter", "type": ["null", 
"Energistics.Etp.v12.Datatypes.Object.ActiveStatusKind"] } 
     ] 
} 

  

15.3.2 Message: FindResourcesResponse 

A store sends to a consumer in response to the FindResources message; it's the results the store could 
return in response to the query.  

Message Type ID: 2 

Correlation Id Usage: MUST be set to the messageId of the FindResources message that this 
message is a response to. 

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

resources The list of Resource records the store is returning. Resource 0 n 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 315 

Field Name Description Data Type Min Max 

The URIs MUST be canonical Energistics data 
object URIs; for more information, see Appendix: 
Energistics Identifiers. 

serverSortOrder The deterministic sort order defined by the server. string 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.DiscoveryQuery",  
     "name": "FindResourcesResponse", 
     "protocol": "13", 
     "messageType": "2", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         {  
             "name": "resources",  
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.Object.Resource" }, "default": []  
         }, 
         { "name": "serverSortOrder", "type": "string" } 
     ] 
} 

 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 316 

16 StoreQuery (Protocol 14) 
ProtocolID: 14 

Defined Roles: store, customer 

StoreQuery (Protocol 14) provides functionality for querying data objects in a store or server. This 
protocol can be used as alternative to Discovery (Protocol 3), to discover data objects based on specific 
filtering criteria of field within the data object. When the data object is found and the URI determined, it 
can then be used for operations in Store (Protocol 4).  

 The main CRUD behavior for data objects is defined in Store (Protocol 4) (Chapter 9).   

 For general concepts and basic functionality related to query behavior in ETP, see Chapter 14 
Overview of Query Behavior. 

This chapter includes main sections for:  

 Key ETP concepts that are important to understanding how this protocol is intended to work (see 
Section 16.1). 

 Required behavior, which includes: 

 Required behavior in addition to the requirements in Chapter 14 (see Section 16.2). 

- Definitions of the endpoint and protocol capabilities used in this protocol (see Section 16.2.3). 

 Sample schemas of the messages defined in this protocol, which are identical to the Avro schemas 
published with this version of ETP. However, only the schema content in this specification includes 
documentation for each field in a schema (see Section 16.3).  

16.1 StoreQuery: Key Concepts 

For key concept relate to how queries work in general in ETP, see Chapter 14.  

16.1.1 Data Model as Graph 

The request message in StoreQuery (Protocol 16) has been developed to work with data models as 
graphs. When understood and used properly, this graph approach allows customers to specify precisely 
and in a single request the desired set of objects to monitor for notifications, thereby reducing traffic on 
the wire.  

 For general definition of a graph, how it works, and key concepts and how they are used as inputs, 
see Section 8.1.1. 

16.2 StoreQuery: Required Behavior 

This section contains required behavior for this protocol. It is organized in these sub-sections: 

 Message Sequence. Summarizes all messages defined by this protocol, identifies main tasks that 
can be done with this protocol and describes the response/request pattern for the messages needed 
to perform the tasks, including usage of ETP-defined capabilities, error scenarios, and resulting ETP 
error codes.  

 General Requirements. Identifies high-level (across ETP) and protocol-wide general behavior and 
rules that must be observed (in addition to behavior specified in Message Sequence), including usage 
of ETP-defined endpoint, data object and protocol capabilities, error scenarios, and resulting error 
codes.  

 Capabilities. Lists and defines the ETP-defined parameters most relevant for this sub-protocol. ETP 
defines these parameters to set necessary limits to help prevent aberrant behavior (e.g., sending 
oversized messages or sending more messages than an endpoint can handle).  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 317 

Prerequisites for using this protocol:  

 An ETP session has been established using Core (Protocol 0) as described in Chapter 5. 

16.2.1 StoreQuery: Message Sequence 

For the basic message sequence that applies to all query protocols, see Section 14.3.1.  

The following table lists all messages defined in this sub-protocol, the basic request/response usage 
patterns per ETP role, and whether it may be multipart. The detailed content of each message is 
explained in the Message Schema section. 

Message sent by customer Response Message from store 

FindObjects (Section 16.3.1) Request to find all data 

objects that match the specified criteria.  

FindObjectsResponse (multipart) (Section 16.3.2) 

The results the store could return in response to the 
query. 

Chunk (optional, multipart) (Section16.3.3) If the data 

object is too large to fit into the response message 
(exceeds the WebSocket message size), it MUST be 
subdivided into a set of Chunk messages. 

 

16.2.2 StoreQuery: General Requirements 

In addition to the basic message sequence described in the previous section, this protocol has the 
additional requirements listed in the table below. For easy reference, the rows and behaviors in this table 
are numbered. 

NOTE: This table has been organized to reduce redundancy but also to help developers more easily 
locate specific requirements. EXAMPLE: There are rows with general requirements that apply to all 
protocols (e.g., Rows 1–2), rows for general requirements for this protocol, and (possibly) additional rows 
with additional requirements for specific types of operations.  

Row# Requirement Behavior 

1.  ETP-wide behavior that MUST be observed 
in all protocols 

1. Requirements for general behavior consistent across all of ETP are 
defined in Chapter 3. This behavior includes information such as: all 
details of message handling (such as message headers, handling 
compression, use of message IDs and correlation IDs, requirements for 
plural and multipart message patterns) use of acknowledgements, 
general rules for sending ProtocolException messages, URI encoding, 
serialization and more. RECOMMENDATION: Read Chapter 3 first. 

2. For information about Energistics identifiers and prescribed ETP URI 
formats, see Appendix: Energistics Identifiers. 

a. In MOST cases, endpoints performing operations in this protocol 
MUST use the canonical Energistics URI. For more information, see 
Section 3.7.4.  

3. For the complete list of error codes defined by ETP, see Chapter 24. 

4. ALL operations in an ETP session are performed on the set of 
supported data object types that were negotiated to be used when 
the session was initiated and established. 

a. The client and server exchange the list of data object types in the 
supportedDataObjects field of the RequestSession and 
OpenSession messages in Core (Protocol 0). For more 
information, see Chapter 5. 

b. In general, the list of supported objects for a session will most likely 
be the intersection of the data objects that the server supports and 
the data objects that the client requested for the ETP session. 

c. A store MUST support all messages (in each supported ETP sub-
protocol) for each supported data object, whether the data object is 
supported explicitly or by wild card. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 318 

Row# Requirement Behavior 

d. An endpoint MUST only send messages with the URI of a data 
object that is a type supported by the other endpoint for this ETP 
session.  

i. If an endpoint sends a URI for an unsupported type of data 
object, the other endpoint MUST send error 
EDATAOBJECTTYPE_NOTSUPPORTED (16). 

2.  Capabilities-related behavior 1. Relevant endpoint, data object, and/or protocol capabilities MUST be 
specified when the ETP session is established (see Chapter 5) and 
MUST be used/honored as defined in the relevant ETP sub-protocol.  

2. For an explanation of endpoint, data object, and protocol capabilities, see 
Section 3.3. 

a. For the list of global capabilities and related behavior, see Section 
3.3.2. 

3. Section 16.2.3 identifies the capabilities most relevant to this ETP sub-
protocol.  

3.  Plural Messages (which includes maps) 1. This protocol uses plural messages. For detailed rules on handling plural 
messages (including ProtocolException handling), see Section 3.7.3. 

4.  Rules specified in Chapter 14 Overview of 
Query Behavior  

1. The general rules and requirements specified in Chapter 14 MUST be 
observed and used with the additional details specific to StoreQuery 
(Protocol 16) (which are specified in the next row.) 

5.  Rules specific to StoreQuery (Protocol◦16)  1. In general, the results that are returned MUST follow the rules for Get 
operations in Store (Protocol 4). For details, see Section 9.2.2. This 
includes behavior for:  

a. Oversized data objects and use the Chunk message (which is also 
defined in this protocol); for more information see Section 3.7.3.2. 

b. Returning growing data objects and their parts.  

c. Returning container data objects and their contained data objects.  

d. All related capabilities behavior to these operations. 

e. EXCEPTION: Query protocols specify a pagination option, which 
make it possible to get results in groups and prevent exceeding 
MaxResponseCount limits. For more information, see Section 
14.1.2. 

2. This protocol DOES NOT support querying for parts in a growing data 
object; to do that you MUST use GrowingObjectQuery (Protocol 16) 
(Chapter 17).  

6.  Index Metadata: General rules for channels, 
channel sets and growing data objects 

1. A growing data object’s index metadata MUST be consistent: 

a. All parts MUST have the same index unit and the same vertical 
datum. 

b. The index units and vertical datums in the growing data object 
header MUST match the parts. 

2. A channel data object’s index metadata MUST be consistent: 

a. The index units and vertical datums MUST match the channel’s 
index metadata. 

3. A channel set data object’s index metadata MUST be consistent: 

a. The index units and vertical datums MUST match the channel set’s 
index metadata. 

b. The channel set’s index metadata MUST match the relevant index 
metadata in the channels it contains. 

4. When sending messages, both the store AND the customer MUST 
ensure that all index metadata and data derived from index metadata are 
consistent in all fields in the message, including in XML or JSON object 
data or part data. 

a. EXAMPLE: The uom and depthDatum in an IndexInterval record 
MUST be consistent with the data object’s index metadata. 

b. EXAMPLE: Data object elements related to index values in growing 
data object headers (e.g., MdMn and MdMx on a WITSML 2.0 
Trajectory) and parts (e.g., Md on a WITSML 2.0 TrajectoryStation) 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 319 

Row# Requirement Behavior 

MUST be consistent with each other AND the data object’s index 
metadata. 

 

16.2.3 StoreQuery: Capabilities 

The table below lists key capabilities for this protocol. The protocol capabilities are all defined here. For 
this protocol, one particularly crucial endpoint capability is defined here.  

 For protocol-specific behavior relating to using these capabilities in this protocol, 
see◦Section◦16.2.2,◦StoreQuery: General Requirements. 

 For definitions for endpoint and data object capabilities, see the links in the table. 

 For general information about the types of capabilities and how they may be used, see Section 3.3. 

 

StoreQuery (Protocol 14): Capabilities 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

Endpoint Capabilities  

(For definitions of each endpoint capability, see Section 3.3.) 

   

NOTE: Many endpoint capabilities are "universal", used in all or 

most of the ETP protocols. For more information, see Section 
3.3.2. 

Behavior associated with other endpoint capabilities are 
defined in relevant chapters.  
EXAMPLE: The capabilities defined for limiting ETP 
sessions between 2 endpoints are discussed in 
Section 4.3, How a Client Establishes a WebSocket 

Connection to an ETP Server. 

   

MaxPartSize: The maximum size in bytes of each data object part 

allowed in a standalone message or a complete multipart 
message. Size in bytes is the total size in bytes of the 
uncompressed string representation of the data object part in the 
format in which it is sent or received. 

long byte 
<number of 
bytes> 

Min: 10,000 
bytes 

Data Object Capabilities    

SupportsGet 

For definitions and usage rules for this data object capability, see 

Section 3.3.4. 

   

ActiveTimeoutPeriod: (This is also an endpoint capability.)  

The minimum time period in seconds that a store keeps the 
GrowingStatus for a growing data object or channel "active" after 
the last new part or data point resulting in a change to the data 
object's end index was added to the data object. 

This capability can be set for an endpoint and/or for a data object. 
A data object-specific value overrides an endpoint-specific value. 

long second 
<number of 
seconds> 

Default: 3,600 

MIN: 60 seconds 

MaxContainedDataObjectCount: The maximum count of 

contained data objects allowed in a single instance of the data 
object type that the capability applies to.  

long Count 
<count of objects> 

MIN: Should be 
specified per 
domain 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 320 

StoreQuery (Protocol 14): Capabilities 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

EXAMPLE: If this capability is set to 2000 for a ChannelSet, then 
the ChannelSet may contain a maximum of 2000 Channels. 

Protocol Capabilities    

MaxDataObjectSize: (This is also an endpoint capability and a 

data object.) The maximum size in bytes of a data object allowed in 
a complete multipart message. Size in bytes is the size in bytes of 
the uncompressed string representation of the data object in the 
format in which it is sent or received. 

This capability can be set for an endpoint, a protocol, and/or a data 
object. If set for all three, here is how they generally work:  

 An object-specific value overrides an endpoint-specific value.  

 A protocol-specific value can further lower (but NOT raise) the 
limit for the protocol.  

EXAMPLE: A store may wish to generally support sending and 

receiving any data object that is one megabyte or less with the 
exceptions of Wells that are 100 kilobytes or less and Attachments 
that are 5 megabytes or less.  A store may further wish to limit the 
size of any data object sent as part of a notification in 
StoreNotification (Protocol 5) to 256 kilobytes. 

long byte 
<number of 
bytes> 

 

MIN: 100,000 
bytes 

MaxResponseCount: The maximum total count of responses 

allowed in a complete multipart message response to a single 
request. 

long count 
<count of 
responses> 

MIN: 10,000 

 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 321 

16.3 StoreQuery: Message Schemas 

This section provides a figure that displays all messages defined in StoreQuery (Protocol 14). 
Subsequent sub-sections provide an example schema for each message and definitions of the data fields 
contained in each message. 

 
Figure 26: StoreQuery: message schemas 

16.3.1 Message: FindDataObjects 

A customer sends to a store as a query to find all data objects that match the specified criteria. The 
response to this message is the FindObjectsResponse message. 

Message Type ID: 1 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

context As defined in the ContextInfo record, which includes 
the data object query URI (for more information see 
Chapter 14), what specific types of data objects are of 

ContextInfo 1 1 

class StoreQuery

«Message»
FindDataObjects

+ activeStatusFi l ter: ActiveStatusKind [0..1]
+ context: ContextInfo
+ format: s tring = xml
+ scope: ContextScopeKind
+ s toreLastWriteFi l ter: long [0..1]

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 1
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store as a query to find all data
objects that match the specified criteria. The response to
this message is the FindObjectsResponse message.

«Message»
FindDataObjectsResponse

+ dataObjects : DataObject [0..n] (array) = EmptyArray
+ serverSortOrder: s tring

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 2
MultiPart = True
SenderRole = s tore

notes
A store sends to a consumer in response to the FindObjects
message; it's the results the store could return in response
to the query.

«record»
Object::DataObject

+ blobId: Uuid [0..1]
+ data: bytes  [0..1] = EmptyString
+ format: s tring [0..1] = xml
+ resource: Resource

tags
AvroSrc = <memo>

notes
Record that must carry a single data object. This record encapsulates a
Resource record, which contains most of the metadata, and carries the object
data as a byte array. To specify the format of the data (e.g., XML or JSON) use
the format field. If the data object is too large (binary large object--BLOB) for
the WebSocket message size, use the blobId field to identify the BLOB and
Chunk messages to send actual data.

«record»
Object::Resource

+ activeStatus : ActiveStatusKind
+ a l ternateUris : s tring [0..1] (array) = EmptyArray
+ customData: DataValue [0..n] (map) = EmptyMap
+ lastChanged: long
+ name: s tring
+ sourceCount: int [0..1] = nul l
+ s toreCreated: long
+ s toreLastWrite: long
+ targetCount: int [0..1] = nul l
+ uri : s tring

tags
AvroSrc = <memo>

notes
Record for resource descriptions on a graph. The record is
actually a meta-object, not the resource itself, which in ETP
are data objects. This Resource structure is used by:
- Discovery (Protocol 3) and DiscoveryQuery (Protocol 13) to
provide information about the contents of a store.
- Store (Protocol 4), StoreNotification (Protocol 5) and
StoreQuery (Protocol 14), where resource is encapsulated in
dataObject in response messages only.
The use of the "lighter-weight" resources in ETP reduces
traffic on the wire for initial inquiries such as Discovery, which
allows customer applications to determine when to do the
"heavy lifting" of getting the full data object and/or all of its
associated data.

«Message»
Chunk

+ blobId: Uuid
+ data: bytes
+ fina l : boolean

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 3
MultiPart = True
SenderRole = s tore

notes
A message used when a data object (being sent in a message from store to customer OR
customer to store) is too large for the negotiated WebSocket message size limit
(MaxWebSocketMessagePayloadSize) for the session (which for some WebSocket
libraries can be quite small, e.g. 128 kb).
This Chunk message:

1. Is used in Store (Protocol 4), StoreNotification (Protocol 5), and StoreQuery (Protocol
14).
2. Can be used in conjunction with any request, response or notification message that
allows or requires a data object to be sent with the message. Such messages contain a
field called dataObjects, which is a map composed of the ETP data type DataObject. If the
data object size (bytes) exceeds the maximum negotiated WebSocket size limit for the
session, and you want to send it with the message, you MUST use Chunk messages.
3. The DataObject type (record) contains an optional Binary Large Object (BLOB) ID
(blobId). If you must divide a data object into multiple chunks, you MUST assign a blobId
and the dataObject field MUST NOT contain any data.
4. Use a set of Chunk message to send small portions of the data object (small enough
to fit into the negotiated WebSocket size limit for the session). Each Chunk message
MUST contain its assigned "parent" BlobId and a portion of the data object.
5. For endpoints that receive these messages, to correctly "reassemble" the data
object (BLOB): use the blobId, and the messageId (which indicates the message
sequence, because ETP (via WebSocket) guarantees messages to be delivered in order),
and final (flag that indicates the last chunk that comprises a particular data object).
6. Chunk messages for different data objects MUST NOT be interleaved within the
context of one multipart message operation. If more than one data object must be sent
using Chunk messages, the sender MUST finish sending each data object before sending
the next one. To indicate the last Chunk message for one data object, the sender MUST
set the final flag to true.

For more information on how to use the Chunk message, see Section 3.7.3.2.



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 322 

Field Name Description Data Type Min Max 

interest, and how many "levels" of relationships in the 
model to discover. 

The URI MUST be a canonical Energistics data object 
query URI; for more information, see Appendix: 
Energistics Identifiers. 

scope As defined in ContextScopeKind, which defines the 
extent of the query: For example: Are you interested 
only in the data object specified in the context URI 
(self)? Only sources of the data object? Only targets of 
data objects? Or some combination of these 
(sourcesOrSelf or targetsOrSelf)?  

For definitions of targets and sources, see Section 
8.1.1.  

ContextScopeKind 1 1 

storeLastWriteFilter Use this to optionally filter the query on a date when 
the data object was last written in a particular store. 
The store returns resources whose storeLastWrite 
date/time is GREATER than the date/time specified in 
this filter field.  

Purpose of this field is part of the behavior for eventual 
consistency between 2 stores. 

It must be a UTC dateTime value, serialized as a long, 
using the Avro logical type timestamp-micros 
(microseconds from the Unix Epoch, 1 January 1970 
00:00:00.000000 UTC). 

long 0 1 

activeStatusFilter Use this to optionally filter the query for data objects 
that are currently "active" or "inactive" as defined in 
ActiveStatusKind. 

This field is for WITSML channels and growing data 
objects based on the value in the data object's 
GrowingStatus field, which may be: 

 active = A channel or growing data object is 
actively producing data points. 

 inactive = A channel or growing object is offline or 
not currently producing data points. 

The store returns resources for data objects whose 
GrowingStatus field matches the value specified in the 
activeStatusFilter. 

ActiveStatusKind 0 1 

format Specifies the format (e.g., XML or JSON) in which you 
want to receive data for the returned data objects. This 
MUST be a format that was negotiated when 
establishing the session. 

Currently, ETP MAY support "xml" and "json". Other 
formats may be supported in the future, and endpoints 
may agree to use custom formats.  

string 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.StoreQuery", 
     "name": "FindDataObjects", 
     "protocol": "14", 
     "messageType": "1", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "context", "type": "Energistics.Etp.v12.Datatypes.Object.ContextInfo" }, 
         { "name": "scope", "type": "Energistics.Etp.v12.Datatypes.Object.ContextScopeKind" }, 
         { "name": "storeLastWriteFilter", "type": ["null", "long"] }, 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 323 

         { "name": "activeStatusFilter", "type": ["null", 
"Energistics.Etp.v12.Datatypes.Object.ActiveStatusKind"] }, 
         { "name": "format", "type": "string", "default": "xml" } 
     ] 
} 

  

16.3.2 Message: FindDataObjectsResponse 

A store sends to a consumer in response to the FindObjects message; it's the results the store could 
return in response to the query.  

Message Type ID: 2 

Correlation Id Usage: MUST be set to the messageId of the FindObjects message that this message is 
a response to. 

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

dataObjects A list of data objects returned. For details on data 
sent for each data object listed, see DataObject 
record. 

The URIs in the Resource records MUST be 
canonical Energistics data object URIs; for more 
information, see Appendix: Energistics 
Identifiers. 

DataObject 0 n 

serverSortOrder The deterministic sort order defined by the server. string 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.StoreQuery", 
     "name": "FindDataObjectsResponse", 
     "protocol": "14", 
     "messageType": "2", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "dataObjects", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.Object.DataObject" }, "default": [] 
         }, 
         { "name": "serverSortOrder", "type": "string" } 
     ] 
} 

  

16.3.3 Message: Chunk 

A message used when a data object (being sent in a message from store to customer OR customer to 
store) is too large for the negotiated WebSocket message size limit 
(MaxWebSocketMessagePayloadSize) for the session (which for some WebSocket libraries can be quite 
small, e.g. 128 kb).  

This Chunk message:  

1. Is used in Store (Protocol 4), StoreNotification (Protocol 5), and StoreQuery (Protocol 14). 
2. Can be used in conjunction with any request, response or notification message that allows or requires 

a data object to be sent with the message. Such messages contain a field called dataObjects, which 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 324 

is a map composed of the ETP data type DataObject. If the data object size (bytes) exceeds the 
maximum negotiated WebSocket size limit for the session, and you want to send it with the message, 
you MUST use Chunk messages. 

3. The DataObject type (record) contains an optional Binary Large Object (BLOB) ID (blobId). If you 
must divide a data object into multiple chunks, you MUST assign a blobId and the dataObject field 
MUST NOT contain any data. 

4. Use a set of Chunk message to send small portions of the data object (small enough to fit into the 
negotiated WebSocket size limit for the session). Each Chunk message MUST contain its assigned 
"parent" BlobId and a portion of the data object. 

5. For endpoints that receive these messages, to correctly "reassemble" the data object (BLOB): use 
the blobId, and the messageId (which indicates the message sequence, because ETP (via 
WebSocket) guarantees messages to be delivered in order), and final (flag that indicates the last 
chunk that comprises a particular data object). 

6. Chunk messages for different data objects MUST NOT be interleaved within the context of one 
multipart message operation. If more than one data object must be sent using Chunk messages, the 
sender MUST finish sending each data object before sending the next one. To indicate the last 
Chunk message for one data object, the sender MUST set the final flag to true. 

For more information on how to use the Chunk message, see Section 3.7.3.2.  

Message Type ID: 3 

Correlation Id Usage: MUST be set to the messageId of the FindObjectsResponse message that 
resulted in the assignment of a blobId and this Chunk message being created. 

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

blobId The BLOB ID assigned by an endpoint when a 
data object being sent in a request, response or 
notification message must be subdivided into 
multiple chunks. Each Chunk message that 
comprises a BLOB MUST contain the blobId of its 
"parent" BLOB.  

The blobId: 

 is entered in the DataObject record 
referenced in the dataObjects field of the 
request, response or notification message. 

 Must be of type Uuid (Section 23.6).  

Uuid 1 1 

data The data that comprises a chunk (portion) of the 
data object/BLOB.  

bytes 1 1 

final Flag to indicate that this the final message of a set 
of Chunk messages that comprise one particular 
data object.  

boolean 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.StoreQuery", 
     "name": "Chunk", 
     "protocol": "14", 
     "messageType": "3", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 325 

     "multipartFlag": true, 
     "fields": 
     [ 
         { "name": "blobId", "type": "Energistics.Etp.v12.Datatypes.Uuid" }, 
         { "name": "data", "type": "bytes" }, 
         { "name": "final", "type": "boolean" } 
     ] 
} 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 326 

17 GrowingObjectQuery (Protocol 16) 
ProtocolID: 16 

Defined Roles: store, customer 

GrowingObjectQuery (Protocol 16) includes functionality for querying parts of growing data objects in a 
store or server. The main CRUD behavior for parts of a growing data object is defined in GrowingObject 
(Protocol 6) (Chapter 11). 

For general concepts and basic functionality related to query behavior in ETP, see Chapter 14 Overview 
of Query Behavior. 

This chapter includes main sections for:  
 Key ETP concepts that are important to understanding how this protocol is intended to work (see 

Section 17.1). 

 Required behavior, which includes: 

 Required behavior in addition to the requirements in Chapter 14 (Section 17.2). 

- Definitions of the endpoint and protocol capabilities used in this protocol (Section 17.2.3). 

 Sample schemas of the messages defined in this protocol (which are identical to the Avro schemas 
published with this version of ETP). However, only the schema content in this specification includes 
documentation for each field in a schema (Section 17.3).  

17.1 GrowingObjectQuery: Key Concepts 

 For key concepts related to growing data objects, including definition, design and how they work, see 
Section 11.1. 

 For key concept relate to how queries work in general in ETP, see Chapter 14.  

17.2 GrowingObjectQuery: Required Behavior 

This section contains required behavior for this protocol. It is organized in these sub-sections: 

 Message Sequence. Summarizes all messages defined by this protocol, identifies main tasks that 
can be done with this protocol and describes the response/request pattern for the messages needed 
to perform the tasks, including usage of ETP-defined capabilities, error scenarios, and resulting ETP 
error codes.  

 General Requirements. Identifies high-level (across ETP) and protocol-wide general behavior and 
rules that must be observed (in addition to behavior specified in Message Sequence), including usage 
of ETP-defined endpoint, data object and protocol capabilities, error scenarios, and resulting error 
codes.  

 Capabilities. Lists and defines the ETP-defined parameters most relevant for this sub-protocol. ETP 
defines these parameters to set necessary limits to help prevent aberrant behavior (e.g., sending 
oversized messages or sending more messages than an endpoint can handle).  

Prerequisites for using this protocol:  

 An ETP session has been established using Core (Protocol 0) as described in Chapter 5. 

17.2.1 GrowingObjectQuery: Message Sequence 

For the basic message sequence that applies to all query protocols, see Section 14.3.1.  

The following table lists all messages defined in this sub-protocol, the basic request/response usage 
patterns per ETP role, and whether it may be multipart. The detailed content of each message is 
explained in the Message Schema section. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 327 

Message sent by customer Response Message from store 

FindParts (Section 17.3.1) Query request for parts of a 

growing data object that match the specified criteria. 

FindPartsResponse (multipart) (Section 17.3.2) The 

results the store could return in response to the 
query. 

 

17.2.2 GrowingObjectQuery: General Requirements 

In addition to the basic message sequence described in the previous section, this protocol has the 
additional requirements listed in the table below. For easy reference, the rows and behaviors in this table 
are numbered. 

NOTE: This table has been organized to reduce redundancy but also to help developers more easily 
locate specific requirements. EXAMPLE: There are rows with general requirements that apply to all 
protocols (e.g., Rows 1–2), rows for general requirements for this protocol, and (possibly) additional rows 
with additional requirements for specific types of operations.  

Row# Requirement Behavior 

1.  ETP-wide behavior that MUST be observed 
in all protocols 

1. Requirements for general behavior consistent across all of ETP are 
defined in Chapter 3. This behavior includes information such as: all 
details of message handling (such as message headers, handling 
compression, use of message IDs and correlation IDs, requirements for 
plural and multipart message patterns) use of acknowledgements, 
general rules for sending ProtocolException messages, URI encoding, 
serialization and more. RECOMMENDATION: Read Chapter 3 first. 

2. For information about Energistics identifiers and prescribed ETP URI 
formats, see Appendix: Energistics Identifiers. 

a. In MOST cases, endpoints performing operations in this protocol 
MUST use the canonical Energistics URI. For more information, see 
Section 3.7.4.  

3. For the complete list of error codes defined by ETP, see Chapter 24. 

4. ALL operations in an ETP session are performed on the set of 
supported data object types that were negotiated to be used when 
the session was initiated and established. 

a. The client and server exchange the list of data object types in the 
supportedDataObjects field of the RequestSession and 
OpenSession messages in Core (Protocol 0). For more 
information, see Chapter 5. 

b. In general, the list of supported objects for a session will most likely 
be the intersection of the data objects that the server supports and 
the data objects that the client requested for the ETP session. 

c. A store MUST support all messages (in each supported ETP sub-
protocol) for each supported data object, whether the data object is 
supported explicitly or by wild card. 

d. An endpoint MUST only send messages with the URI of a data 
object that is a type supported by the other endpoint for this ETP 
session.  

i. If an endpoint sends a URI for an unsupported type of data 
object, the other endpoint MUST send error 
EDATAOBJECTTYPE_NOTSUPPORTED (16). 

2.  Capabilities-related behavior 1. Relevant endpoint, data object, and/or protocol capabilities MUST be 
specified when the ETP session is established (see Chapter 5) and 
MUST be used/honored as defined in the relevant ETP sub-protocol.  

2. For an explanation of endpoint, data object, and protocol capabilities, see 
Section 3.3. 

a. For the list of global capabilities and related behavior, see Section 
3.3.2. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 328 

Row# Requirement Behavior 

3. Section 17.2.3 identifies the capabilities most relevant to this ETP sub-
protocol.  

3.  Plural Messages (which includes maps) 1. This protocol uses plural messages. For detailed rules on handling plural 
messages (including ProtocolException handling), see Section 3.7.3. 

4.  Rules specified in Chapter 14 Overview of 
Query Behavior  

1. The general rules and requirements specified in Chapter 14 MUST be 
observed and used with the additional details specific to 
GrowingObjectQuery (Protocol 17) (which are specified in the next row.) 

5.  Rules specific to GrowingObjectQuery 
(Protocol◦17)  

1. The URI in the request message MUST be a canonical Energistics query 
that includes BOTH of these: 

a. A reference to a specific growing data object using the data object’s 
qualified type and UUID. 

b. The qualified type of the data object’s parts.   

c. EXAMPLE: To query a trajectory’s stations, the URI could look like: 
eml:///witsml20.Trajectory(63b93219-e507-4934-a1b5-
e7e550701934)/witsml20.TrajectoryStation?<query params> 

2. The data object portion of the URI in the request message MUST resolve 
to a single growing data object; if not the store MUST send error 
ENOTGROWINGOBJECT (6001). 

3. In general, the results that are returned MUST follow the rules for Get 
operations in GrowingObject (Protocol 6), including honoring limits 
specified by capabilities. For details, see Section 11.2.2.  

a. EXCEPTON: Query protocols specify a pagination option, which 
make it possible to get results in groups and prevent exceeding 
MaxResponseCount limits. For more information, see Section 
14.1.2.  

6.  Index Metadata 1. A growing data object’s index metadata MUST be consistent: 

a. All parts MUST have the same index unit and the same vertical 
datum. 

b. The index units and vertical datums in the growing data header 
MUST match the parts. 

2. When sending messages, both the store AND the customer MUST 
ensure that all index metadata and data derived from index metadata are 
consistent in all fields in the message, including in XML or JSON object 
data or part data. 

a. EXAMPLE: The uom and depthDatum in an IndexInterval record 
MUST be consistent with the channel’s index metadata. 

b. EXAMPLE: Data object elements related to index values in growing 
data object headers (e.g., MdMn and MdMx on a WITSML 2.0 
Trajectory) and parts (e.g., Md on a WITSML 2.0 TrajectoryStation) 
MUST be consistent with each other AND the data object’s index 
metadata. 

 

17.2.3 GrowingObjectQuery: Capabilities 

The table below lists key capabilities for this protocol. The protocol capabilities are all defined here. For 
this protocol, one particularly crucial endpoint capability is defined here.  

 For protocol-specific behavior relating to using these capabilities in this protocol, 
see◦Section◦17.2.2,◦GrowingObjectQuery: General Requirements. 

 For definitions for endpoint and data object capabilities, see the links in the table. 

 For general information about the types of capabilities and how they may be used, see Section 3.3. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 329 

GrowingObjectQuery (Protocol 16): Capabilities 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

Endpoint Capabilities  

(For definitions of each endpoint capability, see Section 3.3.) 

   

NOTE: Many endpoint capabilities are "universal", used in all or 

most of the ETP protocols. For more information, see Section 
3.3.2. 

Behavior associated with other endpoint capabilities are 
defined in relevant chapters.  
EXAMPLE: The capabilities defined for limiting ETP 
sessions between 2 endpoints are discussed in 
Section 4.3, How a Client Establishes a WebSocket 

Connection to an ETP Server. 

   

MaxPartSize: The maximum size in bytes of each data object part 

allowed in a standalone message or a complete multipart 
message. Size in bytes is the total size in bytes of the 
uncompressed string representation of the data object part in the 
format in which it is sent or received. 

long byte 
<number of 
bytes> 

Min: 10,000 bytes 

Data Object Capabilities  
(For definitions of each data object capability, see Section 3.3.4.) 

   

ActiveTimeoutPeriod: (This is also an endpoint capability.)  

The minimum time period in seconds that a store keeps the 
GrowingStatus for a growing data object or channel "active" after 
the last new part or data point resulting in a change to the data 
object's end index was added to the data object. 

This capability can be set for an endpoint and/or for a data object. 
A data object-specific value overrides an endpoint-specific value. 

long second 
<number of 
seconds> 

Default: 3,600 

MIN: 60 seconds 

SupportsGet 

For definitions and usage rules for each of these data object 

capabilities, see Section 3.3.4. 

   

Protocol Capabilities    

MaxResponseCount: The maximum total count of responses 

allowed in a complete multipart message response to a single 
request. 

long count 
<count of 
responses> 

MIN: 10,000 

 

 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 330 

17.3 GrowingObjectQuery: Message Schemas 

This section provides a figure that displays all messages defined in GrowingObjectQuery (Protocol 16). 
Subsequent sub-sections provide an example schema for each message and definitions of the data fields 
contained in each message.  

 
Figure 27: GrowingObjectQuery: message schemas 

17.3.1 Message: FindParts 

A customer sends to a store to query for parts of a growing data object that match the specified criteria. 
The response to this message is the FindPartsResponse message.  

Message Type ID: 1 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

class GrowingObjectQuery

«Message»
FindParts

+ format: s tring = xml
+ uri : s tring

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 1
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store to query for parts of a
growing data object that match the specified criteria. The
response to this message is the  FindPartsResponse
message.

«Message»
FindPartsResponse

+ format: s tring = xml
+ parts : ObjectPart [0..n] (array) = EmptyArray
+ serverSortOrder: s tring
+ uri : s tring

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 2
MultiPart = True
SenderRole = s tore

notes
A store sends to a customer in response to the FindParts
message; it's the results (object parts) the store could
return in response to the query.

«record»
Object::ObjectPart

+ data: bytes
+ uid: s tring

tags
AvroSrc = <memo>

notes
Record that must carry a single object part. This
structure includes the part identifier (UID) and
(optionally) the part data as a byte array.
NOTE: The format of the data (e.g., XML or JSON)
for the part is specified in the format field of the
message this record is included in.



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 331 

Field Name Description Data Type Min Max 

uri The data object query URI. The URI MUST 
identify both a specific growing data object AND 
the qualified type of the parts to query. For more 
information, see Chapter 14.  

The URI MUST be a canonical Energistics data 
object query URI; for more information, see 
Appendix: Energistics Identifiers.  

string 1 1 

format Specifies the format (e.g., XML or JSON) in which 
you want to receive data for the return parts. This 
MUST be a format that was negotiated when 
establishing the session. 

Currently, ETP MAY support "xml" and "json". 
Other formats may be supported in the future, and 
endpoints may agree to use custom formats. 

string 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObjectQuery", 
     "name": "FindParts", 
     "protocol": "16", 
     "messageType": "1", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "uri", "type": "string" }, 
         { "name": "format", "type": "string", "default": "xml" } 
     ] 
} 

  

17.3.2 Message: FindPartsResponse 

A store sends to a customer in response to the FindParts message; it's the results (object parts) the store 
could return in response to the query.  

Message Type ID: 2 

Correlation Id Usage: MUST be set to the messageId of the FindParts message that this message is a 
response to. 

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

uri The URI that identifies the growing data object for 
which parts are being returned. 

The URI MUST be a canonical Energistics data 
object URI; for more information, see Appendix: 
Energistics Identifiers. 

string 1 1 

serverSortOrder The deterministic sort order defined by the server. string 1 1 

format Specifies the format (e.g., XML or JSON) of the 
data for the parts being sent in this message. This 
MUST match the format in the FindParts request. 

Currently, ETP MAY support "xml" and "json". 
Other formats may be supported in the future, and 
endpoints may agree to use custom formats. 

string 1 1 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 332 

Field Name Description Data Type Min Max 

parts A list of the UIDs of the parts being returned in 
this response message and the data for each as 
defined in the ObjectPart record. 

ObjectPart 0 n 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.GrowingObjectQuery", 
     "name": "FindPartsResponse", 
     "protocol": "16", 
     "messageType": "2", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { "name": "uri", "type": "string" }, 
         { "name": "serverSortOrder", "type": "string" }, 
         { "name": "format", "type": "string", "default": "xml" }, 
         { 
             "name": "parts", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.Object.ObjectPart" }, "default": [] 
         } 
     ] 
} 

  

 

 
 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 333 

18 Transaction (Protocol 18) 
ProtocolID: 18 

Defined Roles: store, customer 

Transaction (Protocol 18) was developed to ensure store data consistency for applications that may have 
long, complex transactions (typically associated with earth modeling/RESQML). It establishes simple 
transaction semantics for ETP sessions. When implemented by a store, the Transaction protocol ensures 
that all "get" and "put" operations issued against a store, within the same transaction, refers to data in a 
consistent store state. 

Even when a store supports Transaction (Protocol 18), the use of transactions is not required for all 
exchanges. However, when a customer application is pushing objects to a store and multiple ETP sub-
protocols are required, use of a transaction is strongly recommended.   

The messages in the Transaction protocol simply request that the store establish a "transaction", and the 
store returns a transaction UUID. When the customer determines its work is complete (which typically 
involves one or more of other ETP protocols), the customer informs the store it is finished by committing 
the transaction, which is identified by its UUID.  

This protocol intentionally supports a single open transaction on a session. Additional messages in a later 
version may support multiple concurrent transactions, if the need arises. This protocol also has options to 
cancel (roll back) a transaction and indicate success/failure of a transaction. 

The two use cases for which this protocol was developed are: 1) synchronization of servers and 2) 
movement of an earth model, both of which require moving multiple datatypes via multiple messages and 
maybe multiple protocols. 

This chapter includes main sections for:  
 Required behavior, which includes: 

 Description of the message sequence for main tasks, along with required behavior, ETP-defined 
capabilities, and possible errors (see Section 18.1.1).  

 Other functional requirements (not covered in the message sequence) including use of ETP-
defined endpoint and protocol capabilities for preventing and protecting against aberrant behavior 
(see Section 18.1.2). 

- Definitions of the endpoint and protocol capabilities used in this protocol (see Section 18.1.3). 

 Sample schemas of the messages defined in this protocol, which are identical to the Avro schemas 
published with this version of ETP. However, only the schema content in this specification includes 
documentation for each field in a schema (see Section 18.2).  

18.1 Transaction: Required Behavior 

This section contains functional and non-functional requirements for this protocol. It is organized in these 
sub-sections: 

 Message Sequence. Summarizes all messages defined by this protocol, identifies main tasks that 
can be done with this protocol and describes the response/request pattern for the messages needed 
to perform the tasks, including usage of ETP-defined capabilities, error scenarios, and resulting ETP 
error codes.  

 General Requirements. Identifies high-level (across ETP) and protocol-wide general behavior and 
rules that must be observed (in addition to behavior specified in Message Sequence), including usage 
of ETP-defined endpoint, data object and protocol capabilities, error scenarios, and resulting error 
codes.  

 Capabilities. Lists and defines the ETP-defined parameters most relevant for this sub-protocol. ETP 
defines these parameters to set necessary limits to help prevent aberrant behavior (e.g., sending 
oversized messages or sending more messages than an endpoint can handle).  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 334 

Prerequisites for using this protocol:  
 An ETP session has been established using Core (Protocol 0) as described in Chapter 5. 

18.1.1 Transaction: Message Sequence 

This section explains the basic message sequence for main tasks to be done using this protocol and 
includes related key behaviors and possible errors; it assumes that an ETP session has been established 
using Core (Protocol 0) as described in Chapter 5. The following General Requirements section provides 
additional requirements and rules for how this protocol works.   

The following table lists all messages defined in this sub-protocol, the basic request/response usage 
patterns per ETP role, and whether it may be multipart. The detailed content of each message is 
explained in the Message Schema section (Section 18.2).  

Transaction (Protocol 18): 

Basic Message-Response flow by ETP Role 

Message from customer Response Message from store 

StartTransaction: A request to begin a transaction. StartTransactionResponse: Response that the 

transaction was successfully started or failed. 

RollbackTransaction: A request to cancel a transaction. RollbackTransactionResponse: Response that the 

transaction rollback was successful or failed. 

CommitTransaction: A request to commit a transaction. CommitTransactionResponse: Response that the 

transaction was successfully committed or failed.  

 

This section describes the basic sequence, related key behaviors, ETP-defined protocol capability usage 
and possible errors. By definition, Transaction (Protocol 18) involves work being done by other ETP 
protocols; for example, Store (Protocol 4) may be used to get or put a data object and DataArray 
(Protocol 9) may be used to get or put the related array data. The following Requirements section 
provides additional functional requirements and rules for how this protocol is intended to work. 

18.1.1.1 To execute a transaction: 
1. To initiate a transaction, the customer MUST send to the store the StartTransaction message 

(Section 18.2.1). 

a. To increase efficiency, the customer MUST include the list of dataspaces that the transaction will 
cover.  

i. By default, the dataspace coverage includes only the default dataspace.  

ii. If the dataspace list is empty, the coverage extends to all dataspaces.  

b. Also, for server efficiency, it is recommended that a customer indicate if a transaction contains 
read-only Get requests. 

c. The customer MUST not exceed the store's value for MaxTransactionCount protocol capability. 
(NOTE: Currently ETP supports only 1 transaction.)  

i. If the customer attempts to start more than one transaction, the store MUST deny the request 
and send error EMAX_TRANSACTIONS_EXCEEDED (15).  

2. The store MUST respond with the StartTransactionResponse message (Section 18.2.2); the 
message contains:  

a. a UUID to identify and reference the transaction.  

b. a Boolean flag, to indicate the success or failure of initializing the transaction. 

c. the failureReason field, which must provide a brief reason the transaction was not started.   



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 335 

3. After receiving a successful StartTransactionResponse message, the customer MUST send a 
RollbackTransaction message (see Step 5 below) or CommitTransaction message (see Step 7 
below) no later than the store's TransactionTimeoutPeriod protocol capability.  

a. If the customer exceeds this limit, the store MAY abort the transaction and send error 
ETIMED_OUT (26).  

4. If the StartTransactionResponse message indicates success, the customer then begins the work it 
intends for this transaction, sending messages from the various protocols it needs to perform the 
work. EXAMPLE: It uses Store (Protocol 4) to put a data object and use DataArray (Protocol 9) to 
create and populate associated data arrays. 

5. If a message/request fails for any reason, the customer can cancel the transaction by sending the 
RollbackTransaction message (Section 18.2.5).  

6. On receipt of a RollbackTransaction message, the store MUST: 

a. Ignore the actions of all messages associated with the transaction. That is, the current transaction 
MUST NOT change the state of the store; the store MUST be in the same state as before the 
transaction began. 

b. Send a RollbackTransactionResponse message (Section 18.2.6), which indicates the 
success/failure of the rollback and may provide an optional failureReason. 

c. If any data or requests are sent with the RollbackTransaction message, the store MUST ignore 
them.  

7. If no rollback occurred and the customer has completed all requests/processes associated with the 
transaction, the customer MUST send to the store the CommitTransaction message (Section 
18.2.3).  

8. When it receives the CommitTransaction message, the store MUST do ONE of the following:  

a. If the store IS NOT able to successfully deserialize the message OR the transactionUuid field 
does NOT identify a valid transaction, the store MUST send a non-map ProtocolException 
message with an appropriate error such as ENOT_FOUND (11). 

i. NOTE: For these types of general failures, the store MUST NOT send the 
CommitTransactionResponse message. In most cases, it is unlikely that the store would be 
able to send this message because it would be unable to determine the transaction. 

b. If the store IS able to successfully deserialize the message AND the transactionUuid field in the 
message identifies a valid and open transaction, the store MUST apply all requests/processes 
that the customer sent for the transaction and do ONE of the following: 

i. If the application of ALL requests/processes is successful, the store MUST send the 
customer the CommitTransactionResponse message (Section 18.2.4), with the successful 
flag set to true (indicating the transaction was successful). 

ii. If the store cannot successfully apply ALL requests/processes that the customer sent for the 
transaction: 

1. The store MUST send the customer the CommitTransactionResponse message, with 
the successful flag set to false (indicating the transaction failed).The store MUST include 
a human readable failureReason that explains why or how the transaction failed. 

2. The store is expected to be in a state where all requests associated with the transaction 
have been ignored. 

9. Before a customer ends a session, it SHOULD wait until it receives the 
CommitTransactionResponse message, to ensure the transaction is successful.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 336 

18.1.2 Transaction: General Requirements 

In addition to the basic message sequence described in the previous section, this protocol has the 
additional requirements listed in the table below. For easy reference, the rows and behaviors in this table 
are numbered. 

NOTE: This table has been organized to reduce redundancy but also to help developers more easily 
locate specific requirements. EXAMPLE: There are rows with general requirements that apply to all 
protocols (e.g., Rows 1–2), rows for general requirements for this protocol, and (possibly) additional rows 
with additional requirements for specific types of operations.  

Row# Requirement Behavior 

1.  ETP-wide behavior that MUST be 
observed in all protocols 

1. Requirements for general behavior consistent across all of ETP are 
defined in Chapter 3. This behavior includes information such as: all 
details of message handling (such as message headers, handling 
compression, use of message IDs and correlation IDs, requirements for 
plural and multipart message patterns) use of acknowledgements, 
general rules for sending ProtocolException messages, URI 
encoding, serialization and more. RECOMMENDATION: Read 
Chapter 3 first. 

2. For information about Energistics identifiers and prescribed ETP URI 
formats, see Appendix: Energistics Identifiers. 

a. In MOST cases, endpoints performing operations in this protocol 
MUST use the canonical Energistics URI. For more information, 
see Section 3.7.4. 

3. For the complete list of error codes defined by ETP, see Chapter 24. 

4. ALL operations in an ETP session are performed on the set of 
supported data object types that were negotiated to be used when 
the session was initiated and established. 

a. The client and server exchange the list of data object types in the 
supportedDataObjects field of the RequestSession and 
OpenSession messages in Core (Protocol 0). For more 
information, see Chapter 5. 

b. In general, the list of supported objects for a session will most 
likely be the intersection of the data objects that the server 
supports and the data objects that the client requested for the ETP 
session. 

c. A store MUST support all messages (in each supported ETP sub-
protocol) for each supported data object, whether the data object 
is supported explicitly or by wild card. 

d. An endpoint MUST only send messages with the URI of a data 
object that is a type supported by the other endpoint for this ETP 
session.  

i. If an endpoint sends a URI for an unsupported type of data 
object, the other endpoint MUST send error 
EDATAOBJECTTYPE_NOTSUPPORTED (16). 

2.  Capabilities-related behavior 1. Relevant endpoint, data object, and/or protocol capabilities MUST be 
specified when the ETP session is established (see Chapter 5) and 
MUST be used/honored as defined in the relevant ETP sub-protocol.  

2. For an explanation of endpoint, data object, and protocol capabilities, 
see Section 3.3. 

a. For the list of global capabilities and related behavior, see Section 
3.3.2. 

3. Section18.1.3 identifies the capabilities most relevant to this ETP sub-
protocol. Additional details for how to use the protocol capabilities are 
included below in this table and in Section 18.1.1 Transaction: 
Message Sequence. 

3.  Message Sequence 

See Section 18.1.1. 

1. The Message Sequence section above (Section 18.1.1) describes 
requirements for the main tasks listed there and also defines required 
behavior. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 337 

Row# Requirement Behavior 

4.  Support for Transaction (Protocol 18) 1. To execute a transaction in ETP, both endpoints in a session MUST 
support this protocol.  

2. Support for this protocol indicates support of transactions.  

5.  Get transactions 1. For “get” transactions: the store MUST provide data corresponding to 
the same store state for the transaction data. If one or several data 
involved in the transaction is modified inside the store in the middle of a 
transaction, the server MUST return all data involved inside the 
transaction at a state either before or after those modifications. 

6.  Put transactions 1. For “put” transactions: the store MUST NOT actually complete the store 
state modifications corresponding to the transaction until the entire 
transaction is complete. 

7.  Conflicting updates If a store operation on a data object in one session fails due to that data 
object being involved in a transaction in another session, the store MUST 
send error ETIMED_OUT (26) as the response to the failed operation. 

 

18.1.3 Transaction: Capabilities 

The table below lists key capabilities for this protocol. The protocol capabilities are all defined here.  

 For protocol-specific behavior relating to using these capabilities in this protocol, 
see◦Section◦18.1.2,◦Transaction: General Requirements. 

 For definitions for endpoint and data object capabilities, see the links in the table. 

 For general information about the types of capabilities and how they may be used, see Section 3.3. 

Transaction (Protocol 18): Capabilities 

Name: Description Type Units 
Value Units 

Defaults 
and/or 

MIN/MAX 

Endpoint Capabilities  

(For definitions of each endpoint capability, see Section 3.3.) 

   

NOTE: Many endpoint capabilities are "universal", used in all or 

most of the ETP protocols. For more information, see Section 
3.3.2. 

Behavior associated with other endpoint capabilities are 
defined in relevant chapters.  
EXAMPLE: The capabilities defined for limiting ETP 
sessions between 2 endpoints are discussed in 
Section 4.3, How a Client Establishes a WebSocket 

Connection to an ETP Server. 

   

Protocol Capabilities    

MaxTransactionCount: The maximum count of transactions 

allowed in parallel in a session. 

long  count 
<count of 
transactions> 

MIN: 1 

Max: 1 

Default: 1 

TransactionTimeoutPeriod: The maximum time period in 

seconds allowed between receiving a StartTransactionResponse 

message and sending the corresponding CommitTransaction or 
RollbackTransaction request. 

long seconds 
<number of 
seconds> 

MIN: 5 

 

 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 338 

18.2 Transaction: Message Schemas 

This section provides a figure that displays all messages defined in Transaction (Protocol 18). 
Subsequent sub-sections provide an example schema for each message and definitions of the data fields 
contained in each message.  

 
Figure 28: Transaction: message schemas 

18.2.1 Message: StartTransaction 

A customer sends to a store to begin a transaction. In the current version of ETP, data is being pushed 
from the customer to a store. For a synchronization use case, each side will have to play the role of 
customer to push data to the store on the other end. 

The response to this is the StartTransactionResponse message.  

Message Type ID: 1 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

class Transaction

«Message»
StartTransactionResponse

+ fa i lureReason: s tring = EmptyString
+ successful : boolean = true
+ transactionUuid: Uuid

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 2
MultiPart = Fa lse
SenderRole = s tore

notes
A store MUST send to a customer as response to
the StartTransaction message. This message
returns a UUID, to uniquely identify the
transaction, which may be used in the future for
managing multiple transactions.

«Message»
StartTransaction

+ dataspaceUris : s tring [0..*] (array) = [""]
+ message: s tring [0..1]
+ readOnly: boolean

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 1
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store to begin a transaction. In the
current version of ETP, data is being pushed from the
customer to a store. For a synchronization use case, each
side will have to play the role of customer to push data to
the store on the other end.
The response to this is the StartTransactionResponse
message.

«Message»
CommitTransaction

+ transactionUuid: Uuid

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 3
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store to commit and end a
transaction. This message implies that the customer has
received from or sent to the store all the data required for
some purpose. The customer asserts that the data sent in
the scope of this transaction is a consistent unit of work.
The response to this is a CommitTransactionResponse
message.

«Message»
RollbackTransaction

+ transactionUuid: Uuid

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 4
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store to cancel a transaction.
The store MUST disregard any requests or data sent
with that transaction. The current transaction (the
one being canceled) MUST NOT change the state of
the store.

«Message»
CommitTransactionResponse

+ fa i lureReason: s tring [0..1]
+ successful : boolean = true
+ transactionUuid: Uuid

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 5
MultiPart = Fa lse
SenderRole = s tore

notes
A  store MUST send to a customer as a response to
a CommitTransaction message. This message
returns a UUID, which may be needed in the future
for managing multiple transactions. The client
application SHOULD wait until it receives the
CommitTransactionResponse message before it
disconnects the session (in case the transaction was
unsuccessful).
This message also includes a successful flag,
indicating whether the transaction commit was
successful. If the transaction failed, the message
can optionally include a brief description of the
reason (how or why) the transaction failed.

«Message»
RollbackTransactionResponse

+ fa i lureReason: s tring [0..1] = EmptyString
+ successful : boolean = true
+ transactionUuid: Uuid

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 6
MultiPart = Fa lse
SenderRole = s tore

notes
A  store MUST send to a customer as a response to
a RollbackTransaction message. This message
returns the transaction UUID (which may be needed
in the future for managing multiple transactions).
This message also includes a successful flag,
indicating whether the transaction commit was
successful. If the transaction failed, the message
can optionally include a brief description of the
reason (how or why) the transaction failed.



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 339 

Field Name Description Data Type Min Max 

readOnly Indicates that the request in the transaction is 
read-only (i.e., "get" messages).  

boolean 1 1 

message Provides an optional message indicating the 
reason for the transaction.  

string 0 1 

dataspaceUris Indicates the dataspaces involved in the 
transaction.  

 An empty STRING means the default 
dataspace. 

 An empty LIST means all dataspaces. 

If both endpoints support alternate URIs for the 
session, these MAY be alternate dataspace URIs. 
Otherwise, they MUST be canonical Energistics 
dataspace URIs. For more information, see 
Appendix: Energistics Identifiers. 

string 0 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Transaction", 
     "name": "StartTransaction", 
     "protocol": "18", 
     "messageType": "1", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "readOnly", "type": "boolean" }, 
         { "name": "message", "type": "string", "default": "" }, 
         { 
             "name": "dataspaceUris", 
             "type": { "type": "array", "items": "string" }, "default": [""] 
         } 
     ] 
} 

  

18.2.2 Message: StartTransactionResponse 

A store MUST send to a customer as response to the StartTransaction message. This message returns a 
UUID, to uniquely identify the transaction, which may be used in the future for managing multiple 
transactions. 

Message Type ID: 2 

Correlation Id Usage: MUST be set to the messageId of the StartTransaction message that this 
message is a response to.  

Multi-part: False 

Sent by: store 

Field Name Description Data Type Min Max 

transactionUuid The UUID that the store assigns to the 
transaction. 

Must be of type Uuid (Section 23.6). 

Uuid 1 1 

successful Boolean flag indicating that the store successfully 
started the transaction.  

Default = true (success) 

boolean 1 1 

failureReason If the successful flag is "0" (false), provide a brief 
reason why the transaction failed to start. 

string 1 1 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 340 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Transaction", 
     "name": "StartTransactionResponse", 
     "protocol": "18", 
     "messageType": "2", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "transactionUuid", "type": "Energistics.Etp.v12.Datatypes.Uuid" }, 
         { "name": "successful", "type": "boolean", "default": true }, 
         { "name": "failureReason", "type": "string", "default": "" } 
     ] 
} 

  

18.2.3 Message: CommitTransaction 

A customer sends to a store to commit and end a transaction. This message implies that the customer 
has received from or sent to the store all the data required for some purpose. The customer asserts that 
the data sent in the scope of this transaction is a consistent unit of work. 

The response to this is a CommitTransactionResponse message.  

Message Type ID: 3 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

transactionUuid The UUID of the transaction (assigned by the 
store in the StartTransactionResponse message) 
that the customer wants to commit. 

Must be of type Uuid (Section 23.6). 

Uuid 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Transaction", 
     "name": "CommitTransaction", 
     "protocol": "18", 
     "messageType": "3", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "transactionUuid", "type": "Energistics.Etp.v12.Datatypes.Uuid" } 
     ] 
} 

  

18.2.4 Message: CommitTransactionResponse 

A store MUST send to a customer as a response to a CommitTransaction message. This message 
returns a UUID, which may be needed in the future for managing multiple transactions. The client 

file:///C:/Users/Donna%20Marcotte/Documents/Energistics%202017/2017/ETP%202017-2018/2020/ETP%20Spec/%7b189198539%7d%20/o%20%7deaDocX%20Cross%20ref%7d')


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 341 

application SHOULD wait until it receives the CommitTransactionResponse message before it 
disconnects the session (in case the transaction was unsuccessful).  

This message also includes a successful flag, indicating whether the transaction commit was successful. 
If the transaction failed, the message can optionally include a brief description of the reason (how or why) 
the transaction failed.  

Message Type ID: 5 

Correlation Id Usage: MUST be set to the messageId of the CommitTransaction message that this 
message is a response to. 

Multi-part: False 

Sent by: store 

Field Name Description Data Type Min Max 

transactionUuid The UUID (that the store assigns to the 
transaction) of the transaction that has been 
committed. 

Must be of type Uuid (Section 23.6). 

Uuid 1 1 

successful Boolean flag indicating that the store successfully 
started the transaction.  

Default = true (success)  

boolean 1 1 

failureReason An optional description from the store to the 
customer explaining why or how the transaction 
failed.  

string 0 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Transaction", 
     "name": "CommitTransactionResponse", 
     "protocol": "18", 
     "messageType": "5", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "transactionUuid", "type": "Energistics.Etp.v12.Datatypes.Uuid" }, 
         { "name": "successful", "type": "boolean", "default": true }, 
         { "name": "failureReason", "type": "string", "default": "" } 
     ] 
} 

  

18.2.5 Message: RollbackTransaction 

A customer sends to a store to cancel a transaction. The store MUST disregard any requests or data sent 
with that transaction. The current transaction (the one being canceled) MUST NOT change the state of 
the store. 

Message Type ID: 4 

Correlation Id Usage: Because this message uses a UUID to identify the transaction, the correlationId is 
not used. It MUST be ignored and SHOULD be set to 0.  

Multi-part: False 

Sent by: customer 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 342 

Field Name Description Data Type Min Max 

transactionUuid UUID of the transaction (assigned by the store in 
the StartTransactionResponse message) that is to 
be canceled/"rolled back". 

Must be of type Uuid (Section 23.6). 

Uuid 1 1 

 Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Transaction", 
     "name": "RollbackTransaction", 
     "protocol": "18", 
     "messageType": "4", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "transactionUuid", "type": "Energistics.Etp.v12.Datatypes.Uuid" } 
     ] 
} 

  

18.2.6 Message: RollbackTransactionResponse 

A store MUST send to a customer as a response to a RollbackTransaction message. This message 
returns the transaction UUID (which may be needed in the future for managing multiple transactions).  

This message also includes a successful flag, indicating whether the transaction commit was successful. 
If the transaction failed, the message can optionally include a brief description of the reason (how or why) 
the transaction failed.  

Message Type ID: 6 

Correlation Id Usage: MUST be set to the messageId of the RollbackTransaction message that this 
message is a response to. 

Multi-part: False 

Sent by: store 

Field Name Description Data Type Min Max 

transactionUuid The UUID (that the store assigns to the 
transaction) of the transaction that is being rolled 
back. 

Must be of type Uuid (Section 23.6). 

Uuid 1 1 

successful A flag that indicates the success or failure of the 
transaction. Default = true (success) 

boolean 1 1 

failureReason An optional description from the store to the 
customer explaining why or how the rollback 
failed.  

string 0 1 

 Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Transaction", 
     "name": "RollbackTransactionResponse", 
     "protocol": "18", 
     "messageType": "6", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 343 

         { "name": "transactionUuid", "type": "Energistics.Etp.v12.Datatypes.Uuid" }, 
         { "name": "successful", "type": "boolean", "default": true }, 
         { "name": "failureReason", "type": "string", "default": "" } 
     ] 
} 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 344 

19 ChannelSubscribe (Protocol 21) 
ProtocolID: 21 

Defined Roles: store, customer 

ChannelSubscribe (Protocol 21) provides a publish/subscribe mechanism so that an endpoint with the 
ETP customer role can connect to an endpoint with the ETP store role, discover the store's active 
channels (using Discovery (Protocol 3)), and subscribe to specific channels to receive new data as soon 
as they become available (i.e., realtime streaming). In the context of the subscription, the store also sends 
data "edits" (replaced ranges and truncated channels) to previously sent data. A customer can also use 
this protocol to request a range of data. 

This protocol also includes functionality for customers to reconnect after an unintended disconnect, and 
"catch up" on the changes during the disconnect—without having to re-stream an entire channel.  

Some key points about this and related protocols:  
 Protocol 21 has the "get/read" behavior for channel data from a store and to "listen" for changes in 

channel data that require a notification (or data updates) to be sent while connected.  

 ChannelDataLoad (Protocol 22) (see Chapter 20) has the "put/write" behavior for channel data. 
Protocol 22 "pushes" data from the customer role endpoint to the store role endpoint.  

Other protocols that "stream" channel data: 
 ChannelStreaming (Protocol 1) (see Chapter 6) is for very simple streaming of channel-oriented 

data, from "simple" producers (i.e., a sensor) to a consumer; it is designed to replace WITS data 
transfers. Protocol 1 allows a consumer to connect to a producer and receive whatever data the 
producer has (i.e., the consumer cannot discover available channels nor specify which channels it 
wants, etc. like in Protocol 21). NOTE: Beginning in ETP v1.2, Protocol 1 is used only for these so-
called simple streamers (in previous versions of ETP, Protocol 1 included all channel streaming 
behavior). 

 ChannelDataFrame (Protocol 2) (see Chapter 7) allows a customer endpoint to get channel data 
from a store in a row-orientated 'frame' or 'table' of data. In oil and gas jargon, the general use case 
that Protocol 2 supports is typically referred to as getting a "historical log". (In ETP jargon you are 
actually getting a frame of data from a ChannelSet data object; for more information, see Section 
7.1.1). 

Other ETP sub-protocols or information that may be used related for Channel data 
objects: 
 Store (Protocol 4). Because a Channel is an Energistics data object, to add, update or delete 

Channel data◦objects from a store, use Store (Protocol 4) (see Chapter 9).  

 StoreNotification (Protocol 5). To subscribe to notifications about Channel data objects (e.g., 
channels added, deleted, status change, etc.), use StoreNotification (Protocol 5) (see Chapter 10). 

 For more information about high-level workflows for data replication and outage recovery, see 
Appendix: Data Replication and Outage Recovery Workflows. 

NOTE: Energistics data models (e.g., WITSML) allow channels to be grouped into channel sets and logs. 
However, ETP channel streaming protocols handle individual channels; that is, whether or not the 
channel is part of a channel set or log is irrelevant to how it is handled in a channel streaming protocol. 
(For more information about channel sets, see Section 7.1.1.) 

This chapter includes main sections for:  
 Key ETP concepts that are important to understanding how this protocol is intended to work (see 

Section 19.1. 

 Required behavior, which includes: 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 345 

 Description of the message sequence for main tasks, along with required behavior, use of 
capabilities, and possible errors (see Section 19.2.1).  

 Other functional requirements (not covered in the message sequence) including use of endpoint, 
data object, and protocol capabilities for preventing and protecting against aberrant behavior (see 
Section 19.2.2). 

- Definitions of the endpoint, data object, and protocol capabilities used in this protocol (see 
Section 19.2.3). 

 Sample schemas of the messages defined in this protocol (which are identical to the Avro schemas 
published with this version of ETP). However, only the schema content in this specification includes 
documentation for each field in a schema (see Section 19.3).  

19.1 ChannelSubscribe: Key Concepts 

 For definitions and key concept related to channels and channel streaming, see Section 6.1. 

 For the definition of change annotations and how they work, see Section 11.1.4. 

19.2 Required Behavior 

This section contains functional and non-functional requirements for this protocol. It is organized in these 
sub-sections: 

 Message Sequence. Summarizes all messages defined by this protocol, identifies main tasks that 
can be done with this protocol and describes the response/request pattern for the messages needed 
to perform the tasks, including usage of ETP-defined capabilities, error scenarios, and resulting ETP 
error codes.  

 General Requirements. Identifies high-level (across ETP) and protocol-wide general behavior and 
rules that must be observed (in addition to behavior specified in Message Sequence), including usage 
of ETP-defined endpoint, data object and protocol capabilities, error scenarios, and resulting error 
codes.  

 Capabilities. Lists and defines the ETP-defined parameters most relevant for this sub-protocol. ETP 
defines these parameters to set necessary limits to help prevent aberrant behavior (e.g., sending 
oversized messages or sending more messages than an endpoint can handle).  

Prerequisites for using this protocol:  
 An ETP session has been established using Core (Protocol 0) as described in Chapter 5.  

 A customer has the Energistics URIs for each channel it is interested in.  

 Most likely this list will be determined using Discovery (Protocol 3); see Chapter 8. However, 
customers may also receive the URIs out of band of ETP. NOTE: If you are interested in a case 
such as subscribing to "all the channels in a particular wellbore" you MUST use Discovery 
(Protocol 3) to find all of those channels (and their respective URIs).  

- For information about Energistics URIs, see Appendix: Energistics Identifiers. 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 346 

19.2.1 ChannelSubscribe: Message Sequence 

This section explains the basic message sequence for main tasks to be done using this protocol and 
includes related key behaviors including usage of capabilities and possible errors.  

The following General Requirements section provides additional requirements and rules for how this 
protocol works (ones that don't fit neatly into a message sequence).   

The following table lists all messages defined in this sub-protocol, the basic request/response usage 
patterns per ETP role, and whether it may be multipart. The detailed content of each message is 
explained in the Message Schema section. 

ChannelSubscribe (Protocol 21): 
Basic Message-Response flow by ETP Role 

Message from customer Response/Message from store 

GetChannelMetatdata: Request for metadata for a list 
of channels. 

GetChannelMetatdataResponse (multipart): Lists the metadata data 
for each channel in the request that it can respond to. 

SubscribeChannels: Request to receive channel data 
messages (see list in next 3 rows) for specific 
channels. 

SubscribeChannelsResponse (multipart): Success-only response to 
confirm "subscriptions" that the store successfully created. 

 ChannelData: Contains the data the store has for each channel; the 
store keeps sending these messages as new data becomes available 
for as long as the customer is connected and subscribed. 

 ChannelsTruncated: Sent to notify a customer that the end indexes 
of channels that the customer is subscribed to have been reset and 
streaming may resume from the new end indexes; used to notify a 
customer that “index jump” errors have been corrected. 

 RangeReplaced (multipart): Sent when a range of data has been 
replaced for channels that a customer is subscribed to. Includes the 
affected range and any replacement data. 

GetRanges: A request for a specific range of data on 
one or more channels.  

GetRangesResponse (multipart): The data points within a specified 
range.  

CancelGetRanges: A request to stop sending data for 
a previous GetRanges request. 

GetRangesResponse (multipart): With the FIN bit set. It may be an 
empty (no data) message.  

GetChangeAnnotations: A request for changes to a 
specified list of channels since a specific time.  

GetChangeAnnotationsResponse (multipart): The list of channels 
and changed intervals, per the request. 

UnsubscribeChannels: A request to cancel 
subscriptions (unsubscribe) to one or more channels 
and to discontinue streaming data for these channels. 

SubscriptionsStopped (multipart), which has 2 use cases: 

 Response to UnsubscribeChannels message. 

 Sent by a store as a notification (i.e., without a customer request) to 
stop previous subscriptions.  

 

19.2.1.1 To do the initial setup to subscribe to channels and be streamed data as it is available: 
1. The customer MUST send a store a GetChannelMetadata message (Section 19.3.1).  

a. The GetChannelMetadata message contains a map whose values MUST each be the URI of a 
channel that the customer wants to get channel metadata for.  

i. To find a particular set of channels and their respective URIs (e.g., all the channels in a 
particular wellbore) the customer MAY use Discovery (Protocol 3). The customer may also 
receive these URIs out of band of ETP. 

b. Before doing any other operations defined by other messages in this protocol, the customer 
MUST first get the metadata for each channel.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 347 

2. For the URIs that it successfully returns channel metadata for, the store MUST send one or more 
GetChannelMetadataResponse map response messages (Section 19.3.211.3.2), which contains a 
map whose values are ChannelMetadataRecord records (Section 23.33.7).  

a. For more information on how map response messages work, see Section 3.7.3. 

b. ChannelMetadataRecord has the necessary contextual information (indexes, units of measure, 
etc.) that the customer needs to correctly interpret channel data. 

c. The store MUST assign the channel an integer identifier that is unique for the session in this 
protocol. This identifier is used instead of the channel URI to identify the channel in subsequent 
messages in this protocol for the session. This identifier is set in the id field in the 
ChannelMetadataRecord. 
RECOMMENDATION: Use the smallest available integer value for a new channel identifier. 
IMPORTANT: If the channel is deleted and recreated during a session, it MUST be assigned a 
new identifier. 

3. For the URIs it does NOT return channel metadata for, the store MUST send one or more map 
ProtocolException messages, where values in the errors field (a map) are appropriate errors. 

a. For more information on how ProtocolException messages work with plural messages, see 
Section 3.7.3. 

b. For requested channels that the store does not contain, send error ENOT_FOUND (11). 

4. Based on the list in the GetChannelMetadataResponse message, the customer determines which 
channels it wants the store to stream data for.  

a. NOTE: For each channel, the customer compares its latest channel index with the latest channel 
index returned by the store.  

b. Before setting up subscriptions, a customer MAY want to do a GetRanges operation (see Section 
19.2.1.3) and then set up the subscription to receive future changes, when they occur. OR the 
customer can choose to set up a subscription and start streaming from a specified index as 
describe in this step below.  

5. To subscribe to (i.e., to have the store stream data for) one or more of these channels, the customer 
MUST send to the store the SubscribeChannels message (Section 19.3.3), which contains a map 
whose values MUST each be a ChannelSubscribeInfo record for a channel the customer wants to 
be streamed. 

a. A customer MUST limit the total count of channels concurrently open for streaming in the current 
ETP session to the store's value for MaxStreamingChannelsSessionCount protocol capability. 

b. For each channel that would exceed the store’s limit, the store MUST NOT start streaming for the 
channel. The store MUST instead send ELIMIT_EXCEEDED (12). 

The ChannelSubscribeInfo record (Section 23.33.9) contains these data fields (for each channel):  

c. The channelId (this is the id returned on the ChannelMetadataRecord).  

d. One of the following fields MAY be populated:  

i. For startIndex, the customer MUST specify an index value that it wants the store to start 
streaming from. (The customer may determine this based on information in the 
GetChannelMetadataResponse message and the index that it currently has.) If 
requestLatestIndexCount is null AND startIndex is NOT null: 

1. For increasing data: If startIndex is greater than the channel’s end index or, for 
decreasing data, less than the channel’s end index, the store MUST deny that request 
with EINVALID_OPERATION (32). 

2. Otherwise: The store MUST start streaming from the first channel index that, for 
increasing data, is greater than or equal to the requested start index and, for decreasing 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 348 

data, is less than or equal to the requested start index. 

ii. For requestLatestIndexCount, the customer MUST specify a non-negative integer, n, which is 
the number of points back from "now" (the most recent data from the store) to start streaming 
from. If this property is provided, i.e., not null:  

1. The store MUST ignore startIndex. 

2. The store MUST stream the latest n values from the channel and MUST continue streaming 
per the subscription. 

3. If n is negative, the store MUST deny that request and send error EINVALID_ARGUMENT 
(5). 

4. If n is 0, the store MUST NOT send any existing data; the store MUST only stream new 
data. 

5. If n is greater than the number of data points in the channel (which may be 0 for empty 
channels), the store MUST stream all available data points in the channel and MUST 
continue streaming per the subscription. 

iii. If requestLatestIndexCount is null AND startIndex has a null value, then the store MUST NOT 
send any existing data. The store MUST only stream new data. 

iv. If both startIndex AND requestLatestIndexCount are null, the store MUST start streaming as 
if requestLatestIndexCount is set to 0. 

e. If the customer DOES NOT want to receive updates/historical changes (in addition to realtime 
streaming data) it MUST set the dataChanges flag to false. Historical changes are sent in 
RangeReplaced messages, which are explained below in this chapter.  

6. In response to a customer's SubscribeChannels message, the store MUST do the following: 

a. For the channels it successfully starts streaming for, the store MUST respond with a one or more 
SubscribeChannelsResponse map response messages (Section 19.3.4), which list the 
channels the store has started streaming.  

i. For more information on how map response messages work, see Section 3.7.3. 

b. For the channels it did NOT start streaming for, the store MUST send one or more map 
ProtocolException messages where values in the errors field (a map) are appropriate errors. 

i. For more information on how ProtocolException messages work with plural messages, see 
Section 3.7.3. 

ii. If a requested channel is already being streamed, send error EINVALID_STATE (8). 

c. Start sending ChannelData messages (Section 19.3.5), which contain the data for the channels 
that the customer subscribed to and the store can stream data for, beginning the customer’s 
requested starting point (per Step 5). 

i. For information on index order of data in ChannelData messages, see Section 19.2.2, Row 7.  

ii. If the customer has requested an "old" index (e.g., one the store initially produced 1 hour ago), 
the store MUST start streaming from that index (i.e., sending ChannelData messages from 
that index) and continue streaming. That is, the notions of "historical" or "new" are irrelevant: 
the store MUST simply start streaming from the index the customer specified and continue. 

d. AND, if the dataChanges flag is set to true (default), start sending RangeReplaced messages 
(Section 19.3.7) (as changes occur). 

i. For information on how the RangeReplaced message/operations work, see Section 19.2.2, 
Row 9.  

e. AND to correct "index jump errors" (a frequently occurring error when collecting data in oilfield 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 349 

operations), a store MUST send ChannelsTruncated messages (Section 19.3.6). 

i. For information on how the ChannelsTruncated message works, see Section 19.2.2, Row 
10. 

7. The store MUST continue sending ChannelData messages and ChannelsTruncated messages for 
the subscribed channels, for the life of the subscription, and if the customer requested data changes 
the store MUST also send RangeReplaced messages.  

8. If a customer sends a ProtocolException message in response to a ChannelData, 
ChannelsTruncated, or RangeReplaced message, the store MAY attempt to take corrective action 
but the store MUST NOT terminate the associated channel subscriptions. 

9. The store MAY need to stop sending data (e.g., a channel that a customer is subscribed to is deleted 
or permission for access to a channel is revoked).  

a. To stop sending data, the store MUST send the customer a SubscriptionsStopped message 
(Section 19.3.9), which is a map of the channels being stopped. After sending 
SubscriptionsStopped for the channel, the store MUST NOT send any ChannelData, 
RangeReplaced, or ChannelsTruncated messages for a channel. 

19.2.1.2 For the customer to "unsubscribe" from streaming data: 
1. The customer MUST send the store the UnsubscribeChannels message (Section 19.3.8), which is a 

map whose values MUST each be the channel ID of a channel the customer no longer wants to 
receive streaming data for. 

2. For the channels it successfully stopped streaming for, the store MUST respond with a one or more 
SubscriptionsStopped map response messages (Section 19.3.9), which list the IDs of the channels 
the store has stopped streaming. 

a. For more information on how map response messages work, see Section 3.7.3. 

b. The store MUST NOT send any ChannelData, RangeReplaced, or ChannelsTruncated 
messages for a channel after sending SubscriptionsStopped for the channel. 

3. For the channels it did NOT stop streaming for, the store MUST send one or more map 
ProtocolException messages where values in the errors field (a map) are appropriate errors. 

a. For more information on how ProtocolException messages work with plural messages, see 
Section 3.7.3. 

b. If a requested channel is not being streamed, send error EINVALID_STATE (8). 

4. After a customer has canceled a subscription, the store MUST NOT restart it.  

a. If the customer wants to restart the subscription, it MUST attempt to do so by sending a new 
SubscribeChannels message with the channel’s channelId as described in Section 19.2.1.1. 

19.2.1.3 To request a range of data: 
In addition to subscribing to a channel, a customer has the option of simply getting one or more ranges 
(intervals) of data from one or more channels. The customer can request multiple ranges for multiple 
channels. This request is a "get" operation, NOT a subscription.  

Use cases supported by this request include: populating a graph or chart; or, when reconnecting after a 
dropped connection, using it to "catch up" on missed data.  

1. The customer and store must exchange GetChannelMetadata and GetChannelMetadataResponse 
messages as describe in Section 19.2.1.1 (Steps 1 and 2).  

2. The customer MUST send to the store a GetRanges message (Section 19.3.10), which specifies the 
channels of interest and the index range or ranges (interval) for each channel. 

a. The GetRanges message contains an array of ChannelRangeInfo records, which specifies the 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 350 

details for each range request. 

i. All channels in the request MUST have a common index type, unit, direction and, for depth 
data, datum.  

ii. A channel MUST NOT be included more than once in a single GetRanges message. That is, 
GetRanges may not be used to request multiple ranges from the same channel. 

iii. Though this message may contain multiple range requests, from multiple channels, the 
responses are NOT aligned in any way (for example, like they are in ChannelDataFrame 
(Protocol 2)). 

iv. For this operation, ETP supports requesting and filtering on secondary indexes. For more 
information, see Section 19.2.2, Row 8.  

b. The customer MUST also assign a UUID to the request (requestUuid), which may be used later 
to cancel the range request.  

c. A customer MUST limit the count of channels in a single range request to the store's value for the 
MaxRangeChannelCount protocol capability. 

i. If the customer request exceeds this limit, the store MUST deny requests that exceed this 
and send error ELIMIT_EXCEEDED (12). 

3. The store MUST be able to return ALL data for ALL channels in the request or it MUST deny the 
entire request with an appropriate error code. EXAMPLE: If the request includes a channel ID for a 
channel that has been deleted, the entire request must be denied with EINVALID_CHANNELID 
(1002). 

a. Multiple ProtocolException messages MUST NOT be sent, and the map part of a 
ProtocolException message (i.e., the errors field) MUST NOT be used. 

i. This exception may occur after some data has already been sent, but a store SHOULD make 
a best effort to determine if there will be any errors as early as possible, preferably before 
sending any data. 

b. NOTE: Including channels with no data in the requested interval is NOT an error.  

4. If the store successfully returns data from the request interval(s), it MUST send one or more 
GetRangesResponse messages (Section 19.3.11).  

a. Each GetRangesResponse message is an array of DataItem records (see Section 23.33.5), 
each of which contains the channel data for the request interval(s).   

i. A store MUST limit the count of DataItem records in the complete multipart range message to 
the customer's value for the MaxRangeDataItemCount protocol capability. 

ii. The customer MAY notify the store of responses that exceed this limit by sending error 
ERESPONSECOUNT_EXCEEDED (30).  

iii. A store MAY further limit the total count of DataItem records to its value for 
MaxRangeDataItemCount protocol capability, if it is smaller than the customer's value. 

iv. If sending additional DataItem records would exceed the limit, the store MUST terminate the 
response with ERESPONSECOUNT_EXCEEDED (30). The store MUST NOT terminate the 
response until it has sent MaxRangeDataItemCount DataItem records. 

v. For information on index order of data in GetRangesResponse messages, see Section 
19.2.2, Row 7. It is up to the store how it sends data in the response message, e.g., whether it 
sends channel-based or row-based data in the response. EXAMPLE: If the customer asks for 
50 channels, the store MAY send the entirety of each channel OR a "row" of the data available 
for all channels at one index. A store MAY also change how it is sending data, depending on 
the request and what is most "optimized" for that request and other requests it may be 
processing.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 351 

5. If the store has no data in any of the request intervals, it MUST send a GetRangesResponse 
message with the FIN bit set and the data field set to an empty array. 

6. If the store does NOT successfully return data or a GetRangesResponse with an empty data array, it 
MUST send a non-map ProtocolException message with an appropriate error, such as 
EREQUEST_DENIED (6). 

7. To cancel a GetRanges operation, the customer MUST send to the store a CancelGetRanges 
message (Section 19.3.12), which identifies the UUID of the request to be stopped.  

a. If the store has not already finished responding to the request that is being canceled, the store 
MUST: 

i. Send a final GetRangesResponse message with the FIN bit set; this final message MAY be 
empty (no data).   

ii. Stop sending GetRangesResponse messages for the specified channels. 

19.2.1.4 To reconnect and resume streaming when the session has been interrupted (using 
ChangeAnnotations): 

This process can be used by a customer anytime it connects to a store; that is, when it first connects to a 
store and wants to determine the latest changes or after an unintended disconnect when it wants to 
determine data it may have missed.  

ETP has no session survivability. If the session is interrupted (e.g., a satellite connection drops), using 
this process makes it easier for a customer to determine what has changed while disconnected, get any 
changed data it requires, and resume operations that were in process when the session dropped—and do 
that with the reduced likelihood of NOT having to "resend all data from the beginning" (i.e., all data from 
before the session dropped). For more information about related workflows, see Appendix: Data 
Replication and Outage Recovery Workflows. 

1. The customer MUST reconnect to the store and re-create and re-authorize (if required) the ETP 
session (as described in Section 4.3 and 5.2.1.1) and get channel metadata using the process 
described in Section 19.2.1.1 (Steps 1 and 2). (REMINDER: The GetChannelMetadataResponse 
message is where the store assigns channel IDs; these channel IDs are used in the messages for the 
remaining steps below).  

2. The customer MUST "re-subscribe" to desired channels as described in Section 19.2.1.1 (Steps 3–5). 

a. For each channel, a customer should compare the end index it has for a channel with the end 
index it receives in the GetChannelMetadataResponse message to determine the index it wants 
the store to start streaming from.  

b. Recommended best practice is to re-subscribe to channels first (before getting change 
annotations), so you start receiving current data and related change notifications as soon as 
possible. 

3. To determine what has changed while disconnected, the customer MUST send the store a 
GetChangeAnnotations message (Section 19.3.13).  

a. This message contains a map whose values MUST each be a ChannelChangeRequestInfo 
record (Section 23.33.15) where the customer specifies the list of channels and for each, the 
"changes since" time (that is, the customer wants all changes since this time, which should be 
based on the time the customer was last sure it received data from the store). In the message, 
the customer MUST also indicate if it wants all change annotations or only the latest change 
annotation for each channel. 

i. The "changes since" time (sinceChangeTime field) MUST BE equal to or more recent than 
the store's ChangeRetentionPeriod endpoint capability. 

4. For ChannelChangeRequestInfo records it successfully returns change annotations for, the store 
MUST respond with one or more GetChangeAnnotationsResponse map response messages 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 352 

(Section 19.3.14). 

a. For more information on how map response messages work, see Section 3.7.3. 

b. The map values in each message are ChangeResponseInfo records (Section 23.34.19), which 
contains a time stamp for when the response was sent and the ChangeAnnotation records 
(Section 23.34.18) for the channels in a ChannelChangeRequestInfo record. 

i. Each ChangeAnnotation record contains a timestamp for when the change occurred in the 
store and the interval of the channel that changed. (NOTE: Change annotations keep track 
ONLY of the interval that change, NOT the actual data that changed). 

c. For information about how the store tracks and manages these change annotations, see Section 
19.2.2, Row 12.  

5. For ChannelChangeRequestInfo records it does NOT successfully send change annotations for, the 
store MUST send one or more map ProtocolException messages where values in the errors field (a 
map) are appropriate errors. 

a. For more information on how ProtocolException messages work with plural messages, see 
Section 3.7.3. 

6. Based on information in the GetChangeAnnotationsResponse message, the customer MAY:  

a. Use the GetRanges message to retrieve intervals of interest that have changed (as described in 
Section 19.2.1.3).  

19.2.2 ChannelSubscribe: General Requirements 

In addition to the basic message sequence described in the previous section, this protocol has the 
additional requirements listed in the table below. For easy reference, the rows and behaviors in this table 
are numbered. 

NOTE: This table has been organized to reduce redundancy but also to help developers more easily 
locate specific requirements. EXAMPLE: There are rows with general requirements that apply to all 
protocols (e.g., Rows 1–2), rows for general requirements for this protocol, and (possibly) some rows with 
additional requirements for specific types of operations. 

Row# Requirement Behavior 

1.  ETP-wide behavior that MUST be 
observed in all protocols 

1. Requirements for general behavior consistent across all of ETP are 
defined in Chapter 3. This behavior includes information such as: all 
details of message handling (such as message headers, handling 
compression, use of message IDs and correlation IDs, requirements for 
plural and multipart message patterns) use of acknowledgements, 
general rules for sending ProtocolException messages, URI encoding, 
serialization and more. RECOMMENDATION: Read Chapter 3 first. 

2. For information about Energistics identifiers and prescribed ETP URI 
formats, see Appendix: Energistics Identifiers. 

a. In MOST cases, endpoints performing operations in this protocol 
MUST use the canonical Energistics URI. For more information, see 
Section 3.7.4. 

3. For the complete list of error codes defined by ETP, see Chapter 24. 

4. ALL operations in an ETP session are performed on the set of 
supported data object types that were negotiated to be used when 
the session was initiated and established. 

a. The client and server exchange the list of data object types in the 
supportedDataObjects field of the RequestSession and 
OpenSession messages in Core (Protocol 0). For more 
information, see Chapter 5. 

b. In general, the list of supported objects for a session will most likely 
be the intersection of the data objects that the server supports and 
the data objects that the client requested for the ETP session. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 353 

Row# Requirement Behavior 

c. A store MUST support all messages (in each supported ETP sub-
protocol) for each supported data object, whether the data object is 
supported explicitly or by wild card. 

d. An endpoint MUST only send messages with the URI of a data 
object that is a type supported by the other endpoint for this ETP 
session.  

i. If an endpoint sends a URI for an unsupported type of data 
object, the other endpoint MUST send error 
EDATAOBJECTTYPE_NOTSUPPORTED (16). 

2.  Capabilities-related behavior 1. Relevant endpoint, data object, and/or protocol capabilities MUST be 
specified when the ETP session is established (see Chapter 5) and 
MUST be used/honored as defined in the relevant ETP sub-protocol.  

2. For an explanation of endpoint, data object, and protocol capabilities, see 
Section 3.3. 

a. For the list of global capabilities and related behavior, see Section 
3.3.2. 

3. Section 19.2.3 identifies the capabilities most relevant to this ETP sub-
protocol. If one or more of the defined capabilities is presented by an 
endpoint, the other endpoint in the ETP session MUST accept it (them) 
and process the value, and apply them to the behavior as specified in 
this document. 

a. Additional details for using these capabilities are included in 
relevant rows of this table and Section 19.2.1 ChannelSubscribe: 
Message Sequence. 

3.  Message Sequence for main tasks in 
this protocol: See Section 19.2.1. 

1. The Message Sequence section above (Section 19.2.1) describes 
requirements for the main tasks listed there and also defines required 
behavior. 

4.  If a customer wants to be able to 
"reconnect and catch up on what 
happened while disconnected" after 
unintended outage, it MUST track this 
information during an ETP session 

1. ETP supports workflows and provides mechanisms to help customers to 
more easily recover missed data (i.e., easier than "re-stream the entire 
channel") after reconnecting from an unintended outage.  
a. For more information, see Appendix: Data Replication and 

Outage Recovery Workflows. 
2. If a customer wants to use these workflows, the customer role endpoint 

MUST do the following: 
a. When the customer first subscribes to a channel, it MUST get the 

most recent ChangeAnnotation record for each channel (if there 
are any).  

i. When reconnecting after an outage, the customer MUST get 
all ChangeAnnotation records.  

b. In the subscription request for each channel (specifically, in the 
ChannelSubscribeInfo record), it MUST set the dataChanges field 
to true, which means the store MUST send RangeReplaced 
messages with data changes.  

c. During the session, the customer MUST track the most recently 
received index value for each channel it is subscribed to.  

d. For more information about change annotations, see Row 12. 

5.  Plural messages (which includes maps) 1. This protocol uses plural messages, which includes maps. For detailed 
rules on handling plural messages (including ProtocolException 
handling), see Section 3.7.3. 

6.  To get notifications of changes to the 
channel itself (not the data in the channel) 
or new channels 

1. A channel is a data object: as such adding, updating, and deleting 
channels is done using Store (Protocol 4).  

a. NOTE: "Updating" means updates to the channel data object 
itself—which DOES NOT include the data points in a channel, 
which is done using ChannelStreaming (Protocol 1) and 
ChannelDataLoad (Protocol 22). For more information, see Section 
6.1.1.  

2. To receive notifications of changes, such as new channels added, 
changes in channel status (active or inactive), or a channel has been 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 354 

Row# Requirement Behavior 

deleted, a customer MUST subscribe to changes to an appropriate 
context/scope using StoreNotification (Protocol 5) for changes that occur 
in the store. For more information, see:  

a. Section 9.2.2 (for Store (Protocol 4) 

b. Section 10.2.2 (for StoreNotification (Protocol 5) 

3. Based on the information a customer receives from store notifications 
(e.g., a new channel was added) the customer can determine necessary 
actions that it may require in ChannelSubscribe (Protocol 21). 
EXAMPLE: When a customer receives notification that a new channel 
has been added, it may then subscribe to receive data for that new 
channel.  

7.  Store Behavior: Data order for channel 
subscriptions and range responses 

1. Streaming data points (in ChannelData messages) MUST be sent in 
primary index order for each channel, both within one message and 
across multiple messages. 

2. Data points in GetRangesResponse and RangeReplaced messages 
MUST be sent in primary index order for each channel, both within a 
single message and across all messages within a multipart message 
(response or notification). 

3. Primary index order is always as appropriate for the index direction of a 
channel (i.e., increasing or decreasing). 

4. The index values for each data point are in the same order as their 
corresponding IndexMetadataRecord records in the corresponding 
channel’s ChannelMetadataRecord record, and the primary index is 
always first. 

5. The same primary index value MUST NOT appear more than once for 
the same channel in any ChannelData message UNLESS the channel 
data at that index was affected by a truncate operation during the 
session (i.e., a ChannelsTruncated message was received for the 
channel with a range that covered the primary index value). 

6. The same primary index value MUST NOT appear more than once for 
the same channel in the same multipart GetRangesResponse or 
RangeReplaced message. 

8.  Secondary indexes in range operations 1. For GetRanges operations, ETP provides support for additional filtering 
on secondary indexes/intervals.   

a. Support of secondary indexes is considered advanced functionality 
and is optional.  

2. If an endpoint supports filtering on secondary indexes, it MUST set the 
SupportsSecondaryIndexFiltering protocol capability to true.  

a. If a store's SupportsSecondaryIndexFiltering protocol capability is 
false and a customer requests that data be filtered by secondary 
index values, then the Store MUST deny the request and send error 
ENOTSUPPORTED (7). 

b. ETP provides an optional field on the IndexMetadataRecord 
(Section 23.33.6) named filterable, which allows a store to specify if 
a particular index can be filtered on in various request messages in 
some ETP sub-protocols.  

3. Results with secondary indexes are highly variable depending on the 
specifics of the data and the indexes. EXAMPLE: Results based on 
secondary index filtering may result in no data values at some secondary 
indexes or multiple data values at some secondary indexes (e.g., a 
wireline tool where time is the primary index is time may result in multiple 
depth readings).  

4. A customer specifies the secondary intervals that it wants to filter on in 
the ChannelRangeInfo record, which is used by the GetRanges 
message.  

9.  Notifying that a range of data in a channel 
has been updated or deleted 
(When sending a RangeReplaced 
message to a customer) 

1. The behavior described in this row assumes that a customer has 
subscribed to the channel as described in Section 19.2.1.1. 

2. When a range of data in a channel that a customer is subscribed to has 
been updated or deleted, a store MUST do the following: 

a. A store MUST send a RangeReplaced message with details about 
the change to the customer for the channel. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 355 

Row# Requirement Behavior 

i. If the customer set dataChanges = true when subscribing to 
the channel, then the store MUST send RangeReplaced to 
subscribed customers whether or not they have previously 
been sent the original data. 

ii. The changedInterval field MUST represent the full range of 
data affected by the change. 

b. If the channel data interval for the change includes the end index of 
the channel, the store MUST send a ChannelsTruncated message 
to notify the customer that the end index of the channel has been 
reset. 

i. The ChannelsTruncated message MUST reset the end index 
for each affected channel to its updated end index after the 
data changes were applied. 

ii. If the customer set dataChanges = true in the subscription, the 
store MUST send RangeReplaced first and send 
ChannelsTruncated second. The store MUST NOT send any 
other ChannelSubscribe (Protocol 21) messages affecting the 
channel between RangeReplaced and ChannelsTruncated. 

iii. If the customer set dataChanges = false in the subscription, 
the store MUST ONLY send ChannelsTruncated. It MUST 
NOT send RangeReplaced. 

3. A store MUST send all DataItem records for a particular change to a 
customer.  

a. A store MUST limit the count of DataItem records in a complete 
multipart range message to the customer's value for the 
MaxRangeDataItemCount protocol capability. 

b. The customer MAY notify the store of responses that exceed this 
limit by sending error ELIMIT_EXCEEDED (12). 

c. A store MAY further limit the total count of DataItem records to its 
value for MaxRangeDataItemCount protocol capability, if it is 
smaller than the customer's value. 

d. If a store is unable to send all DataItem records for a particular 
change in a single RangeReplaced multipart range message 
because doing so would exceed the limit, the store MUST split data 
for the change into more than one multipart RangeReplaced range 
message. When doing so, the store MUST ensure the 
changedInterval and replacement data are consistent in each, 
separate multipart message. EXAMPLE: MaxRangeDataItemCount 
is 1,000,000. The data for a change is 2,500,000 DataItem records. 
The store may divide this data into three separate multipart 
RangeReplaced messages: two with 1,000,000 DataItem records 
and one with 500,000 records. Each of the three multipart 
messages consists of an initial RangeReplaced message with 
correlationId set to 0 followed by zero or more additional 
RangeReplaced messages that correlate back to the first one in 
the multipart message. 

4. RangeReplaced is a notification of an atomic ‘delete and replace’ 
operation. 

5. The store MUST send RangeReplaced messages in primary index 
order. 

a. The same primary index value MUST NOT appear more than once 
for the same channel in a RangeReplaced multipart notification. 

6. All data items in the data field of a RangeReplaced message MUST 
conform to these rules: 

a. The channelIds of each DataItem MUST match one of the channels 
listed in the channelIds field in the first message.  

i. The customer MAY ignore any DataItem where the channelId 
does not match.  

b. The index of each DataItem MUST be between (inclusive) of the 
startIndex and endIndex defined in the changedInterval field.  

i. The customer MAY ignore any data that falls outside of these 
bounds. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 356 

Row# Requirement Behavior 

7. To notify a customer of a range that was deleted without any 
replacement data, the store MUST send a RangeReplaced message 
and simply leave the data field empty (i.e., nothing to insert).   

10.  Notifying that channel end indexes have 
been reset (ChannelsTruncated 
message) 

1. To notify a customer that the end indexes of channels have been reset 
(e.g., to correct for an “index jump” error) a store MUST send a 
ChannelsTruncated message, which contains an array of TruncateInfo 
records; each record contains the channel ID and its new end index. 

2. On receipt of a ChannelsTruncated message, the customer MUST take 
note of the new end index of the channel. 

3. When the store resumes sending ChannelData messages (for the 
channel whose index it corrected), the primary index for each new 
DataItem MUST be greater than (for increasing data) or less than (for 
decreasing data) the new end index in the ChannelsTruncated 
message.   

11.  Ending subscriptions 1. A store MUST end a customer’s channel subscription when: 

a. The customer cancels the subscription by sending an 
UnsubscribeChannels message.  

b. The channel for the subscription is deleted. 

c. The customer loses access to the channel. 

2. When ending a subscription: 

a. The store MAY discard any queued data or notifications for the 
channel. 

b. The store MUST send a SubscriptionsStopped message either as 
a response to a customer's UnsubscribeChannels request or as a 
notification. 

c. The store MUST include a human readable reason why the 
subscription(s) were ended in the SubscriptionsStopped 
message. 

3. After sending the SubscriptionsStopped message, the store MUST 
NOT send any further data or notifications for the channel until and 
unless the subscription is later restarted. 

4. After a subscription has ended: 

a. A customer MAY request that the subscription be restarted by 
sending a new SubscribeChannels message with the channel’s 
channelId. 

b. A store MUST NOT restart the subscription without a request from 
the customer. 

12.  Detecting changes to channel data 1. For a definition of change annotations and related terms, see Section 
11.1.4. 

2. For the requirements on stores create and manage change annotations 
for channel data objects, see Sections 11.2.2.2, 11.2.2.4, and 11.2.2.5. 

3. For the main message sequence for reconnecting after an outage, see 
Section 19.2.1.4. 

13.  Index Metadata 1. A channel data object’s index metadata MUST be consistent: 

a. The index units and vertical datums MUST match the channel’s 
index metadata. 

2. When sending messages, both the store AND the customer MUST 
ensure that all index metadata and data derived from index metadata are 
consistent in all fields in the message, including in XML or JSON object 
data or part data. 

a. EXAMPLE: The uom and depthDatum in an IndexInterval record 
MUST be consistent with the channel’s index metadata. 

b. A store MUST reject requests with inconsistent index metadata with 
an appropriate error such as EINVALID_OBJECT (14) or 
EINVALID_ARGUMENT (5). 

19.2.3 ChannelSubscribe: Capabilities 

The table below lists key capabilities for this protocol. The protocol capabilities are all defined here. For 
this protocol, one particularly crucial endpoint capability is defined here.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 357 

 For protocol-specific behavior relating to using these capabilities in this protocol, see◦Sections 19.2.1 
and 19.2.2. 

 For definitions for endpoint and data object capabilities, see the links in the table. 

 For general information about the types of capabilities and how they may be used, see Section 3.3. 

ChannelSubscribe (Protocol 21): Capabilities 

Name: Description Type Units 
Value Units 

Defaults 
and/or 

MIN/MAX 

Endpoint Capabilities  

(For definitions of each endpoint capability, see Section 3.3.) 

   

NOTE: Many endpoint capabilities are "universal", used in all or 

most of the ETP protocols. For more information, see Section 
3.3.2. 

Behavior associated with other endpoint capabilities are 
defined in relevant chapters.  
EXAMPLE: The capabilities defined for limiting ETP 
sessions between 2 endpoints are discussed in 
Section 4.3, How a Client Establishes a WebSocket 

Connection to an ETP Server. 

   

ChangeRetentionPeriod: The minimum time period in seconds 

that a store retains the Canonical URI of a deleted data object and 
any change annotations for channels and growing data objects.  
RECOMMENDATION: This period should be as long as is feasible 

in an implementation. When the period is shorter, the risk is that 
additional data will need to be transmitted to recover from outages, 
leading to higher initial load on sessions. 

long second 
<number of 
seconds> 

Default: 86,400 

MIN: 86,400 

Data Object Capabilities  
(For definitions of each data object capability, see Section 3.3.4.) 

   

ActiveTimeoutPeriod: (This is also an endpoint capability.)  

The minimum time period in seconds that a store keeps the active 
status (activeStatus field in ETP) for a growing data object or 
channel "active" after the last new part or data point resulting in a 
change to the data object's end index was added to the data 
object. 

This capability can be set for an endpoint and/or for a data object. 
A data object-specific value overrides an endpoint-specific value. 

long second 
<number of 
seconds> 

Default: 3,600 

MIN: 60 seconds 

Protocol Capabilities    

MaxIndexCount: The maximum index count value allowed for a 

channel streaming request. 

long count 
<count of 
indexes> 

Default: 100 

MIN: 1 

MaxRangeChannelCount: The maximum count of channels 

allowed in a single range request. 

long count 
<count of 
channels> 

MIN: Should be 
equivalent to 
MaxContained 
DataObjectCount 
for ChannelSet 

MaxRangeDataItemCount: The maximum total count of DataItem 

records allowed in a complete multipart range message. 

long count 
<count of 
records> 

MIN: 1,000,000 

MaxStreamingChannelsSessionCount: The maximum total 

count of channels allowed to be concurrently open for streaming in 
a session. The limit applies separately for each protocol with the 

long count 
<count of 
channels> 

MIN: 10,000 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 358 

ChannelSubscribe (Protocol 21): Capabilities 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

capability. EXAMPLE: Different values can be specified for 
ChannelSubscribe (Protocol 21) and ChannelDataLoad (Protocol 
22). 

SupportsSecondaryIndexFiltering: Indicates whether an 

endpoint supports filtering requested data by secondary index 
values. If the filtering can be technically supported by an endpoint, 
this capability should be true. 

Boolean N/A N/A 

 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 359 

19.3 ChannelSubscribe: Message Schemas 

This section provides a figure that displays all messages defined in ChannelSubscribe (Protocol 21). 
Subsequent sub-sections provide an example schema for each message and definitions of the data fields 
contained in each message. 

 
Figure 29: ChannelSubscribe: message schemas 

class ChannelSubscribe

«enumeration»
ErrorCodes::ChannelErrors

 EINVALID_CHANNELID = 1002

tags
AvroSrc = <memo>

notes
Error codes for Protocol 1

«Message»
GetChannelMetadata

+ uris : s tring [1..n] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 1
MultiPart = Fa lse
SenderRole = customer

notes
A  customer sends to a store to request metadata and channel IDs
(channelIds) one or more channels, specified by URIs. The response to
this is the GetChannelMetadataResponse message.
The customer uses channel metadata to determine which channels it
may want to subscribe to (i.e., to receive streaming data for) or request
historical data from. The customer uses channelIds in subsequent
operations in this protocol during a session.

«Message»
GetChannelMetadataResponse

+ metadata: ChannelMetadataRecord [0..n] (map) = EmptyMap

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 2
MultiPart = True
SenderRole = s tore

notes
A store sends to a customer in response to a GetChannelMetadata
message to provide the metadata for each requested Channel data
object that is available in the store.
An important function of this message: The metadata includes a
mapping of the request channel URIs to shorter and more-convenient-
to-use channel IDs (channelIds); these IDs are used in subsequent
operations in this protocol during a session.

«Message»
SubscribeChannels

+ channels : ChannelSubscribeInfo [1..n] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 3
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store to request that the store begin streaming
data for one or more channels. The "success only" response to this
message is the SubscribeChannelsResponse message.

«Message»
ChannelData

+ data: DataItem [1..n] (array)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 4
MultiPart = Fa lse
SenderRole = s tore

notes
A store sends to a customer for channels the customer has subscribed to
(using the SubscribeChannels message).  The ChannelData message
contains an array of DataItem records for one or more channels. For
more information on what data (value) may be sent, see the data field
below.
General behaviors:

1. This message "appends" data to a channel. It does NOT include
changes to existing data in the channel.
2. There is no requirement that any given channel appear in an
individual ChannelData message, or that a given channel appear only
once in ChannelData message (i.e., a range of several index values for
the same channel may appear in one message).
3. This is a "fire and forget" message. The sender does NOT receive a
positive confirmation from the receiver that it has successfully received
and processed the message.
4. For streaming data, ETP does NOT send null data values.
EXCEPTION: If channel data values are arrays, then the arrays MAY
contain null values, but at least one array value MUST be non-null and
the entire array CANNOT be null.
5. To optimize size on-the-wire, redundant index values MAY be sent
as null. The rules for this are as follows:

a. The index value of the first DataItem record in the data array MUST
NOT be sent as null.
b. For subsequent index values:
i. If an index value differs from the previous index value in the data
array, the index value MUST NOT be sent as null.
ii. If an index value is the same as the previous index value in the data
array, the index value MAY be sent as null.
c. EXAMPLE: These index values from adjacent DataItem records in the
data array:
[1.0, 1.0, 2.0, 3.0, 3.0]
MAY be sent as:
[1.0, null, 2.0, 3.0, null].
d. When the DataItem records have both primary and secondary index
values, these rules apply separately to each index.
EXAMPLE: These primary and secondary index values from adjacent
DataItem records in the data array:
[[1.0, 10.0], [1.0, 11.0], [2.0, 11.0], [3.0, 11.0], [3.0, 12.0]]
MAY be sent as:
[[1.0, 10.0], [null, 11.0], [2.0, null], [3.0, null], [null, 12.0]].
f. If ALL index values for a DataItem record are to be sent as null, the
indexes field should be set to an empty array.
6. For more information about sending channel data, see Section 6.1.3.

«Message»
UnsubscribeChannels

+ channel Ids : long [1..n] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 7
MultiPart = Fa lse
SenderRole = customer

notes
A  customer sends to a store to cancel its subscription (unsubscribe) to
one or more channels and to discontinue streaming data for these
channels.
The response to this message is the SubscriptionsStopped message.

«Message»
SubscriptionsStopped

+ channel Ids : long [0..n] (map) = EmptyMap
+ reason: s tring [0..1]

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 8
MultiPart = True
SenderRole = s tore

notes
The store MUST send to a customer as a confirmation response to the
customer's UnsubscribeChannels message.
If the store stops a customer’s subscription on its own without a request
from the customer (e.g., if the channel has been deleted), the store
MUST send this message to notify the customer that the subscription
has been stopped. When sent as a notification, there MUST only be one
message in the multi-part notification.
The store MUST provide a human readable reason why the subscriptions
were stopped.

«Message»
GetRanges

+ channelRanges : ChannelRangeInfo [1..n] (array)
+ requestUuid: Uuid

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 9
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store to request data over a specific range for one
or more channels. The response to this is the GetRangesResponse
message.

«Message»
GetRangesResponse

+ data: DataItem [0..n] (array) = EmptyArray

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 10
MultiPart = True
SenderRole = s tore

notes
A store sends to a customer in response to a GetRanges message. It
contains the data for the specified range(s).

«Message»
RangeReplaced

+ changedInterva l : IndexInterva l
+ changeTime: long
+ channel Ids : long [1..n] (array)
+ data: DataItem [1..n] (array)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 6
MultiPart = True
SenderRole = s tore

notes
A store sends to a customer to notify it that a range of data in channels it
is subscribed to have been updated or deleted.

«Message»
CancelGetRanges

+ requestUuid: Uuid

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 11
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store to stop streaming data for a previous
GetRanges request.

«Message»
ChannelsTruncated

+ changeTime: long
+ channels : TruncateInfo [1..*] (array)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 13
MultiPart = Fa lse
SenderRole = s tore

notes
A store sends to a customer to notify it that the end indexes for
channels have been reset. It is a map of individual truncate requests
where each request specifies a channel ID and the new end index for
that channel.
The result of this message is, for each channel:
- Streaming may resume from the channel’s new end index.
- Data after the channel’s new end index should be discarded.
Use Case: A frequently occurring issue/error when collecting data in the
oil field is often referred to as a "depth jump", which is when an index
momentarily "jumps forward" (beyond the next expected index value)
before being fixed, and then the corrected streaming resumes.  This
type of issue must also be fixed in downstream consumers of the data
(so the data subsequently streamed makes sense).

«Message»
GetChangeAnnotations

+ channels : ChannelChangeRequestInfo [1..*] (map)
+ latestOnly: boolean = fa lse

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 14
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store to get change annotations
(ChangeAnnotation record) for the channels listed in this message.
A change annotation identifies the interval(s) in a channel that have
changed and the time that the change happened in the store. They are
used in recovering from unplanned outages (connection drops). For more
information, see Appendix: Data Replication and Outage Recovery
Workflows.
The response to this message is the GetChangeAnnotationsResponse
message.

«Message»
GetChangeAnnotationsResponse

+ changes : ChangeResponseInfo [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 15
MultiPart = True
SenderRole = s tore

notes
A store sends to a customer in response to a GetChangeAnnotations
message. It is a map of ChangeResponseInfo  data structures which each
contains a change annotation (ChangeAnnotation) for the requested
channel data objects that the store could respond to. The returned
annotations are based on the store's storeLastWrite time for each
channel data object.
The store tracks changes "globally" (NOT per user, customer or
endpoint). Also, a store MAY combine annotations over time, as it sees
fit. For more information on how annotations work, see Section 19.2.1.4.

«Message»
SubscribeChannelsResponse

+ success : s tring [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 12
MultiPart = True
SenderRole = s tore

notes
A store MUST send this "success only" message to a customer as
confirmation of a successful operation in response to a
SubscribeChannels message.
It confirms the channels for which the store successfully created
streaming subscriptions.



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 360 

19.3.1 Message: GetChannelMetadata 

A customer sends to a store to request metadata and channel IDs (channelIds) for one or more channels, 
specified by URIs. The response to this is the GetChannelMetadataResponse message.  

The customer uses channel metadata to determine which channels it may want to subscribe to (i.e., to 
receive streaming data for). The customer uses channelIds in subsequent operations in this protocol 
during a session. 

Message Type ID: 1 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

uris A map whose values are the URIs for the 
channels that the customer wants information 
(metadata) about.  

The URIS MUST be URIs for channel data 
objects. 

If both endpoints support alternate URIs for the 
session, these MAY be alternate data object 
URIs. Otherwise, they MUST be canonical 
Energistics data object URIs. For more 
information, see Appendix: Energistics 
Identifiers. 

string 1 n 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelSubscribe", 
     "name": "GetChannelMetadata", 
     "protocol": "21", 
     "messageType": "1", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { 
             "name": "uris", 
             "type": { "type": "map", "values": "string" } 
         } 
     ] 
} 

  

19.3.2 Message: GetChannelMetadataResponse 

A store sends to a customer in response to a GetChannelMetadata message to provide the metadata for 
each requested Channel data object that is available in the store.  

An important function of this message: The metadata includes a mapping of the request channel URIs to 
shorter and more-convenient-to-use channel IDs (channelIds); these IDs are used in subsequent 
operations in this protocol during a session. 

Message Type ID: 2 

Correlation Id Usage: MUST be set to the messageId of the GetChannelMetadata message that this 
message is a response to. 

Multi-part: True 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 361 

Sent by: store 

Field Name Description Data Type Min Max 

metadata A map of ChannelMetadataRecord records, which 
contains the metadata for each channel the store 
could successfully return. 

The URIs MUST be canonical Energistics data 
object URIs; for more information, see Appendix: 
Energistics Identifiers. 

ChannelMetadataRecord 0 n 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelSubscribe", 
     "name": "GetChannelMetadataResponse", 
     "protocol": "21", 
     "messageType": "2", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "metadata", 
             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.ChannelData.ChannelMetadataRecord" }, "default": {} 
         } 
     ] 
} 

  

19.3.3 Message: SubscribeChannels 

A customer sends to a store to request that the store begin streaming data for one or more channels. The 
"success only" response to this message is the SubscribeChannelsResponse message. 

Message Type ID: 3 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

channels A map of ChannelSubscribeInfo records, one for 
each channel that the customer is requesting to 
subscribe to (i.e., have data streamed to it as 
soon as it is available).  

The startIndex value is a union of possible points 
to begin the stream (latest, n points back from 
now, etc.).  

ChannelSubscribeInfo 1 n 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelSubscribe", 
     "name": "SubscribeChannels", 
     "protocol": "21", 
     "messageType": "3", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 362 

     [ 
         { 
             "name": "channels", 
             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.ChannelData.ChannelSubscribeInfo" } 
         } 
     ] 
} 

  

19.3.4 Message: SubscribeChannelsResponse 

A store MUST send this "success only" message to a customer as confirmation of a successful operation 
in response to a SubscribeChannels message. It confirms the channels for which the store successfully 
created streaming subscriptions. 

Message Type ID: 12 

Correlation Id Usage: MUST be set to the messageId of the SubscribeChannels message that this 
message is a response to. 

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

success  The presence of the map key represents 
success. 

 The associated map string value SHOULD 
be empty because its content is ignored. 

string 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelSubscribe", 
     "name": "SubscribeChannelsResponse", 
     "protocol": "21", 
     "messageType": "12", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "success", 
             "type": { "type": "map", "values": "string" } 
         } 
     ] 
} 

  

19.3.5 Message: ChannelData 

A store sends to a customer, for channels the customer has subscribed to (using the SubscribeChannels 
message). The ChannelData message contains an array of DataItem records for one or more channels. 
For more information on what data (value) may be sent, see the data field below. 

General behaviors:  

1. This message "appends" data to a channel. It does NOT include changes to existing data in the 
channel. 

2. There is no requirement that any given channel appear in an individual ChannelData message, or 
that a given channel appear only once in ChannelData message (i.e., a range of several index 
values for the same channel may appear in one message). 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 363 

3. This is a "fire and forget" message. The sender does NOT receive a positive confirmation from the 
receiver that it has successfully received and processed the message. 

4. For streaming data, ETP does NOT send null data values. EXCEPTION: If channel data values are 
arrays, then the arrays MAY contain null values, but at least one array value MUST be non-null and 
the entire array CANNOT be null. 

5. The index values in each DataValue record are in the same order as their corresponding 
IndexMetadataRecord records in the corresponding channel’s ChannelMetadataRecord record, 
and the primary index is always first. 

6. To optimize size on-the-wire, redundant index values MAY be sent as null. The rules for this are as 
follows: 

a. The index value of the first DataItem record in the data array MUST NOT be sent as null. 

b. For subsequent index values: 

i. If an index value differs from the previous index value in the data array, the index value MUST 
NOT be sent as null. 

ii. If an index value is the same as the previous index value in the data array, the index value 
MAY be sent as null. 

c. EXAMPLE: These index values from adjacent DataItem records in the data array: 

[1.0, 1.0, 2.0, 3.0, 3.0] 

MAY be sent as: 

[1.0, null, 2.0, 3.0, null]. 

d. When the DataItem records have both primary and secondary index values, these rules apply 
separately to each index. 

e. EXAMPLE: These primary and secondary index values from adjacent DataItem records in the 
data array: 

[[1.0, 10.0], [1.0, 11.0], [2.0, 11.0], [3.0, 11.0], [3.0, 12.0]] 

MAY be sent as: 

[[1.0, 10.0], [null, 11.0], [2.0, null], [3.0, null], [null, 12.0]]. 

f. If ALL index values for a DataItem record are to be sent as null, the indexes field should be set to 
an empty array. 

6. For more information about sending channel data, see Section 6.1.3. 

Message Type ID: 4 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: store 

Field Name Description Data Type Min Max 

data Contains the data points for channels, which is an 
array of DataItem records. Note that the value 
must be one of the types specified in DataValue 
(Section 23.30)—which include options to send a 
single data value (of various types such as 
integers, longs, doubles, etc.) OR arrays of 
values. 

For more information, see Section 6.1.3. 

DataItem 1 n 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 364 

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelSubscribe", 
     "name": "ChannelData", 
     "protocol": "21", 
     "messageType": "4", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         {  
             "name": "data", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.ChannelData.DataItem" } 
         } 
     ] 
} 

  

19.3.6 Message: ChannelsTruncated 

A store sends to a customer to notify it that the end indexes for channels have been reset. It is a map of 
individual truncate requests where each request specifies a channel ID and the new end index for that 
channel.  

The result of this message is, for each channel:  

 Streaming may resume from the channel’s new end index. 

 Data after the channel’s new end index should be discarded.  

Use Case: A frequently occurring issue/error when collecting data in the oil field is often referred to as a 
"depth jump", which is when an index momentarily "jumps forward" (beyond the next expected index 
value) before being fixed, and then the corrected streaming resumes. This type of issue must also be 
fixed in downstream consumers of the data (so the data subsequently streamed makes sense).  

Message Type ID: 13 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: store 

Field Name Description Data Type Min Max 

channels Contains a map of TruncateInfo structures, which 
each indicate the channel ID of a channel that 
was truncated and its new end index.  

TruncateInfo 1 * 

changeTime The change time when the truncation/index 
update occurred in the store.  

It is a UTC dateTime value, serialized as a long, 
using the Avro logical type timestamp-micros 
(microseconds from the Unix Epoch, 1 January 
1970 00:00:00.000000 UTC). 

long 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelSubscribe", 
     "name": "ChannelsTruncated", 
     "protocol": "21", 
     "messageType": "13", 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 365 

     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         {  
             "name": "channels", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.ChannelData.TruncateInfo" } 
         }, 
         { "name": "changeTime", "type": "long" } 
     ] 
} 

  

19.3.7 Message: RangeReplaced 

A store sends to a customer to notify it that a range of data in channels it is subscribed to have been 
updated or deleted.  

General behaviors and rules:  

1. A complete, multi-part ReplaceRange message MUST include all data in the replacement range for 
all channels affected by the message, but there is no requirement that any given channel appear in 
an individual ReplaceRange message, or that a given channel appear only once in a ReplaceRange 
message (i.e., a range of several index values for the same channel may appear in one message). 

2. It is recommended but NOT required to send data in row order rather than column order (i.e., send all 
data for all channels, one primary index value at a time rather than sending all data for each channel, 
one channel at a time). 

3. For range replacement data, ETP does NOT send null data values. If there is no value for a channel 
for a particular primary index value in the replacement range, omit that primary index value for that 
channel from the notification. EXCEPTION: If channel data values are arrays, then the arrays MAY 
contain null values, but at least one array value MUST be non-null and the entire array CANNOT be 
null. 

4. The index values in each DataValue record are in the same order as their corresponding 
IndexMetadataRecord records in the corresponding channel’s ChannelMetadataRecord record, 
and the primary index is always first. 

5. To optimize size on-the-wire, redundant index values MAY be sent as null. The rules for this are as 
follows: 

a. The index value of the first DataItem record in the data array MUST NOT be sent as null. 

b. For subsequent index values: 

i. If an index value differs from the previous index value in the data array, the index value MUST 
NOT be sent as null. 

ii. If an index value is the same as the previous index value in the data array, the index value 
MAY be sent as null. 

c. EXAMPLE: These index values from adjacent DataItem records in the data array: 

[1.0, 1.0, 2.0, 3.0, 3.0] 

MAY be sent as: 

[1.0, null, 2.0, 3.0, null]. 

d. When the DataItem records have both primary and secondary index values, these rules apply 
separately to each index. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 366 

e. EXAMPLE: These primary and secondary index values from adjacent DataItem records in the 
data array: 

[[1.0, 10.0], [1.0, 11.0], [2.0, 11.0], [3.0, 11.0], [3.0, 12.0]] 

MAY be sent as: 

[[1.0, 10.0], [null, 11.0], [2.0, null], [3.0, null], [null, 12.0]]. 

f. If ALL index values for a DataItem record are to be sent as null, the indexes field should be set to 
an empty array. 

For more information about sending channel data, see Section 6.1.3. 
 

Message Type ID: 6 

Correlation Id Usage: For the first message, MUST be set to 0. If there are multiple messages in this 
multipart request, the correlationId of all successive messages that comprise the request MUST be set to 
the messageId of the first message of the multipart request. 

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

changeTime The change time when the range replace 
occurred in the store.  

It is a UTC dateTime value, serialized as a long, 
using the Avro logical type timestamp-micros 
(microseconds from the Unix Epoch, 1 January 
1970 00:00:00.000000 UTC). 

long 1 1 

channelIds The IDs of the channels that are being updated.  long 1 n 

changedInterval The indexes that define the interval that is 
changing as specified in IndexInterval. 

IndexInterval 1 1 

data Contains the channel data as defined in DataItem 
that will replace the data defined by the 
changedInterval field.  

To delete an interval in a channel, leave this field 
blank. The interval identified in changedInterval is 
deleted (essentially replaced with nothing).  

DataItem 1 n 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelSubscribe", 
     "name": "RangeReplaced", 
     "protocol": "21", 
     "messageType": "6", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { "name": "changeTime", "type": "long" }, 
         {  
             "name": "channelIds", 
             "type": { "type": "array", "items": "long" } 
         }, 
         { "name": "changedInterval", "type": 
"Energistics.Etp.v12.Datatypes.Object.IndexInterval" }, 
         {  
             "name": "data", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.ChannelData.DataItem" } 
         } 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 367 

     ] 
} 

  

19.3.8 Message: UnsubscribeChannels 

A customer sends to a store to cancel its subscription (unsubscribe) to one or more channels and to 
discontinue streaming data for these channels.  

The response to this message is the SubscriptionsStopped message. 

Message Type ID: 7 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

channelIds A map whose values are the channelIds to stop 
streaming. 

long 1 n 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelSubscribe", 
     "name": "UnsubscribeChannels", 
     "protocol": "21", 
     "messageType": "7", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { 
             "name": "channelIds", 
             "type": { "type": "map", "values": "long" } 
         } 
     ] 
} 

  

19.3.9 Message: SubscriptionsStopped 

The store MUST send to a customer as a confirmation response to the customer's UnsubscribeChannels 
message. 

If the store stops a customer’s subscription on its own without a request from the customer (e.g., if the 
channel has been deleted), the store MUST send this message to notify the customer that the 
subscription has been stopped. When sent as a notification, there MUST only be one message in the 
multipart notification. 

The store MUST provide a human readable reason why the subscriptions were stopped. 

Message Type ID: 8 

Correlation Id Usage: When sent as a response: MUST be set to the messageId of the 
UnsubscribeChannels message that this message is a response to. When sent as a notification: MUST 
be ignored and SHOULD be set to 0. 

Multi-part: True 

Sent by: store 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 368 

Field Name Description Data Type Min Max 

reason A reason why the subscriptions have been 
stopped. 

string 1 1 

channelIds A map whose values MUST be the channelIds of 
the channels that the store has stopped 
streaming. 

long 0 n 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelSubscribe", 
     "name": "SubscriptionsStopped", 
     "protocol": "21", 
     "messageType": "8", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { "name": "reason", "type": "string" }, 
         { 
             "name": "channelIds", 
             "type": { "type": "map", "values": "long" }, "default": {} 
         } 
     ] 
} 

  

19.3.10 Message: GetRanges 

A customer sends to a store to request data over a specific range for one or more channels. The 
response to this is the GetRangesResponse message.  

Message Type ID: 9 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

requestUuid A UUID for this request. This MUST be a newly-
generated UUID from the customer. This UUID 
can be used to cancel the request later.  

Must be of type Uuid. 

Uuid 1 1 

channelRanges An array of data that specifies the ranges for 
which to request data and, for each range, the 
channels for which to get the data in that range as 
defined in the ChannelRangeInfo record. 

ChannelRangeInfo 1 n 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelSubscribe", 
     "name": "GetRanges", 
     "protocol": "21", 
     "messageType": "9", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "requestUuid", "type": "Energistics.Etp.v12.Datatypes.Uuid" }, 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 369 

         {  
             "name": "channelRanges", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.ChannelData.ChannelRangeInfo" } 
         } 
     ] 
} 

  

19.3.11 Message: GetRangesResponse 

A store sends to a customer in response to a GetRanges message. It contains the data for the specified 
range(s).  

General behaviors and rules:  

1. A complete, multi-part GetRangesResponse message MUST include all data in the requested range 
for all channels in the request message, but there is no requirement that any given channel appear in 
an individual GetRangesResponse message, or that a given channel appear only once in a 
GetRangesResponse message (i.e., a range of several index values for the same channel may 
appear in one message). 

2. It is recommended but NOT required to send data in row order rather than column order (i.e., send all 
data for all channels, one primary index value at a time rather than sending all data for each channel, 
one channel at a time). 

3. For range response data, ETP does NOT send null data values. If there is no value for a channel for 
a particular primary index value in the requested range, omit that primary index value for that channel 
from the response. EXCEPTION: If channel data values are arrays, then the arrays MAY contain null 
values, but at least one array value MUST be non-null and the entire array CANNOT be null. 

4. The index values in each DataValue record are in the same order as their corresponding 
IndexMetadataRecord records in the corresponding channel’s ChannelMetadataRecord record, 
and the primary index is always first. 

5. To optimize size on-the-wire, redundant index values MAY be sent as null. The rules for this are as 
follows: 

a. The index value of the first DataItem record in the data array MUST NOT be sent as null. 

b. For subsequent index values: 

i. If an index value differs from the previous index value in the data array, the index value MUST 
NOT be sent as null. 

ii. If an index value is the same as the previous index value in the data array, the index value 
MAY be sent as null. 

c. EXAMPLE: These index values from adjacent DataItem records in the data array: 

[1.0, 1.0, 2.0, 3.0, 3.0] 

MAY be sent as: 

[1.0, null, 2.0, 3.0, null]. 

d. When the DataItem records have both primary and secondary index values, these rules apply 
separately to each index. 

e. EXAMPLE: These primary and secondary index values from adjacent DataItem records in the 
data array: 

[[1.0, 10.0], [1.0, 11.0], [2.0, 11.0], [3.0, 11.0], [3.0, 12.0]] 

MAY be sent as: 

[[1.0, 10.0], [null, 11.0], [2.0, null], [3.0, null], [null, 12.0]]. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 370 

f. If ALL index values for a DataItem record are to be sent as null, the indexes field should be set to 
an empty array. 

For more information about sending channel data, see Section 6.1.3. 

 

Message Type ID: 10 

Correlation Id Usage: MUST be set to the messageId of the GetRanges message that this message is a 
response to.  

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

data Contains an array of data items as defined in 
DataItem. 

DataItem 0 n 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelSubscribe", 
     "name": "GetRangesResponse", 
     "protocol": "21", 
     "messageType": "10", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "data", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.ChannelData.DataItem" }, "default": [] 
         } 
     ] 
} 

  

19.3.12 Message: CancelGetRanges 

A customer sends to a store to stop streaming data for a previous GetRanges request.  

Message Type ID: 11 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

requestUuid The UUID of the request message that started 
streaming the range request that is now being 
canceled. 

Must be of type Uuid (Section 23.6). 

Uuid 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelSubscribe", 
     "name": "CancelGetRanges", 
     "protocol": "21", 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 371 

     "messageType": "11", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "requestUuid", "type": "Energistics.Etp.v12.Datatypes.Uuid" } 
     ] 
} 

  

19.3.13 Message: GetChangeAnnotations 

A customer sends to a store to get change annotations (ChangeAnnotation record) for the channels listed 
in this message.  

A change annotation identifies the interval(s) in a channel that have changed and the time that the 
change happened in the store. They are used in recovering from unplanned outages (connection drops). 
For more information, see Appendix: Data Replication and Outage Recovery Workflows. 

The response to this message is the GetChangeAnnotationsResponse message. 

Message Type ID: 14 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

channels General ETP map of ChannelChangeRequestInfo 
records, which identify the channel and date from 
which changes are being requested.  

ChannelChangeRequestInfo 1 * 

latestOnly If true, it means get the latest (last) change 
annotation only for each of the channels listed.  

boolean 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelSubscribe", 
     "name": "GetChangeAnnotations", 
     "protocol": "21", 
     "messageType": "14", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { 
             "name": "channels", 
             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.ChannelData.ChannelChangeRequestInfo" } 
         }, 
         { "name": "latestOnly", "type": "boolean", "default": false } 
     ] 
} 

  

19.3.14 Message: GetChangeAnnotationsResponse 

A store sends to a customer in response to a GetChangeAnnotations message. It is a map of 
ChangeResponseInfo data structures which each contains a change annotation (ChangeAnnotation) for 
the requested channel data objects that the store could respond to. The returned annotations are based 
on the store's storeLastWrite time for each channel data object. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 372 

The store tracks changes "globally" (NOT per user, customer or endpoint). Also, a store MAY combine 
annotations over time, as it sees fit. For more information on how annotations work, see Section 19.2.1.4. 

Message Type ID: 15 

Correlation Id Usage: MUST be set to the messageId of the GetChangeAnnotations message that this 
message is a response to.  

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

changes ETP general map of 
ChannelChangeResponseInfo records, one for 
each ChannelChangeRequestInfo the store can 
respond to, which lists the channels that have 
changed and the information for each as specified 
in the ChangeAnnotation record.  

ChangeResponseInfo 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelSubscribe", 
     "name": "GetChangeAnnotationsResponse", 
     "protocol": "21", 
     "messageType": "15", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "changes", 
             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.Object.ChangeResponseInfo" } 
         } 
     ] 
} 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 373 

20 ChannelDataLoad (Protocol 22) 
ProtocolID: 22 

Defined Roles: store, customer  

Use ChannelDataLoad (Protocol 22) to connect to an endpoint and push channel data to it. The ETP 
customer role controls the ETP session/behavior and pushes data to the ETP store role. Important use 
cases include rig acquisition workflow (where service companies doing data acquisition are required to 
deliver data to a rig aggregator) and any case in which you want to write data (e.g., load historical data) to 
a store.  

With Protocol 22:  
 The customer essentially treats a channel like a file, where the customer can add new data points to 

the channel, either at the "end" of the channel or update points anywhere in the channel. There are 2 
main modes of loading data: 1) streaming real time and 2) historical updates (deletes, range replaces, 
and updates) 

 The main expected workflow is exception based; that is, the customer first tries to open the channel 
on the store to write data to it. If the channel does not exist on the store, the customer can then use 
Store (Protocol 4) to add the channel to the store—and then use Protocol 22 to load data into it.  

 A customer can "guarantee" data delivery to the store because it can confirm what data the store has, 
then stream data from that point forward.  

 ETP DOES NOT support nor provide functionality to detect or recover from multi-master replication. 
When a customer endpoint is loading data to a store with ChannelDataLoad (Protocol 22), it is 
assumed to be the only entity (or agent) loading data to specific channels in the store at that time.  

Some key points about this and related protocols:  
 Protocol 22 has the "put/write" behavior for channel data; it "pushes" data from the customer role 

endpoint to the store role endpoint.  

 ChannelSubscribe (Protocol 21) (see Chapter 19) has the "get/read" behavior for channel data from 
a store and to "listen" for changes in channel data that require a notification (or data updates) to be 
sent while connected. 

Other ETP sub-protocols that "stream" channel data: 
 ChannelStreaming (Protocol 1) (see Chapter 6) is for very simple streaming of channel-oriented 

data, from "simple" producers (i.e., a sensor) to consumers; it is designed to replace WITS data 
transfers. Protocol 1 allows a consumer to connect to a producer and receive whatever data the 
producer has (i.e., the consumer cannot discover available channels nor specify which channels it 
wants, etc. like in Protocol 21). NOTE: Beginning in ETP v1.2, Protocol 1 is used only for these so-
called simple streamers (in previous versions of ETP, Protocol 1 included all channel streaming 
behavior). 

 ChannelDataFrame (Protocol 2) (see Chapter 7) allows a customer endpoint to get channel data 
from a store in a row-orientated 'frame' or 'table' of data. In energy industry jargon, the general use 
case that Protocol 2 supports is typically referred to as getting a "historical log". (In ETP jargon you 
are actually getting a frame of data from a ChannelSet data object; for more information, see Section 
7.1.1). 

Other ETP sub-protocols related to Channel data objects: 
 Store (Protocol 4). Because a Channel is an Energistics data object, to add or delete Channel 

data◦objects from a store, use Store (Protocol 4) (see Chapter 9). 

 StoreNotification (Protocol 5). To subscribe to notifications about Channel data objects (e.g., 
channels added, deleted, status change, etc.), use StoreNotification (Protocol 5) (see Chapter 10). 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 374 

NOTE: Energistics data models (e.g., WITSML) allow channels to be grouped into channel sets and logs. 
However, ETP channel streaming protocols handle individual channels; that is, whether or not the 
channel is part of a channel set or log is irrelevant to how it is handled in a channel streaming protocol. 
(For more information about channel sets, see Section 7.1.1.) 

This chapter includes main sections for:  

 Required behavior, which includes: 

 Description of the message sequence for main tasks, along with required behavior, related 
capabilities, and possible errors (see Section 20.2.1).  

 Other functional requirements (not covered in the message sequence) including use of endpoint, 
data object, and protocol capabilities for preventing and protecting against aberrant behavior (see 
Section◦20.2.2). 

- Definitions of the endpoint, data object, and protocol capabilities used in this protocol (see 
Section 20.2.3). 

 Sample schemas of the messages defined in this protocol (which are identical to the Avro schemas 
published with this version of ETP). However, only the schema content in this specification includes 
documentation for each field in a schema (see Section 20.3).  

20.1 ChannelDataLoad: Key Concepts 

 For definitions and key concept related to channels and channel streaming, see Section 6.1. 

20.2 ChannelDataLoad: Required Behavior 

This section contains functional and non-functional requirements for this protocol. It is organized in these 
sub-sections: 

 Message Sequence. Summarizes all messages defined by this protocol, identifies main tasks that 
can be done with this protocol and describes the response/request pattern for the messages needed 
to perform the tasks, including usage of ETP-defined capabilities, error scenarios, and resulting ETP 
error codes.  

 General Requirements. Identifies high-level (across ETP) and protocol-wide general behavior and 
rules that must be observed (in addition to behavior specified in Message Sequence), including usage 
of ETP-defined endpoint, data object and protocol capabilities, error scenarios, and resulting error 
codes.  

 Capabilities. Lists and defines the ETP-defined parameters most relevant for this sub-protocol. ETP 
defines these parameters to set necessary limits to help prevent aberrant behavior (e.g., sending 
oversized messages or sending more messages than an endpoint can handle).  

Prerequisites for using this protocol:  
 An ETP session has been established using Core (Protocol 0) as described in Chapter 5. 

 A customer has the Energistics URIs for each channel it needs to push data to.  

 The set of channel data objects to be "pushed" comes from an external source, for example, a 
contract that states the channels for which data must be provided. If the store receiving the data 
supports Discovery (Protocol 3), it may be possible to discover the channels on the store 
(EXAMPLE: If the requirement is "all channels in Well XYZ", those channels could be 
discovered.)  

- For information about Energistics URIs, see Appendix: Energistics Identifiers. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 375 

20.2.1 ChannelDataLoad: Message Sequences 

This section explains the basic message sequence for main tasks to be done using this protocol and 
includes related key behaviors and possible errors; it assumes that an ETP session has been established 
using Core (Protocol 0) as described in Chapter 5. The following General Requirements section provides 
additional requirements and rules for how this protocol works.   

The following table lists all messages defined in this sub-protocol, the basic request/response usage 
patterns per ETP role, and whether it may be multipart. The detailed content of each message is 
explained in the Message Schema section. 

ChannelDataLoad (Protocol 22): 
Basic Message-Response flow by ETP Role 

Message (customer) Response Message (store) 

OpenChannels: Identifies the channels that the customer 
wants to load data for.  

OpenChannelsResponse (multipart): Response indicating 
which channels the store can accept data for and the metadata 
for each.  

ChannelData: Contains the data the customer has for 
each channel; the customer keeps sending these 
messages as new data becomes available. 

N/A 

ReplaceRange (multipart): Updates to channels (i.e., 
delete one range and replace with new data provided) or 
delete ranges for channels. 

ReplaceRangeResponse: Response indicating the ranges in 
channels that were successfully replaced or deleted.  

TruncateChannels: Sent to reset the end indexes of 
channels to allow streaming to resume from the new end 
indexes; used to correct "index jump" errors in previously 
sent data. 

TruncateChannelsResponse (multipart): Response indicating 
which channels were successfully truncated (i.e., which end 
indexes were successfully updated). 

CloseChannels: Informs the store that no more data will 
be sent for the listed channels in the current session.   

ChannelsClosed (multipart) which has 2 use cases: 

 Optional response to the CloseChannels message. 

 Sent by a store as a notification (i.e., without a customer 
request) that it has stopped accepting data for some 
channels. 

 

20.2.1.1 To do the initial setup and begin streaming data: 
1. The customer MUST send the store the OpenChannels message (Section 20.3.1), which is a map 

whose values are the URIs of the channels that the customer intends to send data for.  

a. A customer MUST limit the total count of channels concurrently open for streaming in the current 
ETP session to the store's value for MaxStreamingChannelsSessionCount protocol capability. 

b. If the customer's request exceeds this limit, the store MUST deny that request and send error 
ELIMIT_EXCEEDED (12). 

2. The store MUST respond with the following: 

a. For the channels it successfully opens for receiving data, the store MUST respond with a one or 
more OpenChannelsResponse map response messages (Section 20.3.2). This response 
message contains a map of OpenChannelInfo records, which contain the following data for each 
channel:  

i. metadata for each channel (as defined in ChannelMetadataRecord (Section 23.33.7). The 
store MUST assign each channel an integer identifier that is unique for the session in this 
protocol. This identifier will be used instead of the channel URI to identify the channel in 
subsequent messages in this protocol for the session. This identifier is set in the id field in the 
ChannelMetadataRecord. 
RECOMMENDATION: Use the smallest available integer value for a new channel identifier. 
IMPORTANT: If the channel is deleted and recreated during a session, it MUST be assigned a 
new identifier. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 376 

ii. preferRealtime, flag to indicate preference to receive realtime data first/as priority, before 
historical data.  

iii. dataChanges, flag to indicate if it wants to receive historical data changes (which are sent with 
ReplaceRange messages).  

b. For the channels it does NOT successfully open for receiving data, the store MUST send one or 
more map ProtocolException messages, where values in the errors field (a map) are 
appropriate errors. 

i. For more information on how ProtocolException messages work with plural messages, see 
Section 3.7.3. 

ii. For the channels that do not currently exist on the store, error ENOT_FOUND (11). 

iii. For the channels that the customer does not have permission to access/write to, error 
EREQUEST_DENIED (6). 

3. To send data to the store, the customer MAY do any of the following: 

a. To append new data for any channel that the store opened for receiving data, the customer 
MUST send ChannelData messages (Section 20.3.6).  

i. New data MUST always be sent in primary index order and MUST always be an append (i.e., 
with primary index value greater than, for increasing data, or less than, for decreasing data, 
the channel’s end index). 

ii. The customer MAY continue to send these messages as new data becomes available or until 
all new data for a channel is sent. 

iii. NOTIFICATION BEHAVIOR: When the customer streams new data to the store, the store 
MUST send ChannelData messages in ChannelSubscribe (Protocol 21). 

iv. To ensure the store’s channel data remains in a consistent state, if the store is unable to 
successfully process all data received in a ChannelData message: 

1. If a store IS NOT able to parse the message and find the set of all channelIds included in 
the message (e.g., the message body could not be deserialized): 

a. The store MUST send a non-map ProtocolException message in response to the 
message. 

b. The store MUST close ALL channels currently open for receiving data in the session. 

2. If store IS able to parse the message and find the set of all channelds included in the 
message: 

a. For each channelId that represents a valid, open channel, the store MUST process 
ALL data for the channel, in primary index order, until it encounters an error for the 
channel. 

b. For the channels with errors (invalid or unable to process all data), or for all channels 
if an error prevents the store from processing any data in the message: 

i. The store MUST send a map ProtocolException message where the map keys 
are the string version of the channelIds of the affected channels and the values 
are an appropriate error for each channel. 

1. If data for a channel is NOT an append or is not in primary index order, the 
store MUST send error EINVALID_APPEND (31). 

ii. The store MUST close the channels that are valid and open for receiving data 
and send ChannelsClosed. 

b. If the store indicated that it wants to receive data change, to update or delete an existing range of 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 377 

data in a channel, the customer MUST send ReplaceRange messages (see Section 20.3.7). 

i. For successful range replaces, the store MUST respond with a ReplaceRangeResponse 
message. 

ii. For more information about how range replacement operations work, see Section 20.2.2, 
Row◦10. 

c. To correct "index jump" errors, the customer MUST send a TruncateChannels message 
(Section 20.3.4).  

i. For channels that it successfully truncated, the store MUST respond with a 
TruncateChannelsResponse message (Section 20.3.5). 

ii. For more information about how truncate channels operations work, see Section 20.2.2, Row 
9.  

d. For channels that are not found on the store, the customer MAY use Store (Protocol 4) to add the 
channels to the store. 

i. To begin streaming data to these newly added channels, the customer must send the 
OpenChannels message per Step 1 above. 

ii. NOTE: This exception-based workflow (option to add channels that do not exist) is 
recommended to reduce load on the store, particularly on the reconnection process (if you've 
lost connection to a channel you were previously streaming to).  

20.2.1.2 To "close" a channel:  
1. If the customer will not stream any more data on a channel in the current session, it MAY send the 

CloseChannels message (see Section 20.3.3) to "close" channels and indicate that no more data will 
be sent (this is best practice).  

a. Terminating a session closes any channels that haven't been closed.  

b. The store MUST treat a dropped connection as an implicit 'close' to any open channels and do 
any clean-up required.  

2. For the channels it successfully closed, the store MUST respond with a one or more 
ChannelsClosed map response messages (Section 20.3.9), which list the IDs of the channels the 
store has closed. 

a. For more information on how map response messages work, see Section 3.7.3. 

b. The store MUST deny any ChannelData, ReplaceRange, or TruncateChannels messages 
received for a channel after sending ChannelsClosed for the channel and send 
EREQUEST_DENIED (6). 

3. For the channels it did NOT successfully close, the store MUST send one or more map 
ProtocolException messages where values in the errors field (a map) are appropriate errors. 

a. For more information on how ProtocolException messages work with plural messages, see 
Section 3.7.3. 

b. If a requested channel is not open for receiving data, send error EINVALID_STATE (8). 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 378 

20.2.2 ChannelDataLoad: General Requirements 

In addition to the basic message sequence described in the previous section, this protocol has the 
additional requirements listed in the table below.   

NOTE: This table has been organized to reduce redundancy but also to help developers more easily 
locate specific requirements. EXAMPLE: There are rows with general requirements that apply to all 
protocols (e.g., Rows 1–2), rows for general requirements for this protocol, and (possibly) some rows with 
additional requirements for specific types of operations. 

Row# Requirement Behavior 

1.  ETP-wide behavior that MUST be 
observed in all protocols 

1. Requirements for general behavior consistent across all of ETP are defined in 
Chapter 3. This behavior includes information such as: all details of message 
handling (such as message headers, handling compression, use of message 
IDs and correlation IDs, requirements for plural and multipart message 
patterns) use of acknowledgements, general rules for sending 
ProtocolException messages, URI encoding, serialization and more. 
RECOMMENDATION: Read Chapter 3 first. 

2. For information about Energistics identifiers and prescribed ETP URI formats, 
see Appendix: Energistics Identifiers. 

a. In MOST cases, endpoints performing operations in this protocol MUST 
use the canonical Energistics URI. For more information, see Section 
3.7.4. 

3. For the complete list of error codes defined by ETP, see Chapter 24. 

4. ALL operations in an ETP session are performed on the set of supported 
data object types that were negotiated to be used when the session was 
initiated and established. 

a. The client and server exchange the list of data object types in the 
supportedDataObjects field of the RequestSession and OpenSession 
messages in Core (Protocol 0). For more information, see Chapter 5. 

b. In general, the list of supported objects for a session will most likely be 
the intersection of the data objects that the server supports and the data 
objects that the client requested for the ETP session. 

c. A store MUST support all messages (in each supported ETP sub-
protocol) for each supported data object, whether the data object is 
supported explicitly or by wild card. 

d. An endpoint MUST only send messages with the URI of a data object 
that is a type supported by the other endpoint for this ETP session.  

i. If an endpoint sends a URI for an unsupported type of data object, 
the other endpoint MUST send error 
EDATAOBJECTTYPE_NOTSUPPORTED (16). 

2.  Capabilities-related behavior 1. Relevant endpoint, data object, and/or protocol capabilities MUST be specified 
when the ETP session is established (see Chapter 5) and MUST be 
used/honored as defined in the relevant ETP sub-protocol.  

2. For an explanation of endpoint, data object, and protocol capabilities, see 
Section 3.3. 

a. For the list of global capabilities and related behavior, see Section 3.3.2. 

3. Section 20.2.3 identifies the capabilities most relevant to this ETP sub-
protocol. Additional details for using these capabilities are included below in 
this table and in Section 20.2.1 ChannelDataLoad: Message Sequence. 

3.  Message Sequence 

See Section 20.2.1. 

1. The Message Sequence section above (Section 20.2.1) describes 
requirements for the main tasks listed there and also defines required 
behavior. 

4.  Plural messages (which includes 
maps) 

1. This protocol uses ETP-wide message patterns including plural messages and 
multipart responses. For more information on behaviors related to these 
messages, see Section 3.7.3. 

5.  Notifications 1. This chapter explains events (operations) in ChannelDataLoad (Protocol 22) 
that trigger the store to send notifications, which the store sends using 
ChannelSubscribe (Protocol 21). However, statements of NOTIFICATION 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 379 

Row# Requirement Behavior 

BEHAVIOR are here in this chapter, in the context of the detailed explanation 
of the behavior that triggers the notification.  

2. Notification behavior is described here using MUST. However, the store 
MUST ONLY send notifications IF AND ONLY IF there is a customer 
subscribed to notifications for the affected channels and the store MUST 
ONLY send notifications to those customers that are subscribed to the 
affected channels. 

a. For more information on data object notifications, see Chapter 10 
StoreNotification (Protocol 5). 

b. For information on notifications for channel data, see Chapter◦19 
ChannelSubscribe (Protocol 21). 

6.  Data order for loading data 1. Streaming data points (in ChannelData messages) MUST be sent in primary 
index order for each channel, both within one message and across multiple 
messages. 

a. If data is not in primary index order for a channel, the store MUST send 
error EINVALID_APPEND (31) as the map entry for the channel as 
described in Section 20.2.1.1. 

2. Data points in ReplaceRange messages MUST be sent in primary index 
order for each channel, both within a single message and across all messages 
within a multi-part request. 

a. If data is not in primary index order for a channel, the store MUST fail the 
entire request and send error EINVALID_OPERATION (32). 

3. Primary index order is always as appropriate for the index direction of a 
channel (i.e., increasing or decreasing). 

4. The index values for each data point are in the same order as their 
corresponding IndexMetadataRecord records in the corresponding channel’s 
ChannelMetadataRecord record, and the primary index is always first. 

5. The same primary index value MUST NOT appear more than once for the 
same channel in any ChannelData message UNLESS the channel data at 
that index was affected by a truncate operation during the session (i.e., a 
TruncateChannels or ReplaceRange message was sent that reset the 
channel’s end index to before the primary index value). 

6. The same primary index value MUST NOT appear more than once for the 
same channel in the same multipart ReplaceRange message. 

7.  Store Behavior: Update the active 
status field (activeStatus) 

1. The Resource (Section 23.34.11) associated with each data object in ETP 
has an activeStatus field. 

a. This field appears ONLY on the Resource NOT on the data object. 
There MAY be an equivalent element on the data object. The mapping 
between activeStatus and the data object element is defined by the 
relevant ML ETP implementation specification. 

b. For channel data objects, this field may have a value of "active" or 
"inactive". 

c. For information about this field and behavior related to setting it to 
"inactive" related to the ActiveTimeoutPeriod capability, see Section 
3.3.2.1. 

2. If a channel data object’s activeStatus has a value of "inactive" and messages 
in this ETP sub-protocol begin operations that change the channel’s channel 
data (e.g., appends data with ChannelData message or replaces a range with 
a ReplaceRange message), the store MUST do the following: 

a. Set the channel data object's activeStatus to "active". 

b. Reset the timer for the ActiveTimeoutPeriod capability. 

c. NOTIFICATION BEHAVIOR: Send an ObjectActiveStatusChanged 
notification message for the channel data object in StoreNotification 
(Protocol 5). For more information, see Section 10.2.2, Row 16. 

8.  Store Behavior: Update the 
storeLastWrite field 

1. Each Resource in ETP has a field named storeLastWrite; for more 
information about it, see Section 3.12.5.1. 

2. For operations in ChannelDataLoad (Protocol 22) that result in any change to 
the Channel data object or its channel data, the store MUST update the 
storeLastWrite field with the time of the change. For example, for data 
changes to the Channel from these messages in this protocol, the store MUST 
update storeLastWrite:  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 380 

Row# Requirement Behavior 

a. ChannelData 

b. TruncateChannels 

c. ReplaceRange 

9.  Resetting channel end indexes 
(TruncateChannels 
message/operation) 

1. To reset the end indexes of channels, deleting any data past the new end 
indexes (e.g., to correct "index jump" errors), a customer MUST send a 
TruncateChannels message, which contains a map of TruncateInfo records; 
each record contains the channel ID and its new end index. 

2. On receipt of a TruncateChannels message, the store MUST do all the 
following: 

a. Reset its end index to the newEndIndex specified in the 
TruncateChannels message. 

b. Delete any data that was previously sent (i.e., after the old erroneous 
endIndex value). 

c. For the channels it successfully truncates, the store MUST send one or 
more TruncateChannelsResponse map response messages.  

i. For more information on how map response messages work, see 
Section 3.7.3. 

d. For the channels it could NOT successfully truncate, the store MUST 
send one or more map ProtocolException messages where values in 
the errors field (a map) are appropriate errors, such as 
EREQUEST_DENIED (6). 

i. For more information on how ProtocolException messages work 
with a plural messages, see Section 3.7.3. 

3. When the customer resumes sending ChannelData messages (for the 
channel whose index it corrected), the index for each new DataItem MUST be 
greater than (for increasing data) or less than (for decreasing data) the new 
end index in the TruncateChannels message.   

4. NOTIFICATION BEHAVIOR: When a customer truncates channels, the store 
MUST send ChannelsTruncated in ChannelSubscribe (Protocol 21). 

10.  Channel data changes: replacing and 
deleting ranges of historical data 
(ReplaceRange message/operation) 

1. To update or delete an existing range of data in a channel, the customer 
MUST send ReplaceRange messages (Section 20.3.7).  

2. When a customer sends a ReplaceRange message, it MUST honor these 
protocol capabilities: 
a. A customer MUST limit the count of channels in a single range request to 

the store's value for the MaxRangeChannelCount protocol capability. 
i. If the customer request exceeds this limit, the store MUST deny the 

request by sending error ELIMIT_EXCEEDED (12). 
b. A customer MUST limit the total count of DataItem records in a complete 

multipart range message to the store's value for 
MaxRangeDataItemCount protocol capability. 

i. If the customer request exceeds this limit, the store MUST deny the 
request by sending error ELIMIT_EXCEEDED (12). 

ii. If the customer's value for MaxRangeDataItemCount protocol 
capability is smaller than the store's value, then the customer MAY 
further limit the total count of DataItem records to its value. 

3. The ReplaceRange is an ATOMIC operation in that the store is expected to 
delete the existing data and replace it with the contents of the entire set of 
multipart messages for the data array in a single operation. This is typically 
implemented as a database transaction. 
a. Because ReplaceRange is an atomic operation, the entire operation 

either succeeds or fails. 
b. When a store has successfully processed a ReplaceRange 

message/operation, it MUST respond with a ReplaceRangeResponse 
message. 

c. If ReplaceRange fails, the store MUST send a ProtocolException 
message with an appropriate error code such as EREQUEST_DENIED 
(6).  

4. ReplaceRange messages MUST be sent in primary index order. 
a. For more information, see Row 5 above. 

5. All data items in the data array of a ReplaceRange message MUST conform 
to these rules: 
a. The channelIds of each DataItem in the data array MUST match one of 

the channels listed in the channelIds array in the first message.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 381 

Row# Requirement Behavior 

i. If any DataItem does not match a channel ID, the store MUST 
reject the request and send error EINVALID_ARGUMENT (5). 

b. The index of each DataItem MUST be between (inclusive) of the 
startIndex and endIndex defined in the changedInterval field.  

i. If any data falls outside of these bounds, the store MUST reject the 
request and send error EINVALID_ARGUMENT (5) 

6. The behavior of the ReplaceRange operation is a 'delete and replace'. The 
store MUST observe the following behavior for ReplaceRange message: 
a. Delete the data between (inclusive of) startIndex and endIndex.  
b. Insert the DataItems provided in the data array.  

7. To simply DELETE a range, the customer MUST send the ReplaceRange 
message and leave the data array empty (i.e., nothing to insert).  
a. The store MUST delete the specified range in changedInterval, for each 

of the channel IDs specified in channelIds. 
8. If a ReplaceRange operation includes the current end (maximum) index of a 

channel, the store MUST reset the end index to reflect the new end index after 
the operation is complete.  
a. Depending on the specifics of the ReplaceRange operation, the new end 

index may be "behind", "ahead of" or the same as the previous end 
index. 

9. NOTIFICATION BEHAVIOR: When a customer updates or deletes a range of 
data, the store MUST send RangeReplaced in ChannelSubscribe (Protocol 
21). If the end index of the channel was also reset, the store MUST also send 
ChannelsTruncated. For more information, see Section 19.2.2, Row 9. 

11.  Store Behavior: Creating and 
managing change annotations 

1. For a definition of change annotations and related terms, see Section 11.1.4. 

2. See Sections 11.2.2.2, 11.2.2.4, and 11.2.2.5 for the requirements on how to 
create and manage change annotations for channel data objects. 

12.  Closing Channels 1. A store MUST close a channel when: 

a. The customer closes the channel by sending a CloseChannels 
message. 

b. The channel data object is deleted. 

c. The customer loses access to the channel data object. 

2. When closing a channel: 

a. The store MUST send ChannelsClosed either as a response to a 
customer CloseChannels request or as a notification. 

b. The store MUST include in the ChannelsClosed message a human-
readable reason why the channels were closed. 

3. When a store closes a channel in response to a customer’s CloseChannels 
request, the store MUST process any ChannelData, ReplaceRange, and 
TruncateChannels messages received for the channel before the 
CloseChannels message was received. 

4. When a store end’s a subscription without a customer request, the store 
MUST deny any pending ReplaceRange and TruncateChannels messages 
with EREQUEST_DENIED before sending ChannelsClosed. 

5. After sending the ChannelsClosed message, the store MUST NOT accept 
any further data for the closed channels. 

6. After a channel has been closed: 

a. A customer MAY request that the channel be reopened by sending a 
new OpenChannels message with the channel’s URI. 

7. A store MUST NOT reopen the channel without a request from the customer. 

13.  Index metadata 1. A channel data object’s index metadata MUST be consistent: 

a. The index units and vertical datums MUST match the channel’s index 
metadata. 

2. When sending messages, both the store AND the customer MUST ensure 
that all index metadata and data derived from index metadata are consistent 
in all fields in the message, including in XML or JSON object data or part data. 

a. EXAMPLE: The uom and depthDatum in an IndexInterval record MUST 
be consistent with the channel’s index metadata. 

b. A store MUST reject requests with inconsistent index metadata with an 
appropriate error such as EINVALID_OBJECT (14) or 
EINVALID_ARGUMENT (5). 

 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 382 

20.2.3 ChannelDataLoad: Capabilities  

The table below lists key capabilities for this protocol. The protocol capabilities are all defined here.  

 For protocol-specific behavior relating to using these capabilities in this protocol, see◦Sections 
20.2.1and◦20.2.2. 

 For definitions for endpoint and data object capabilities, see the links in the table. 

 For general information about the types of capabilities and how they may be used, see Section 3.3. 

ChannelDataLoad (Protocol 22): Capabilities 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

Endpoint Capabilities  

(For definitions of each endpoint capability, see Section 3.3.) 

   

NOTE: Many endpoint capabilities are "universal", used in all or 

most of the ETP protocols. For more information, see Section 
3.3.2. 

Behavior associated with other endpoint capabilities are 
defined in relevant chapters.  
EXAMPLE: The capabilities defined for limiting ETP 
sessions between 2 endpoints are discussed in 
Section 4.3, How a Client Establishes a WebSocket 

Connection to an ETP Server. 

   

Data Object Capabilities  
(For definitions of each data object capability, see Section 3.3.4.) 

   

ActiveTimeoutPeriod: (This is also an endpoint capability.)  

The minimum time period in seconds that a store keeps the 
GrowingStatus for a growing data object or channel "active" after 
the last new part or data point resulting in a change to the data 
object's end index was added to the data object. 

This capability can be set for an endpoint and/or for a data object. 
A data object-specific value overrides an endpoint-specific value. 

long seconds 
<number of 
seconds> 

Default: 3,600 

MIN: 60 seconds 

Protocol Capabilities    

MaxRangeChannelCount: The maximum count of channels 

allowed in a single range request. 

long count 
<count of 
channels> 

MIN: Should be 
equivalent to 
MaxContained 
DataObjectCount 
for ChannelSet 

MaxRangeDataItemCount: The maximum total count of DataItem 

records allowed in a complete multipart range message. 

long count 
<count of 
records> 

MIN: 1,000,000 

MaxStreamingChannelsSessionCount: The maximum total 

count of channels allowed to be concurrently open for streaming in 
a session. The limit applies separately for each protocol with the 
capability. EXAMPLE: Different values can be specified for 

ChannelSubscribe (Protocol 21) and ChannelDataLoad (Protocol 
22). 

long count 
<count of 
sessions> 

MIN: 10,000 

 

 

 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 383 

20.3 ChannelDataLoad: Message Schemas 

This section provides a figure that displays all messages defined in ChannelDataLoad (Protocol 22). 
Subsequent sub-sections provide an example schema for each message and definitions of the data fields 
contained in each message. 

 
Figure 30: ChannelDataLoad: message schemas 

class ChannelDataLoad

«Message»
OpenChannelsResponse

+ channels : OpenChannel Info [0..n] (map) = EmptyMap

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 2
MultiPart = True
SenderRole = s tore

notes
A store MUST send to a customer in response to an
OpenChannels message to indicate which channels it can
accept data for.
It is an ETP map of OpenChannelInfo records, each of which
includes a ChannelMetadataRecord for each channel.
The ChannelMetadataRecord is where each channel is
assigned an ID (an integer identifier that is smaller than the
URI) for use during an ETP session. These smaller IDs reduce
data on the wire.

«Message»
OpenChannels

+ uris : s tring [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 1
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to store to identify the channels that the
customer wants to push data to. The response to this is the
OpenChannelsResponse message.

«Message»
CloseChannels

+ id: long (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 3
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to store to indicate that the customer has
stopped streaming data for one or more channels from a
previous OpenChannels request.

«Message»
ChannelData

+ data: DataItem [1..n] (array)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 4
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends ChannelData messages to a store for channels
the store agreed to accept data for in the
OpenChannelsResponse message.
The message contains an array of DataItem records for one or
more channels. For more information on what data (value) may
be sent, see the data field below.
General behaviors:

1. This message "appends" data to a channel. It does NOT
include changes to existing data in the channel.
2. There is no requirement that any given channel appear in an
individual ChannelData message, or that a given channel appear
only once in ChannelData message (i.e., a range of several index
values for the same channel may appear in one message).
3. This is a "fire and forget" message. The sender does NOT
receive a positive confirmation from the receiver that it has
successfully received and processed the message.
4. For streaming data, ETP does NOT send null data values.
EXCEPTION: If channel data values are arrays, then the arrays
MAY contain null values, but at least one array value MUST be
non-null and the entire array CANNOT be null.
5. To optimize size on-the-wire, redundant index values MAY
be sent as null. The rules for this are as follows:

a. The index value of the first DataItem record in the data array
MUST NOT be sent as null.
b. For subsequent index values:
i. If an index value differs from the previous index value in the
data array, the index value MUST NOT be sent as null.
ii. If an index value is the same as the previous index value in the
data array, the index value MAY be sent as null.
c. EXAMPLE: These index values from adjacent DataItem records
in the data array:
[1.0, 1.0, 2.0, 3.0, 3.0]
MAY be sent as:
[1.0, null, 2.0, 3.0, null].
d. When the DataItem records have both primary and secondary
index values, these rules apply separately to each index.
EXAMPLE: These primary and secondary index values from
adjacent DataItem records in the data array:
[[1.0, 10.0], [1.0, 11.0], [2.0, 11.0], [3.0, 11.0], [3.0, 12.0]]
MAY be sent as:
[[1.0, 10.0], [null, 11.0], [2.0, null], [3.0, null], [null, 12.0]].
f. If ALL index values for a DataItem record are to be sent as null,
the indexes field should be set to an empty array.
6. For more information about sending channel data, see Section
6.1.3.

«Message»
ReplaceRange

+ changedInterva l : IndexInterva l
+ channel Ids : long [1..n] (array)
+ data: DataItem [1..n] (array)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 6
MultiPart = True
SenderRole = customer

notes
A customer sends to a store with updates to channels or to
delete ranges in a channel that the store is receiving data for.
The response to this message is ReplaceRangeResponse
message.
The ReplaceRange operation is an ATOMIC operation, in that the
store, in a single operation, is expected to delete the existing
data, and replace it with the contents of the entire set of
multipart messages for the data array. This is typically
implemented as a database transaction.
This message should not be used to only append new channel
data. To append new channel data, use ChannelData.
This message should not be used to only truncate channel data.
To truncate channel data, use TruncateChannels.

«Message»
ChannelsClosed

+ id: long [1..n] (map)
+ reason: s tring [0..1]

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 7
MultiPart = True
SenderRole = s tore

notes
The store MUST send to a customer as a confirmation response
to the customer's CloseChannels message.
If the store closes a channel on its own without a request from
the customer (e.g., if the channel has been deleted), the store
MUST send this message to notify the customer that the channel
has been closed. When sent as a notification, there MUST only
be one message in the multi-part notification.
The store MUST provide a human readable reason why the
channels were closed.

«Message»
ReplaceRangeResponse

+ channelChangeTime: long [1..*]

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 8
MultiPart = Fa lse
SenderRole = s tore

notes
A store sends to a customer as a response to a ReplaceRange
message.

«Message»
TruncateChannels

+ channels : TruncateInfo [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 9
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store to "reset" the end index for one or
more channels. It is a map of individual truncate requests where
each request specifies a channel ID and the new end index for
that channel.
The response to this message is TruncateChannelsResponse.
The result of this message is, for each channel:
- It resets the endIndex.
- It deletes any previously sent data points that are AFTER the
new endIndex.
Use Case:  A frequently occurring issue/error when collecting
data in the oil field is often referred to as a "depth jump", which
is when an index momentarily "jumps forward" (beyond the next
expected index value) before being fixed and then the corrected
streaming resumes.  This type of issue must also be fixed in
downstream consumers (so the data subsequently streamed
makes sense).

«Message»
TruncateChannelsResponse

+ channelsTruncatedTime: long [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 10
MultiPart = True
SenderRole = s tore

notes
A  store sends to a customer as a response to a
TruncateChannels message.
It contains a map indicating which channels were successfully
truncated (which end indexes were successfully updated) and
the time at which that change occurred in the store.



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 384 

20.3.1 Message: OpenChannels 

A customer sends to store to identify the channels that the customer wants to push data to. The response 
to this is the OpenChannelsResponse message.  

Message Type ID: 1 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

uris General ETP map where the values MUST be the 
URI for each channel that the customer wants to 
push data to. 

The URIS MUST be URIs for channel data 
objects. 

If both endpoints support alternate URIs for the 
session, these MAY be alternate data object 
URIs. Otherwise, they MUST be canonical 
Energistics data object URIs. For more 
information, see Appendix: Energistics 
Identifiers. 

string 1 * 

  

Avro Source 

  
{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelDataLoad", 
     "name": "OpenChannels", 
     "protocol": "22", 
     "messageType": "1", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { 
             "name": "uris", 
             "type": { "type": "map", "values": "string" } 
         } 
     ] 
} 

  

20.3.2 Message: OpenChannelsResponse 

A store MUST send to a customer in response to an OpenChannels message to indicate which channels 
it can accept data for. 

It is an ETP map of OpenChannelInfo records, each of which includes a ChannelMetadataRecord for 
each channel.  

The ChannelMetadataRecord is where each channel is assigned an ID (an integer identifier that is 
smaller than the URI) for use during an ETP session. These smaller IDs reduce data on the wire.  

Message Type ID: 2 

Correlation Id Usage: MUST be set to the messageId of the OpenChannels message that this message 
is a response to. 

Multi-part: True 

Sent by: store 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 385 

Field Name Description Data Type Min Max 

channels A general ETP map of OpenChannelInfo records, 
one for each channel the store can accept data 
for. Each OpenChannelInfo record references a 
ChannelMetadataRecord, which contains the URI 
of the channel and other metadata for interpreting 
the channel data.  

The URIs MUST be canonical Energistics data 
object URIs; for more information, see Appendix: 
Energistics Identifiers. 

NOTE: For additional information on how to 
populate these attributes for each of the 
Energistics data models (WITSML, RESQML or 
PRODML), see the ML-specific ETP 
implementation specification. 

OpenChannelInfo 0 n 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelDataLoad", 
     "name": "OpenChannelsResponse", 
     "protocol": "22", 
     "messageType": "2", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "channels", 
             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.ChannelData.OpenChannelInfo" }, "default": {} 
         } 
     ] 
} 

  

20.3.3 Message: CloseChannels 

A customer sends to store to indicate that the customer has stopped streaming data for one or more 
channels from a previous OpenChannels request.  

Message Type ID: 3 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

id A general ETP map whose values MUST be the 
IDs of the channels that are being closed.  

long 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelDataLoad", 
     "name": "CloseChannels", 
     "protocol": "22", 
     "messageType": "3", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 386 

     "fields": 
     [ 
         { 
             "name": "id", 
             "type": { "type": "map", "values": "long" } 
         } 
     ] 
} 

  

20.3.4 Message: TruncateChannels 

A customer sends to a store to "reset" the end index for one or more channels. It is a map of individual 
truncate requests where each request specifies a channel ID and the new end index for that channel.  

The response to this message is TruncateChannelsResponse.  

The result of this message is, for each channel:  

 It resets the endIndex. 

 It deletes any previously sent data points that are AFTER the new endIndex.  

Use Case: A frequently occurring issue/error when collecting data in the oil field is often referred to as a 
"depth jump", which is when an index momentarily "jumps forward" (beyond the next expected index 
value) before being fixed and then the corrected streaming resumes. This type of issue must also be fixed 
in downstream consumers (so the data subsequently streamed makes sense).  

Message Type ID: 9 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

channels A general ETP map of TruncateInfo records, one 
for each channel to be truncated. Each 
TruncateInfo record lists the ID of each channel 
to be truncated, and the details of each channel 
and new end index specified. 

TruncateInfo 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelDataLoad", 
     "name": "TruncateChannels", 
     "protocol": "22", 
     "messageType": "9", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { 
             "name": "channels", 
             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.ChannelData.TruncateInfo" } 
         } 
     ] 
} 

  

20.3.5 Message: TruncateChannelsResponse 

A store sends to a customer as a response to a TruncateChannels message.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 387 

It contains a map indicating which channels were successfully truncated (which end indexes were 
successfully updated) and the time at which that change occurred in the store.  

Message Type ID: 10 

Correlation Id Usage: MUST be set to the messageId of the TruncateChannels message that this 
message is a response to. 

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

channelsTruncatedTime A map whose value is the time each channel in 
the map was truncated/updated in the store.  

Must be a UTC dateTime value, serialized as a 
long, using the Avro logical type timestamp-micros 
(microseconds from the Unix Epoch, 1 January 
1970 00:00:00.000000 UTC). 

long 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelDataLoad", 
     "name": "TruncateChannelsResponse", 
     "protocol": "22", 
     "messageType": "10", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "channelsTruncatedTime", 
             "type": { "type": "map", "values": "long" } 
         } 
     ] 
} 

  

20.3.6 Message: ChannelData 

A customer sends ChannelData messages to a store for channels the store agreed to accept data for in 
the OpenChannelsResponse message.  

The message contains an array of DataItem records for one or more channels. For more information on 
what data (value) may be sent, see the data field below. 

General behaviors and rules:  

1. This message "appends" data to a channel. It does NOT include changes to existing data in the 
channel. 

2. There is no requirement that any given channel appear in an individual ChannelData message, or 
that a given channel appear only once in ChannelData message (i.e., a range of several index 
values for the same channel may appear in one message). 

3. This is a "fire and forget" message. The sender does NOT receive a positive confirmation from the 
receiver that it has successfully received and processed the message. 

4. The index values in each DataValue record are in the same order as their corresponding 
IndexMetadataRecord records in the corresponding channel’s ChannelMetadataRecord record, 
and the primary index is always first. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 388 

5. For streaming data, ETP does NOT send null data values. EXCEPTION: If channel data values are 
arrays, then the arrays MAY contain null values, but at least one array value MUST be non-null and 
the entire array CANNOT be null. 

6. To optimize size on-the-wire, redundant index values MAY be sent as null. The rules for this are as 
follows: 

a. The index value of the first DataItem record in the data array MUST NOT be sent as null. 

b. For subsequent index values: 

i. If an index value differs from the previous index value in the data array, the index value MUST 
NOT be sent as null. 

ii. If an index value is the same as the previous index value in the data array, the index value 
MAY be sent as null. 

c. EXAMPLE: These index values from adjacent DataItem records in the data array: 

[1.0, 1.0, 2.0, 3.0, 3.0] 

MAY be sent as: 

[1.0, null, 2.0, 3.0, null]. 

d. When the DataItem records have both primary and secondary index values, these rules apply 
separately to each index. 

e. EXAMPLE: These primary and secondary index values from adjacent DataItem records in the 
data array: 

[[1.0, 10.0], [1.0, 11.0], [2.0, 11.0], [3.0, 11.0], [3.0, 12.0]] 

MAY be sent as: 

[[1.0, 10.0], [null, 11.0], [2.0, null], [3.0, null], [null, 12.0]]. 

f. If ALL index values for a DataItem record are to be sent as null, the indexes field should be set to 
an empty array. 

6. For more information about sending channel data, see Section 6.1.3. 

Message Type ID: 4 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

data Contains the data points for channels, which is an 
array of DataItem records. Note that the value 
must be one of the types specified in DataValue 
(Section 23.30)—which include options to send a 
single data value (of various types such as 
integers, longs, doubles, etc.) OR arrays of 
values. 

For more information, see Section 6.1.3. 

DataItem 1 n 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelDataLoad", 
     "name": "ChannelData", 
     "protocol": "22", 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 389 

     "messageType": "4", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         {  
             "name": "data", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.ChannelData.DataItem" } 
         } 
     ] 
} 

  

20.3.7 Message: ReplaceRange 

A customer sends to a store with updates to channels or to delete ranges in a channel that the store is 
receiving data for. The response to this message is ReplaceRangeResponse message. 

The ReplaceRange operation is an ATOMIC operation, in that the store, in a single operation, is 
expected to delete the existing data, and replace it with the contents of the entire set of multipart 
messages for the data array. This is typically implemented as a database transaction. 

This message should not be used to only append new channel data. To append new channel data, use 
ChannelData. 

This message should not be used to only truncate channel data. To truncate channel data, use 
TruncateChannels. 

General behaviors and rules:  

1. A complete, multi-part ReplaceRange message MUST include all replacement data for all channels 
affected by the message, but there is no requirement that any given channel appear in an individual 
ReplaceRange message, or that a given channel appear only once in a ReplaceRange message 
(i.e., a range of several index values for the same channel may appear in one message). 

2. It is recommended but NOT required to send data in row order rather than column order (i.e., send all 
data for all channels, one primary index value at a time rather than sending all data for each channel, 
one channel at a time). 

3. For range replacement data, ETP does NOT send null data values. If there is no replacement value 
for a channel for a particular primary index value, omit that primary index value for that channel from 
the request. EXCEPTION: If channel data values are arrays, then the arrays MAY contain null values, 
but at least one array value MUST be non-null and the entire array CANNOT be null. 

4. The index values in each DataValue record are in the same order as their corresponding 
IndexMetadataRecord records in the corresponding channel’s ChannelMetadataRecord record, 
and the primary index is always first. 

5. To optimize size on-the-wire, redundant index values MAY be sent as null. The rules for this are as 
follows: 

a. The index value of the first DataItem record in the data array MUST NOT be sent as null. 

b. For subsequent index values: 

i. If an index value differs from the previous index value in the data array, the index value MUST 
NOT be sent as null. 

ii. If an index value is the same as the previous index value in the data array, the index value 
MAY be sent as null. 

c. EXAMPLE: These index values from adjacent DataItem records in the data array: 

[1.0, 1.0, 2.0, 3.0, 3.0] 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 390 

MAY be sent as: 

[1.0, null, 2.0, 3.0, null]. 

d. When the DataItem records have both primary and secondary index values, these rules apply 
separately to each index. 

e. EXAMPLE: These primary and secondary index values from adjacent DataItem records in the 
data array: 

[[1.0, 10.0], [1.0, 11.0], [2.0, 11.0], [3.0, 11.0], [3.0, 12.0]] 

MAY be sent as: 

[[1.0, 10.0], [null, 11.0], [2.0, null], [3.0, null], [null, 12.0]]. 

f. If ALL index values for a DataItem record are to be sent as null, the indexes field should be set to 
an empty array. 

For more information about sending channel data, see Section 6.1.3. 

Message Type ID: 6 

Correlation Id Usage: For the first message, MUST be set to 0. If this is a multimessage request, the 
correlationId of all successive messages that comprise the request MUST be set to the messageId of the 
first message of the multipart request. 

Multi-part: True 

Sent by: customer 

Field Name Description Data Type Min Max 

changedInterval The indexes that define the interval that is 
changing as specified in the IndexInterval record. 

IndexInterval 1 1 

channelIds An array of the IDs of the channels that are being 
updated.  

long 1 n 

data An array of channel data as defined in DataItem 
that will replace the data defined by the 
changedInterval field.  

To delete an interval in a channel, leave this field 
blank. The interval identified in changedInterval is 
deleted (essentially replaced with nothing). 

DataItem 1 n 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelDataLoad", 
     "name": "ReplaceRange", 
     "protocol": "22", 
     "messageType": "6", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { "name": "changedInterval", "type": 
"Energistics.Etp.v12.Datatypes.Object.IndexInterval" }, 
         {  
             "name": "channelIds", 
             "type": { "type": "array", "items": "long" } 
         }, 
         {  
             "name": "data", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.ChannelData.DataItem" } 
         } 
     ] 
} 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 391 

  

20.3.8 Message: ReplaceRangeResponse 

A store sends to a customer as a response to a ReplaceRange message.  

Message Type ID: 8 

Correlation Id Usage: MUST be set to the messageId of the FIRST (or only) ReplaceRange message in 
the multipart request that this message is in response to. 

Multi-part: False 

Sent by: store 

Field Name Description Data Type Min Max 

channelChangeTime The time the ranges were replaced (written in 
store). Because this is an atomic operation (all fail 
or all succeed), this message has this single 
change time (i.e., all channels were replaced at 
the same time).  

Must be a UTC dateTime value, serialized as a 
long, using the Avro logical type timestamp-micros 
(microseconds from the Unix Epoch, 1 January 
1970 00:00:00.000000 UTC). 

long 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelDataLoad", 
     "name": "ReplaceRangeResponse", 
     "protocol": "22", 
     "messageType": "8", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "channelChangeTime", "type": "long" } 
     ] 
} 

  

20.3.9 Message: ChannelsClosed 

The store MUST send to a customer as a confirmation response to the customer's CloseChannels 
message. 

If the store closes a channel on its own without a request from the customer (e.g., if the channel has been 
deleted), the store MUST send this message to notify the customer that the channel has been closed. 
When sent as a notification, there MUST only be one message in the multi-part notification. 

The store MUST provide a human readable reason why the channels were closed. 

Message Type ID: 7 

Correlation Id Usage: When sent as a response: MUST be set to the messageId of the CloseChannels 
message that this message is a response to. When sent as a notification: MUST be ignored and 
SHOULD be set to 0. 

Multi-part: True 

Sent by: store 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 392 

Field Name Description Data Type Min Max 

reason A reason why the channels have been closed. string 1 1 

id ETP general map where the values must be the 
IDs of the channels being closed.  

long 1 n 

  
  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.ChannelDataLoad", 
     "name": "ChannelsClosed", 
     "protocol": "22", 
     "messageType": "7", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { "name": "reason", "type": "string" }, 
         { 
             "name": "id", 
             "type": { "type": "map", "values": "long" } 
         } 
     ] 
} 

 

 
 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 393 

21 Dataspace (Protocol 24) 
ProtocolID: 24 

Defined Roles: store, customer 

A customer endpoint uses Dataspace (Protocol 24) to discover dataspaces on a store. After locating the 
target dataspace, the customer then uses Discovery (Protocol 3) (see Chapter 8) to discover its content.  

IMPORTANT! For information on how to format URIs for ETP, including URIs for dataspaces, see 
Appendix: Energistics Identifiers. 

This chapter includes main sections for:  
 Key ETP concepts that are important to understanding how this protocol is intended to work (see 

Section 21.1. 

 Required behavior, which includes: 

 Description of the message sequence for main tasks, along with required behavior, usage of 
ETP-defined capabilities, and possible errors (see Section 21.2.1).  

 Other functional requirements (not covered in the message sequence) including use of ETP-
defined endpoint and protocol capabilities for preventing and protecting against aberrant behavior 
(see Section 21.2.2). 

- Definitions of the ETP-defined endpoint and protocol capabilities used in this protocol (see 
Section 21.2.3). 

 Sample schemas of the messages defined in this protocol, which are identical to the Avro schemas 
published with this version of ETP. However, only the schema content in this specification includes 
documentation for each field (see Section 21.3).  

21.1 Dataspace: Key Concepts 

21.1.1 Dataspace: Definition 

A dataspace is an abstract concept representing a distinct collection of data objects. Dataspaces have 
been kept as general as possible to support a variety of use cases. ETP does not assign a specific 
meaning to dataspaces, but different use cases may use a dataspace to represent a project on disk, a 
specific database, a specific tenant in a multi-tenant store, a specific back-end data store, etc. When 
dataspaces are used, dataspaces within a store are identified by unique ETP URIs (see Appendix: 
Energistics Identifiers), and URIs for data objects within a dataspace include the dataspace URI as a 
prefix. 

EXAMPLE: When working on a large oil and gas asset, it is common to organize work into projects. 
Subsequently, the data may also be organized and stored as projects. In this type of organization, it is 
possible for the same data object to be worked on by multiple project teams and exist in multiple locations 
(data stores), and as multiple versions. In these situations, users keep track of which projects they are 
working on and which data store the project is stored in. ETP dataspaces may be used to represent these 
different data stores and the projects in them. URIs for data objects within the projects will be prefixed 
with the project’s dataspace URI. 

21.2 Dataspace: Required Behavior 

This section contains functional and non-functional requirements for this protocol. It is organized in these 
sub-sections: 

 Message Sequence. Summarizes all messages defined by this protocol, identifies main tasks that 
can be done with this protocol and describes the response/request pattern for the messages needed 
to perform the tasks, including usage of ETP-defined capabilities, error scenarios, and resulting ETP 
error codes.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 394 

 General Requirements. Identifies high-level (across ETP) and protocol-wide general behavior and 
rules that must be observed (in addition to behavior specified in Message Sequence), including usage 
of ETP-defined endpoint, data object and protocol capabilities, error scenarios, and resulting error 
codes.  

 Capabilities. Lists and defines the ETP-defined parameters most relevant for this sub-protocol. ETP 
defines these parameters to set necessary limits to help prevent aberrant behavior (e.g., sending 
oversized messages or sending more messages than an endpoint can handle).  

Prerequisites for using this protocol:  
 An ETP session has been established using Core (Protocol 0) as described in Chapter 5. 

21.2.1 Dataspace: Message Sequence 

This section explains the basic message sequence for main tasks to be done using this protocol and 
includes related key behaviors, capabilities usage, and possible errors. The following General 
Requirements section provides additional requirements and rules for how this protocol works.   

The following table lists all messages defined in this sub-protocol, the basic request/response usage 
patterns per ETP role, and whether it may be multipart. The detailed content of each message is 
explained in the Message Schema section. 

 Dataspaces (Protocol 24): 
Basic Message-Response flow by ETP Role 

Message from customer Response Message from store 

GetDataspaces: A customer sends to a store to 

discover all dataspaces available on the store. 

GetDataspacesResponse (multipart): Response that 

lists the dataspaces the store could return. 

PutDataspaces: A customer sends to a store to create 

one or more dataspaces. 

PutDataspacesResponse (multipart): The "success 

only" response indicating which dataspaces the store 
successfully put. 

DeleteDataspaces: A customer sends to a store to 

delete one or more dataspaces. 

DeleteDataspacesResponse (multipart): The 

"success only" response indicating which dataspaces 
the store successfully deleted. 

 

21.2.1.1 To get a list of dataspaces on a store: 
1. A customer MUST send a store a GetDataspaces message (Section 21.3.1).  

a. An optional storeLastWriteFilter allows the customer to filter by the date/time stamp. 

2. If the store successfully returns dataspaces that match the criteria specified in the GetDataspaces 
message, the store MUST send one or more GetDataspacesResponse messages (Section 21.3.2), 
each of which has an array of dataspaces available in the store. 

a. A store MUST limit the total count of responses to the customer's value for the 
MaxResponseCount protocol capability. 

b. If the store exceeds the customer's MaxResponseCount value, the customer MAY send error 
ERESPONSECOUNT_EXCEEDED (30). 

c. If a store's MaxResponseCount value is less than the customer's MaxResponseCount value, the 
store MAY further limit the total count of responses (to its value). 

d. If a store cannot send all responses to a request because it would exceed the lower of the 
customer's or the store's MaxResponseCount value, the store: 

i. MUST terminate the multipart response by sending error ERESPONSECOUNT_EXCEEDED 
(30).  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 395 

ii. MUST NOT terminate the response until it has sent MaxResponseCount responses. 

3. If the store has no dataspaces that meet the criteria specified in the GetDataspaces message, the 
store MUST send a GetDataspacesResponse message with the FIN bit set and the dataspaces field 
set to an empty array. 

4. If the store does NOT successfully return dataspaces, it MUST send a non-map ProtocolException 
message with an appropriate error, such as EREQUEST_DENIED (06). 

21.2.1.2 To create a dataspace on a store: 
1. A customer MUST send a store a PutDataspaces message (Section 21.3.3), which is a map of the 

dataspaces it wants to create.  

2. For the dataspaces it successfully creates, the store MUST send one or more 
PutDataspacesResponse map response messages (Section 21.3.4) where presence of the map key 
indicates success. 

a. For more information on how map response messages work, see Section 3.7.3. 

3. For the dataspaces it does NOT create, the store MUST send one or more map ProtocolException 
messages where values in the errors field (a map) are appropriate errors, such as 
EREQUEST_DENIED (6). 

a. For lack of permissions, send error EREQUEST_DENIED (6). 

b. For the complete list of ETP error codes, see Section 24.3. 

c. For more information on how ProtocolException messages work with plural messages, see 
Section 3.7.3. 

21.2.1.3 To delete a dataspaces from a store: 
1. A customer MUST send a store a DeleteDataspaces message (Section 21.3.5), which is a map of 

URIs for the dataspaces it wants to delete.  

2. For the dataspaces it successfully deletes, the store MUST send one or more 
DeleteDataspacesResponse map response messages (Section 21.3.6) where presence of the map 
key indicates success. 

a. For more information on how map response messages work, see Section 3.7.3.  

3. For the dataspaces it does NOT successfully delete, the store MUST send one or more map 
ProtocolException messages where values in the errors field (a map) are appropriate errors, such 
as ENOT_FOUND (11). 

a. For more information on how ProtocolException messages work with plural messages, see 
Section 3.7.3. 

21.2.2 Dataspace: General Requirements 

In addition to the basic message sequence described in the previous section, this protocol has the 
additional requirements listed in the table below. For easy reference, the rows and behaviors in this table 
are numbered. 

NOTE: This table has been organized to reduce redundancy but also to help developers more easily 
locate specific requirements. EXAMPLE: There are rows with general requirements that apply to all 
protocols (e.g., Rows 1–2), rows for general requirements for this protocol, and (possibly) additional rows 
with additional requirements for specific types of operations.  

Row# Requirement Behavior 

1.  ETP-wide behavior that MUST be observed 
in all protocols 

1. Requirements for general behavior consistent across all of ETP are 
defined in Chapter 3. This behavior includes information such as: all 
details of message handling (such as message headers, handling 
compression, use of message IDs and correlation IDs, requirements for 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 396 

Row# Requirement Behavior 

plural and multipart message patterns) use of acknowledgements, 
general rules for sending ProtocolException messages, URI encoding, 
serialization and more. RECOMMENDATION: Read Chapter 3 first. 

2. For information about Energistics identifiers and prescribed ETP URI 
formats, see Appendix: Energistics Identifiers. 

a. In MOST cases, endpoints performing operations in this protocol 
MUST use the canonical Energistics URI. For more information, see 
Section 3.7.4. 

3. For the complete list of error codes defined by ETP, see Chapter 24. 

4. ALL operations in an ETP session are performed on the set of 
supported data object types that were negotiated to be used when 
the session was initiated and established. 

a. The client and server exchange the list of data object types in the 
supportedDataObjects field of the RequestSession and 
OpenSession messages in Core (Protocol 0). For more 
information, see Chapter 5. 

b. In general, the list of supported objects for a session will most likely 
be the intersection of the data objects that the server supports and 
the data objects that the client requested for the ETP session. 

c. A store MUST support all messages (in each supported ETP sub-
protocol) for each supported data object, whether the data object is 
supported explicitly or by wild card. 

d. An endpoint MUST only send messages with the URI of a data 
object that is a type supported by the other endpoint for this ETP 
session.  

i. If an endpoint sends a URI for an unsupported type of data 
object, the other endpoint MUST send error 
EDATAOBJECTTYPE_NOTSUPPORTED (16). 

2.  Capabilities-related behavior 1. Relevant endpoint, data object, and/or protocol capabilities MUST be 
specified when the ETP session is established (see Chapter 5) and 
MUST be used/honored as defined in the relevant ETP sub-protocol.  

2. For an explanation of endpoint, data object, and protocol capabilities, see 
Section 3.3. 

a. For the list of global capabilities and related behavior, see Section 
3.3.2. 

3. Section 21.2.3 identifies the capabilities most relevant to this ETP sub-
protocol. Additional details for how to use the protocol capabilities are 
included below in this table and in Section 21.2.1 Dataspace: Message 
Sequence. 

3.  Message Sequence 

See Section 21.2.1. 

1. The Message Sequence section above (Section 21.2.1) describes 
requirements for the main tasks listed there and also defines required 
behavior. 

4.  Plural message (which includes maps) 1. This protocol uses plural messages. For detailed rules on handling plural 
messages (including ProtocolException handling), see Section 3.7.3. 

5.  Default dataspace 1. A store MUST support the default dataspace. 

a. The default dataspace MAY be empty (i.e., have no data objects). 

b. The URI for the default dataspace is eml:/// 

c. The path for the empty dataspace is a 0 length string (i.e., the 
empty string). 

 

21.2.3 Dataspace: Capabilities 

The table below lists key capabilities for this protocol. The protocol capabilities are all defined here.  

 For protocol-specific behavior relating to using these capabilities in this protocol, see◦Sections 21.2.1 
and◦21.2.2. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 397 

 For definitions for endpoint and data object capabilities, see the links in the table. 

 For general information about the types of capabilities and how they may be used, see Section 3.3. 

Dataspace (Protocol 24): Capabilities 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

Endpoint Capabilities  

(For definitions of each endpoint capability, see Section 3.3.) 

   

NOTE: Many endpoint capabilities are "universal", used in all or 

most of the ETP protocols. For more information, see Section 
3.3.2. 

Behavior associated with other endpoint capabilities are 
defined in relevant chapters.  
EXAMPLE: The capabilities defined for limiting ETP 
sessions between 2 endpoints are discussed in 
Section 4.3, How a Client Establishes a WebSocket 

Connection to an ETP Server. 

   

Protocol Capabilities    

MaxResponseCount: The maximum total count of responses 

allowed in a complete multipart message response to a single 
request. 

long count 
<count of 
responses> 

MIN: 10,000 

 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 398 

21.3 Dataspace: Message Schemas 

This section provides a figure that displays all messages defined in Dataspace (Protocol 24). Subsequent 
sub-sections provide an example schema for each message and definitions of the data fields contained in 
each message. 

 
Figure 31: Dataspace: message schemas 

21.3.1 Message: GetDataspaces 

A customer sends to a store to discover all dataspaces available on the store. The response to this is a 
GetDataspacesResponse message. 

Message Type ID: 1 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

storeLastWriteFilter An optional filter to limit the dataspaces returned 
by date/time last saved to the store (value in 
storeLastWrite field).  

The store returns a list of dataspaces whose last 
changed date/time is greater than the specified 
date/time.  

It must be a UTC dateTime value, serialized as a 
long, using the Avro logical type timestamp-micros 
(microseconds from the Unix Epoch, 1 January 
1970 00:00:00.000000 UTC). 

long 0 1 

  

Avro Source 

{ 
     "type": "record", 

class Dataspace

«Message»
GetDataspaces

+ s toreLastWriteFi l ter: long [0..1]

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 1
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store to discover all dataspaces
available on the store. The response to this is a
GetDataspacesResponse message.

«Message»
GetDataspacesResponse

+ dataspaces : Dataspace [0..n] (array) = EmptyArray

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 2
MultiPart = True
SenderRole = s tore

notes
A store MUST send to a customer as the response to  the
GetDataspaces  message; it is an array of the available
dataspaces the store could return.

«Message»
PutDataspaces

+ dataspaces : Dataspace [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 3
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to a store to create one or more
dataspaces. The response to this message is
PutDataspacesResponse.

«Message»
DeleteDataspaces

+ uris : s tring [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 4
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends to the store to delete one or more
dataspaces. The "success only" response to this message is
the  DeleteDataspacesResponse message.

«Message»
DeleteDataspacesResponse

+ success : s tring [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 5
MultiPart = True
SenderRole = s tore

notes
A store MUST send this "success only" message to a
customer as confirmation of a successful operation in
response to a  DeleteDataspaces message.
- These "success only" response messages have been
added to ETP to support more efficient operations of
customer role software.

«Message»
PutDataspacesResponse

+ success : s tring [1..*] (map)

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 6
MultiPart = True
SenderRole = s tore

notes
A store MUST send this "success only" message to a
customer as confirmation of a successful operation in
response to a PutDataspaces  message.
- These "success only" response messages have been
added to ETP to support more efficient operations of
customer role software.



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 399 

     "namespace": "Energistics.Etp.v12.Protocol.Dataspace", 
     "name": "GetDataspaces", 
     "protocol": "24", 
     "messageType": "1", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "storeLastWriteFilter", "type": ["null", "long"] } 
     ] 
} 

  

21.3.2 Message: GetDataspacesResponse 

A store MUST send to a customer as the response to the GetDataspaces message; it is an array of the 
available dataspaces the store could return.  

Message Type ID: 2 

Correlation Id Usage: MUST be set to the messageId of the GetDataspaces message that this 
message is a response to.  

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

dataspaces An array of Dataspace records, each of which 
specifies data for each dataspace being returned.  

Dataspace 0 n 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Dataspace", 
     "name": "GetDataspacesResponse", 
     "protocol": "24", 
     "messageType": "2", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "dataspaces", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.Object.Dataspace" }, "default": [] 
         } 
     ] 
} 

  

21.3.3 Message: PutDataspaces 

A customer sends to a store to create one or more dataspaces. The response to this message is 
PutDataspacesResponse. 

Message Type ID: 3 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0.  

Multi-part: False 

Sent by: customer 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 400 

Field Name Description Data Type Min Max 

dataspaces ETP general map where the values MUST be 
Dataspace records, one each for each dataspace 
the customer wants to add or update. Each record 
contains the fields of data for each dataspace. 

The URIs MUST be canonical Energistics 
dataspace URIs; for more information, see 
Appendix: Energistics Identifiers. 

Dataspace 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Dataspace", 
     "name": "PutDataspaces", 
     "protocol": "24", 
     "messageType": "3", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { 
             "name": "dataspaces", 
             "type": { "type": "map", "values": 
"Energistics.Etp.v12.Datatypes.Object.Dataspace" } 
         } 
     ] 
} 

  

21.3.4 Message: PutDataspacesResponse 

A store MUST send this "success only" message to a customer as confirmation of a successful operation 
in response to a PutDataspaces message.  

These "success only" response messages have been added to ETP to support more efficient operations 
of customer role software. 

Message Type ID: 6 

Correlation Id Usage: MUST be set to the messageId of the PutDataspaces message that this message 
is a response to.  

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

success  The presence of the map key represents 
success. 

 The associated map string value SHOULD 
be empty because its content is ignored. 

string 1 * 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 401 

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Dataspace", 
     "name": "PutDataspacesResponse", 
     "protocol": "24", 
     "messageType": "6", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "success", 
             "type": { "type": "map", "values": "string" } 
         } 
     ] 
} 

  

21.3.5 Message: DeleteDataspaces 

A customer sends to the store to delete one or more dataspaces. The "success only" response to this 
message is the DeleteDataspacesResponse message.  

Message Type ID: 4 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

uris ETP general map where the values must the URIs 
for the dataspaces the customer wants to delete.  

The URIs MUST be canonical Energistics 
dataspace URIs; for more information, see 
Appendix: Energistics Identifiers.  

string 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Dataspace", 
     "name": "DeleteDataspaces", 
     "protocol": "24", 
     "messageType": "4", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { 
             "name": "uris", 
             "type": { "type": "map", "values": "string" } 
         } 
     ] 
} 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 402 

21.3.6 Message: DeleteDataspacesResponse 

A store MUST send this "success only" message to a customer as confirmation of a successful operation 
in response to a DeleteDataspaces message.  

These "success only" response messages have been added to ETP to support more efficient operations 
of customer role software.  

Message Type ID: 5 

Correlation Id Usage: MUST be set to the messageId of the DeleteDataspaces message that this 
message is a response to.  

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

success  The presence of the map key represents 
success. 

 The associated map string value SHOULD 
be empty because its content is ignored. 

string 1 * 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.Dataspace", 
     "name": "DeleteDataspacesResponse", 
     "protocol": "24", 
     "messageType": "5", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "success", 
             "type": { "type": "map", "values": "string" } 
         } 
     ] 
} 

  

 

 
 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 403 

22 SupportedTypes (Protocol 25) 
ProtocolID: 25 

Defined Roles: store, customer 

A customer uses SupportedTypes (Protocol 25) to discover a store's data model—that is, to dynamically 
understand what data object types and relationships are possible in the store at a given location (i.e., at a 
node in the data model), without prior knowledge of the overall data model and graph connectivity.  

Other ETP sub-protocols that may be used with SupportedTypes (Protocol 25): 
 To discover dataspaces in a store that you might want to get supported types for, use Dataspace 

(Protocol 24), see Chapter 21. 

 To discover data objects in a store that you might want to get supported types for, use Discovery 
(Protocol 3), see Chapter 8. 

This chapter includes main sections for:  
 Required behavior, which includes: 

 Description of the message sequence for main tasks, along with required behavior and possible 
errors (Section 22.2.1).  

 Other functional requirements (not covered in the message sequence) including use of endpoint 
and protocol capabilities for preventing and protecting against aberrant behavior (Section 22.2.2). 

- Definitions of the endpoint and protocol capabilities used in this protocol (Section 22.2.3). 

 Sample schemas of the messages defined in this protocol (which are identical to the Avro schemas 
published with this version of ETP). However, only the schema content in this specification includes 
documentation for each field (Section 22.3).  

22.1 SupportedTypes: Key Concepts 

This section explains concepts that are important to understanding how SupportedTypes (Protocol 25) 
works. 

22.1.1 Data Model as Graph 

The messages in SupportedTypes (Protocol 25) have been developed to work with data models as 
graphs. When understood and used properly, this graph approach allows customers to specify precisely 
and in a single request the desired set of objects to monitor for notifications, thereby reducing traffic on 
the wire.  

 For general definition of a graph, how it works, and key concepts and how they are used as inputs, 
see Section 8.1.1.  

22.2 SupportedTypes: Required Behavior 

This section contains functional and non-functional requirements for this protocol. It is organized in these 
sub-sections: 

 Message Sequence. Summarizes all messages defined by this protocol, identifies main tasks that 
can be done with this protocol and describes the response/request pattern for the messages needed 
to perform the tasks, including usage of ETP-defined capabilities, error scenarios, and resulting ETP 
error codes.  

 General Requirements. Identifies high-level (across ETP) and protocol-wide general behavior and 
rules that must be observed (in addition to behavior specified in Message Sequence), including usage 
of ETP-defined endpoint, data object and protocol capabilities, error scenarios, and resulting error 
codes.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 404 

 Capabilities. Lists and defines the ETP-defined parameters most relevant for this sub-protocol. ETP 
defines these parameters to set necessary limits to help prevent aberrant behavior (e.g., sending 
oversized messages or sending more messages than an endpoint can handle).  

Prerequisites for using this protocol:  
 An ETP session has been established using Core (Protocol 0) as described in Chapter 5. 

22.2.1 SupportedTypes: Message Sequence 

This section explains the basic message sequence for main tasks to be done using this protocol and 
includes related key behaviors and possible errors; it assumes that an ETP session has been established 
using Core (Protocol 0) as described in Chapter 5. The following General Requirements section provides 
additional requirements and rules for how this protocol works.   

The following table lists all messages defined in this sub-protocol, the basic request/response usage 
patterns per ETP role, and whether it may be multipart. The detailed content of each message is 
explained in the Message Schema section (Section 22.3). 

SupportedTypes (Protocol 25): 
Basic Message-Response flow by ETP Role 

Message from customer Response Message from store 

GetSupportedTypes: Used to discover the types of 

data objects that a store instantiates or supports 

GetSupportedTypesResponse (multipart): An 

array of supported types that the store could return.  

 

22.2.1.1 To discover data object types that are instantiated or supported in the store:  
1. The customer sends the GetSupportedTypes message (Section 22.3.1). This request message:  

a. MUST specify a URI from where the data types will be searched. 

i. If the URI is a dataspace URI (for example eml:///), then all datatypes supported in the 
dataspace are returned. 

ii. If the URI is a data object, then only datatypes that may have a link with the URI data object 
type are potentially returned. 

b. MUST specify the scope (Section 22.3.1).  

i. If the URI is a data object, then the scope MUST be either "sources" or "targets". If the scope is 
NOT "sources" or "targets", the store MUST reject the request and send error 
EINVALID_OPERATION (32). 

ii. If the URI is not a data object, then this scope is ignored by the store. 

c. Includes an option to count the number of instances of each data object type that matches the 
request (countObjects MUST be set to true).  

d. Includes an option to see the entire list of supported types (include types of which the store does 
not have any instances). To do this, the returnEmptyTypes flag MUST be set. Otherwise only 
data objects that currently have data are returned.  

2. The store MUST respond with a GetSupportedTypesResponse message (Section 22.3.2) or a 
ProtocolException message. 

a. If the store does return supported types, it MUST send one or more 
GetSupportedTypesResponse messages, which are arrays of SupportedType records that the 
store supports and an optional count of each type. 

i. If the request URI (in the GetSupportedTypes request) was a dataspace, then the 
relationshipKind field in the SupportedType record MUST be set to "Primary" for all 
datatypes that are returned. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 405 

ii. If the request URI (in the GetSupportedTypes request) was a data object, then the 
relationshipKind field in the SupportedType record MUST be set to the appropriate value 
("Primary" or "Secondary") for all datatypes that are returned. 

iii. A store MUST limit the total count of responses to the customer's value for the 
MaxResponseCount protocol capability. 

iv. If the store exceeds the customer's MaxResponseCount value, the customer MAY send error 
ERESPONSECOUNT_EXCEEDED (30). 

v. If a store's MaxResponseCount value is less than the customer's MaxResponseCount value, 
the store MAY further limit the total count of responses (to its value). 

vi. If a store cannot return all responses to a request because it would exceed the lower or the 
customer's or the store's value for MaxResponseCount, the store MUST terminate the 
multipart message with error ERESPONSECOUNT_EXCEEDED (30). 

vii. A store MUST NOT send ERESPONSECOUNT_EXCEEDED (30) until it has sent 
MaxResponseCount responses. 

b. If no supported types meet the criteria specified in the GetSupportedTypes message:  

i. If the dataspace or data object specified by the URI in the context does not exist, the store 
MUST send error ENOT_FOUND (11). 

ii. If the URI in the context exists, but no supported types could be found matching the request, 
the store MUST send the GetSupportedTypesResponse message with the FIN bit set and 
the supportedTypes field set to an empty array. 

22.2.2 SupportedTypes: General Requirements 

In addition to the basic message sequence described in the previous section, this protocol has the 
additional requirements listed in the table below. For easy reference, the rows and behaviors in this table 
are numbered. 

NOTE: This table has been organized to reduce redundancy but also to help developers more easily 
locate specific requirements. EXAMPLE: There are rows with general requirements that apply to all 
protocols (e.g., Rows 1–2), rows for general requirements for this protocol, and (possibly) additional rows 
with additional requirements for specific types of operations.  

Row# Requirement Behavior 

1.  ETP-wide behavior that MUST be observed in 
all protocols 

1. Requirements for general behavior consistent across all of ETP are 
defined in Chapter 3. This behavior includes information such as: all 
details of message handling (such as message headers, handling 
compression, use of message IDs and correlation IDs, requirements 
for plural and multipart message patterns) use of acknowledgements, 
general rules for sending ProtocolException messages, URI 
encoding, serialization and more. RECOMMENDATION: Read 
Chapter 3 first. 

2. For information about Energistics identifiers and prescribed ETP URI 
formats, see Appendix: Energistics Identifiers. 

a. In MOST cases, endpoints performing operations in this protocol 
MUST use the canonical Energistics URI. For more information, 
see Section 3.7.4. 

3. For the complete list of error codes defined by ETP, see Chapter 24. 

4. ALL operations in an ETP session are performed on the set of 
supported data object types that were negotiated to be used 
when the session was initiated and established. 

a. The client and server exchange the list of data object types in the 
supportedDataObjects field of the RequestSession and 
OpenSession messages in Core (Protocol 0). For more 
information, see Chapter 5. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 406 

Row# Requirement Behavior 

b. In general, the list of supported objects for a session will most 
likely be the intersection of the data objects that the server 
supports and the data objects that the client requested for the 
ETP session. 

c. A store MUST support all messages (in each supported ETP sub-
protocol) for each supported data object, whether the data object 
is supported explicitly or by wild card. 

d. An endpoint MUST only send messages with the URI of a data 
object that is a type supported by the other endpoint for this ETP 
session.  

i. If an endpoint sends a URI for an unsupported type of data 
object, the other endpoint MUST send error 
EDATAOBJECTTYPE_NOTSUPPORTED (16). 

2.  Capabilities-related behavior 1. Relevant endpoint, data object, and/or protocol capabilities MUST be 
specified when the ETP session is established (see Chapter 5) and 
MUST be used/honored as defined in the relevant ETP sub-protocol.  

2. For an explanation of endpoint, data object, and protocol capabilities, 
see Section 3.3. 

a. For the list of global capabilities and related behavior, see 
Section 3.3.2. 

3. Section 22.2.3 identifies the capabilities most relevant to this ETP sub-
protocol. Additional details for how to use the protocol capabilities are 
included below in this table and in Section 22.2.1 SupportedTypes: 
Message Sequence. 

3.  Message Sequence 

See Section 22.2.1. 

1. The Message Sequence section above (Section 22.2.1) describes 
requirements for the main tasks listed there and also defines required 
behavior. 

4.  Maps and plural message  (which includes 
maps) 

1. This protocol uses plural messages. For detailed rules on handling 
plural messages (including ProtocolException handling), see Section 
3.7.3. 

5.  Session negotiation: specify "all" for 
supportedDataObjects 

1. For best results using this protocol, in the RequestSession message, 
in the supportedDataObjects field, the customer SHOULD specify "all" 
data objects (EXAMPLE: witsml20.*) 

a. For more information, see Row 1, Para 4 above or the 
RequestSession message Section 5.3. 

 

22.2.3 SupportedTypes: Capabilities 

The table below lists key capabilities for this protocol. The protocol capabilities are all defined here.  

 For protocol-specific behavior relating to using these capabilities in this protocol, 
see◦Section◦22.2.2◦SupportedTypes: General Requirements. 

 For definitions for endpoint and data object capabilities, see the links in the table. 

 For general information about the types of capabilities and how they may be used, see Section 3.3. 

SupportedTypes (Protocol 25): Capabilities 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

Endpoint Capabilities  

(For definitions of each endpoint capability, see Section 3.3.) 

   

NOTE: Many endpoint capabilities are "universal", used in all or 

most of the ETP protocols. For more information, see Section 
3.3.2. 

   



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 407 

SupportedTypes (Protocol 25): Capabilities 

Name: Description Type Units 
Value Units 

Defaults 
and/or 
MIN/MAX 

Behavior associated with other endpoint capabilities are 
defined in relevant chapters.  
EXAMPLE: The capabilities defined for limiting ETP 
sessions between 2 endpoints are discussed in 
Section 4.3, How a Client Establishes a WebSocket 

Connection to an ETP Server. 

Protocol Capabilities    

MaxResponseCount: The maximum total count of responses 

allowed in a complete multipart message response to a single 
request. 

long count 
<count of 
responses> 

MIN: 10,000 

 

22.3 SupportedTypes: Message Schemas 

This section provides a figure that displays all messages defined in SupportedTypes (Protocol 25). 
Subsequent sub-sections provide an example schema for each message and definitions of the data fields 
contained in each message. 

 
Figure 32: SupportedTypes: message schemas 

22.3.1 Message: GetSupportedTypes 

A customer sends this message to a store to discover the types of data objects that a store instantiates or 
supports.  

For example, while no data may exist for these data types in the store, the store may return the supported 
type.  

It is an intersection of the data model and what data types the store instantiates or supports at a location 
(specified by the context URI), in the requested "direction" (as specified in the scope).  

class SupportedTypes

«Message»
GetSupportedTypes

+ countObjects : boolean = fa lse
+ returnEmptyTypes : boolean = fa lse
+ scope: ContextScopeKind
+ uri : s tring

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 1
MultiPart = Fa lse
SenderRole = customer

notes
A customer sends this message to a store to discover the types of data
objects that a store instantiates or supports.
For example, while no data may exist for these data types in the store,
the store may return the supported type.
It is an intersection of the data model and what data types the store
instantiates or supports at a location (specified by the context URI), in
the requested "direction" (as specified in the scope).
The response to this message is the GetSupportedTypesResponse
message, which is an array of supported types.

«Message»
GetSupportedTypesResponse

+ supportedTypes : SupportedType [0..n] (array) = EmptyArray

tags
AvroSrc = <memo>
CorrelationId = <memo>
MessageTypeID = 2
MultiPart = True
SenderRole = s tore

notes
A store MUST send to a customer in response to the
GetSupportedTypes message; it is an array of supported types.



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 408 

The response to this message is the GetSupportedTypesResponse message, which is an array of 
supported types. 

Message Type ID: 1 

Correlation Id Usage: MUST be ignored and SHOULD be set to 0. 

Multi-part: False 

Sent by: customer 

Field Name Description Data Type Min Max 

uri The URI for the location in the data model where 
you want to begin discovering the instantiated or 
supported data types in a store. This MUST be a 
canonical Energistics URI.  

The URI MUST be a canonical Energistics data 
object or dataspace URI; for more information, 
see Appendix: Energistics Identifiers. 

string 1 1 

scope Scope is specified in reference to the URI (which 
is entered in the uri field). It indicates which 
direction in the graph that the operation should 
proceed (targets or sources).The enumerated 
values to choose from are specified in 
ContextScopeKind. For GetSupportedTypes, the 
value MUST be either "sources" or "targets". 

For definitions of targets and sources, see Section 
8.1.1.  

ContextScopeKind 1 1 

returnEmptyTypes Flag, if set to true, the store to returns data types 
that it supports but for which it currently has no 
data (no instance). 

Default is false. 

boolean 1 1 

countObjects Flag, if set to true, the store provides counts for 
each supported type of resource identified. 

Default is false. 

boolean 1 1 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.SupportedTypes", 
     "name": "GetSupportedTypes", 
     "protocol": "25", 
     "messageType": "1", 
     "senderRole": "customer", 
     "protocolRoles": "store,customer", 
     "multipartFlag": false, 
    
     "fields": 
     [ 
         { "name": "uri", "type": "string" }, 
         { "name": "scope", "type": "Energistics.Etp.v12.Datatypes.Object.ContextScopeKind" }, 
         { "name": "returnEmptyTypes", "type": "boolean", "default": false }, 
         { "name": "countObjects", "type": "boolean", "default": false } 
     ] 
} 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 409 

22.3.2 Message: GetSupportedTypesResponse 

A store MUST send to a customer in response to the GetSupportedTypes message; it is an array of 
supported types. 

Message Type ID: 2 

Correlation Id Usage: MUST be set to the messageId of the GetSupportedTypes message that this 
message is a response to.  

Multi-part: True 

Sent by: store 

Field Name Description Data Type Min Max 

supportedTypes An array of SupportedType records, of the types 
of data objects that the store instantiates or 
supports. 

If the request set the flag to true for 
returnedEmptyTypes, then the array includes 
types of data objects that the store supports but 
may currently have no data for. 

SupportedType 0 n 

  

Avro Source 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Protocol.SupportedTypes", 
     "name": "GetSupportedTypesResponse", 
     "protocol": "25", 
     "messageType": "2", 
     "senderRole": "store", 
     "protocolRoles": "store,customer", 
     "multipartFlag": true, 
     "fields": 
     [ 
         { 
             "name": "supportedTypes", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.Object.SupportedType" }, "default": [] 
         } 
     ] 
} 

  

 

 
 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 410 

23 ETP Datatypes 
The datatypes package is intended to hold only low-level types that are broadly re-used in various 
protocols. In general, primitive datatypes follow the rules for Avro itself. These are the lower-level 
datatypes defined for the protocols. They are only used as fields of messages, not as messages in their 
own right.  

For more information and definitions, see Section 3.4.1.1. 

Figure 33 shows examples of some frequently used datatypes and the messages (and other datatypes) 
that use those datatypes.  

 

Figure 33: Examples of ETP-defined datatypes (Avro records) that are used by multiple messages and other 
records.  

 
 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 411 

 
Figure 34: Datatypes 

class Datatypes

«record»
SupportedProtocol

+ protocol: int
+ protocolCapabilities: DataValue [0..*] (map) = EmptyMap
+ protocolVersion: Version
+ role: string

notes
Data structure that describes a protocol that is supported in a
particular role by a given actor. It includes the protocol ID,
version, role and protocol capabilities. This structure is used
primarily in initial session negotiation to determine how a client
and server will interact for a given session.

«record»
MessageHeader

+ correlationId: long
+ messageFlags: int
+ messageId: long
+ messageType: int
+ protocol: int

notes
An Avro record that is the protocol control block sent at the
beginning of every message. On the wire, every message sent
contains this block first. From an Avro perspective, the message
header can be thought of as the first member of every message.
However, it MUST be processed independently of the message. This
independent processing allows agents to inspect the protocol and
message type fields in the header to determine the appropriate
serializer for the rest of the message.
Additionally, the MessageHeader record has a messageFlags field
that contains bit flags, which provide information about
processing the message body.
Observe these rules and requirements for a MessageHeader:

1. The MessageHeader and all of its fields are REQUIRED.
2. The MessageHeader MUST NOT be compressed.

NOTE: In the messageFlags field, bit flags 0x01 and 0x04 were used
in previous versions of ETP. As of ETP v1.2, they are now UNUSED.

«record»
Version

+ major: int = 0
+ minor: int = 0
+ patch: int = 0
+ revision: int = 0

notes
Used to identify a unique version of an ETP schema or protocol.
The semantics of the individual fields of the record follow those
that are generally defined for all Energistics data standards.

«record»
ArrayOfDouble

+ values: double [0..*] (array) {bag}

notes
Convenience type representing an array of double-precision,
floating-point numbers.

«union»
AnyArray

+ arrayOfBoolean: ArrayOfBoolean
+ arrayOfDouble: ArrayOfDouble
+ arrayOfFloat: ArrayOfFloat
+ arrayOfInt: ArrayOfInt
+ arrayOfLong: ArrayOfLong
+ arrayOfString: ArrayOfString
+ bytes: bytes

notes
A union representing all of the basic array types supported by
the DataArray protocol.

«enumeration»
Protocol

 Core = 0
 ChannelStreaming = 1
 ChannelDataFrame = 2
 Discovery = 3
 Store = 4
 StoreNotification = 5
 GrowingObject = 6
 GrowingObjectNotification = 7
 DEPRECATEDWitsmlSoap = 8
 DataArray = 9
 DEPRECATEDDataArrayNotification = 10
 DEPRECATEDChannelStreamingQuery = 11
 DEPRECATEDChannelDataFrameQuery = 12
 DiscoveryQuery = 13
 StoreQuery = 14
 DEPRECATEDStoreNotificationQuery = 15
 GrowingObjectQuery = 16
 DEPRECATEDGrowingObjectNotificationQuery = 17
 Transaction = 18
 DEPRECATEDDataArrayQuery = 19
 DEPRECATEDDataArrayNotificationQuery = 20
 ChannelSubscribe = 21
 ChannelDataLoad = 22
 DEPRECATEDChannelView = 23
 Dataspace = 24
 SupportedTypes = 25

notes
Enumeration that represents all of the known sub-protocols of
the Energistics Transfer Protocol (ETP). The integer values for the
enumeration members correspond directly to the value found in
the protocol field of the MessageHeader record.

«enumeration»
AnyArrayType

 arrayOfBoolean
 arrayOfInt
 arrayOfLong
 arrayOfFloat
 arrayOfDouble
 arrayOfString
 bytes

notes
The enumeration for the options for transports representations.
- bytes are fixed sizes.
- arrayOfInt and arrayOfLong follow Avro integer encoding,
which is variable length.

«record»
ArrayOfFloat

+ values: float [0..*] (array) {bag}

notes
Convenience type representing an array of 4-byte floats.

«record»
ArrayOfBoolean

+ values: boolean [1..*] (array) {bag}

notes
Convenience type representing an array of Boolean values.

«record»
ArrayOfInt

+ values: int [0..*] (array) {bag}

notes
Convenience type representing an array of 4-byte integers.

«record»
ArrayOfLong

+ values: long [0..*] (array) {bag}

notes
Convenience type representing an array of 8-byte long integers.

«record»
ServerCapabilities

+ applicationName: string
+ applicationVersion: string
+ contactInformation: Contact
+ endpointCapabilities: DataValue [0..1] (map) = EmptyMap
+ supportedCompression: string [0..*] (array) = EmptyArray
+ supportedDataObjects: SupportedDataObject [1..*] (array)
+ supportedEncodings: string [1..*] (array) = ["binary"]
+ supportedFormats: string [1..*] (array) = ["xml"]
+ supportedProtocols: SupportedProtocol [1..*] (array)

notes
Record that lists key information about a server, as described in the
fields below. It allows a server to advertise and a client to discover
this important information during an HTTP session. The client may
use the information to determine if it wants to upgrade the
connection with the server to WebSocket and ETP and to
understand the server's capabilities and use that information to
correctly do so.
This record, though described in Avro, is NOT part of any ETP
message. It simply describes the content of the JSON object that is
used for pre-ETP-session server discovery. Beginning with ETP v1.2,
servers MUST support this. If a client requests a ServerCapabilities,
the server MUST provide it.
For more information about how the ServerCapabilities is
exchanged and used, see Section 4.3.

«union»
DataValue

+ anySparseArray: AnySparseArray
+ arrayOfBoolean: ArrayOfBoolean
+ arrayOfBytes: ArrayOfBytes
+ arrayOfDouble: ArrayOfDouble
+ arrayOfFloat: ArrayOfFloat
+ arrayOfInt: ArrayOfInt
+ arrayOfLong: ArrayOfLong
+ arrayOfNullableBoolean: ArrayOfNullableBoolean
+ arrayOfNullableInt: ArrayOfNullableInt
+ arrayOfNullableLong: ArrayOfNullableLong
+ arrayOfString: ArrayOfString
+ boolean: boolean
+ bytes: bytes
+ double: double
+ float: float
+ int: int
+ long: long
+ null: null
+ string: string

notes
The basic union that represents the possible data types for a
single datum in ETP. For example, a single datum may be in a
DataItem record (used in the ChannelData messages), in a
FramePoint record, and for the data value of key:value pairs
used in ETP (for example, to specify values for capabilities and
for customData fields).

«union»
IndexValue

+ double: double
+ Energistics.Etp.v12.Datatypes.ChannelData.PassIndexedDepth: PassIndexedDepth
+ long: long
+ null: null

notes
A union that represents the numeric portion of a single value in an index.

«record»
AttributeMetadataRecord

+ attributeId: int
+ attributeName: string
+ attributePropertyKindUri: string
+ axisVectorLengths: int [1..*] (array)
+ dataKind: ChannelDataKind
+ depthDatum: string
+ uom: string

notes
A record that provides metadata to help interpret and understand
DataAttributes, which are used to annotate (or "decorate") data
points in a channel.
Currently, ETP does NOT define any specific attributes and usage; it
only provides the mechanism so that organizations (individual MLs
or companies) can add their own information.

«record»
DataAttribute

+ attributeId: int
+ attributeValue: DataValue

notes
Structure for passing attributes (such as quality, confidence, audit
information, etc.) that are associated with individual data points
in a channel.
ETP provides this mechanism that allows data points to be
annotated (or "decorated") with additional information.  However,
ETP does NOT specify the content and usage, which may be specified
by individual MLs (in relevant implementation specification) or
may be custom.
The AttributeMetadataRecord provides metadata about how to
interpret DataAttribute.

«record»
Contact

+ contactEmail: string [0..1]
+ contactName: string [0..1]
+ contactPhone: string [0..1]
+ organizationName: string [0..1]

notes
Data structure for the contact information record for
capabilities. Because these capabilities vary by software
application, it can be useful to provide a name and contact
information so that users of your application can resolve any
related issues.

«record»
ArrayOfString

+ values: string [0..*] (array) {bag}

notes
Convenience type representing an array of strings.

«fixed»
Uuid

notes
Convenience type representing a 16-byte UUID. Must conform to
the UUID format specified by RFC 4122 (https:
//tools.ietf.org/html/rfc4122). For more information, see
Appendix: Energistics Identifiers.

«enumeration»
ProtocolCapabilityKind

 FrameChangeDetectionPeriod
 MaxDataArraySize
 MaxDataObjectSize
 MaxFrameResponseRowCount
 MaxIndexCount
 MaxRangeChannelCount
 MaxRangeDataItemCount
 MaxResponseCount
 MaxStreamingChannelsSessionCount
 MaxSubscriptionSessionCount
 MaxTransactionCount
 SupportsSecondaryIndexFiltering
 TransactionTimeoutPeriod

notes
Parameters that are defined by ETP for use by either endpoint
(role) for use in individual protocols to help prevent aberrant
behavior (e.g., sending oversized messages or sending more
messages than an agent can handle).
For each parameter, the table below lists the parameter keyword
(attribute), description (which includes, units/unit values,
default, min, and max values, as applicable), and data type.
For more information about capabilities and how they work, see
Section 3.3.

«record»
ErrorInfo

+ code: int
+ message: string

notes
Data structure that contains the error code and message
explaining the error.

«enumeration»
EndpointCapabilityKind

 ActiveTimeoutPeriod
 AuthorizationDetails (array)
 ChangePropagationPeriod
 ChangeRetentionPeriod
 MaxConcurrentMultipart
 MaxDataObjectSize
 MaxPartSize
 MaxSessionClientCount
 MaxSessionGlobalCount
 MaxWebSocketFramePayloadSize
 MaxWebSocketMessagePayloadSize
 MultipartMessageTimeoutPeriod
 ResponseTimeoutPeriod
 RequestSessionTimeoutPeriod
 SessionEstablishmentTimeoutPeriod
 SupportsAlternateRequestUris
 SupportsMessageHeaderExtensions

notes
Parameters that are applicable to an endpoint, in any protocol
where it makes sense. EXAMPLES:
MaxWebSocketFramePayloadSize—the maximum size for a
WebSocket frame that an endpoint can handle—applies to all
ETP protocols that are implemented by the endpoint.
For each parameter, the table below lists the parameter keyword
(attribute), description (which includes, units/unit values,
default, min, and max values, as applicable), and data type.
For more information about capabilities and how they work, see
Section 3.3.

«record»
ArrayOfNullableInt

+ values: int [0..*] (array) = Nullable {bag}

notes
Convenience type representing an array of 4-byte integers.

«record»
ArrayOfNullableBoolean

+ values: boolean [0..*] (array) = Nullable {bag}

notes
Convenience type representing an array of Boolean values.

«record»
ArrayOfNullableLong

+ values: long [0..*] (array) = Nullable {bag}

notes
Convenience type representing an array of 8-byte long integers.

«record»
AnySubarray

+ slice: AnyArray
+ start: long

notes
Convenience type representing a subarray of any vector array
type, including its length and where it begins.

«record»
AnySparseArray

+ slices: AnySubarray [1..*] (array)

notes
Convenience type representing a sparse array. A sparse array
linearized from any number of dimensions is represented as an
array of "slices", each of which contains non-null data. In this
way the representation avoids having to hold anything to
explicitly indicate missing values.

«record»
SupportedDataObject

+ dataObjectCapabilities: DataValue [1..*] (map) = EmptyMap
+ qualifiedType: string

notes
The record that defines each supported data object (which is used
in the RequestSession  and OpenSession messages), it is composed of
these fields:
- qualifiedType
- dataObjectCapabilities

«record»
MessageHeaderExtension

+ extension: DataValue [1..*] (map) = EmptyMap

notes
An OPTIONAL  standalone Avro structure that allows additional
contextual information (e.g., such as passing tracing contexts) to
be sent with specific ETP messages. It can be used by ETP
implementers for system-wide custom properties that handle
contextual information that needs to be passed up and down a
call stack.
- If used, the sender indicates (using the designated bit in the
messageFlags field of the standard MessageHeader) that a
MessageHeaderExtension is being sent, and then sends the
MessageHeaderExtension between the standard MessageHeader
and the MessageBody.
- If the receiving endpoint does not support or is not interested
in the MessageHeaderExtension, then it simply ignores it.
For more information, see Section 3.6.2.

«record»
ArrayOfBytes

+ values: bytes [0..*] (array) {bag}

notes
Convenience type representing an array of bytes.

«enumeration»
AnyLogicalArrayType

 arrayOfBoolean
 arrayOfInt8
 arrayOfUInt8
 arrayOfInt16LE
 arrayOfInt32LE
 arrayOfInt64LE
 arrayOfUInt16LE
 arrayOfUInt32LE
 arrayOfUInt64LE
 arrayOfFloat32LE
 arrayOfDouble64LE
 arrayOfInt16BE
 arrayOfInt32BE
 arrayOfInt64BE
 arrayOfUInt16BE
 arrayOfUInt32BE
 arrayOfUInt64BE
 arrayOfFloat32BE
 arrayOfDouble64BE
 arrayOfString

notes
The enumeration for the logical types of representations.
These types have been specified based on signed/unsigned (U), bit
size of the preferred sub-array dimension (8, 16, 32, 64 bits), and
endianness (LE = little, BE = big).

«enumeration»
DataObjectCapabilityKind

 ActiveTimeoutPeriod
 MaxContainedDataObjectCount
 MaxDataObjectSize
 OrphanedChildrenPrunedOnDelete
 SupportsGet
 SupportsPut
 SupportsDelete
 MaxSecondaryIndexCount

notes
Parameters that allow an endpoint to specify capabilities for
types of data objects; EXAMPLE: Data object capabilities allow
an endpoint to specify whether/which specific data objects can
be retrieved, saved or deleted.
For each parameter, the table below lists the parameter keyword
(attribute), description (which includes, units/unit values,
default, min, and max values, as applicable), and data type.
For more information about capabilities and how they work, see
Section 3.3.



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 412 

23.1 AnyLogicalArrayType 

The enumeration for the logical types of representations. 

These types have been specified based on signed/unsigned (U), bit size of the preferred sub-array 
dimension (8, 16, 32, 64 bits), and endianness (LE = little, BE = big).  

For more information about use of this enumeration, see Section 13.2.2.1. 

Enumeration Description 

arrayOfBoolean   

arrayOfInt8   

arrayOfUInt8   

arrayOfInt16LE   

arrayOfInt32LE   

arrayOfInt64LE   

arrayOfUInt16LE   

arrayOfUInt32LE   

arrayOfUInt64LE   

arrayOfFloat32LE   

arrayOfDouble64LE   

arrayOfInt16BE   

arrayOfInt32BE   

arrayOfInt64BE   

arrayOfUInt16BE   

arrayOfUInt32BE   

arrayOfUInt64BE   

arrayOfFloat32BE   

arrayOfDouble64BE   

arrayOfString   

arrayOfCustom  

  

Avro Source 

{ 
     "type": "enum", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "AnyLogicalArrayType", 
     "symbols": 
     [ 
         "arrayOfBoolean", 
         "arrayOfInt8", 
         "arrayOfUInt8", 
         "arrayOfInt16LE", 
         "arrayOfInt32LE", 
         "arrayOfInt64LE", 
         "arrayOfUInt16LE", 
         "arrayOfUInt32LE", 
         "arrayOfUInt64LE", 
         "arrayOfFloat32LE", 
         "arrayOfDouble64LE", 
         "arrayOfInt16BE", 
         "arrayOfInt32BE", 
         "arrayOfInt64BE", 
         "arrayOfUInt16BE", 
         "arrayOfUInt32BE", 
         "arrayOfUInt64BE", 
         "arrayOfFloat32BE", 
         "arrayOfDouble64BE", 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 413 

         "arrayOfString", 
         "arrayOfCustom" 
     ] 
} 

  

23.2 AnyArrayType 

The enumeration for the options for transports representations. 

 bytes are fixed sizes.  

 arrayOfInt and arrayOfLong follow Avro integer encoding, which is variable length.  

Enumeration Description 

arrayOfBoolean   

arrayOfInt   

arrayOfLong   

arrayOfFloat   

arrayOfDouble   

arrayOfString   

bytes   

  

Avro Source 

{ 
     "type": "enum", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "AnyArrayType", 
     "symbols": 
     [ 
         "arrayOfBoolean", 
         "arrayOfInt", 
         "arrayOfLong", 
         "arrayOfFloat", 
         "arrayOfDouble", 
         "arrayOfString", 
         "bytes" 
     ] 
} 

  

23.3 DataObjectCapabilityKind 

Parameters that allow an endpoint to specify capabilities for types of data objects; EXAMPLE: Data 
object capabilities allow an endpoint to specify whether/which specific data objects can be retrieved, 
saved or deleted.  

For each parameter, the table below lists the parameter keyword (data object capability), description 
(which includes, units/unit values, default, as applicable), and data type.  

For more information about capabilities and how they work, see Section 3.3.  

Data Object Capability Description Data Type 

ActiveTimeoutPeriod The minimum time period in seconds that a store keeps the active 
status (activeStatus field in ETP) for a data object as “active” after 
the most recent update causing the data object’s active status to 
be set to true. For growing data objects, this is any change to its 
parts. For channels, this is any change to its data points. 

This capability can be set for an endpoint and/or for a data object. 
A data object-specific value overrides an endpoint-specific value.  

Units/Value units: seconds, <number of seconds> 

long 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 414 

Data Object Capability Description Data Type 

Min: 60 seconds 

Default: 3,600 seconds 

MaxContainedDataObjectCount The maximum count of contained data objects allowed in a single 
instance of the data object type that the capability applies to.  

EXAMPLE: If this capability is set to 2000 for a ChannelSet, then 
the ChannelSet may contain a maximum of 2000 Channels. 

Units/Value units: count, <count of objects> 

Min: should be specified by the relevant domain 

long 

MaxDataObjectSize The maximum size in bytes of a data object allowed in a complete 
multipart message. Size in bytes is the size in bytes of the 
uncompressed string representation of the data object in the 
format in which it is sent or received. 

This capability can be set for an endpoint, a protocol, and/or a 
data object. If set for all three, here is how they generally work:  

 An object-specific value overrides an endpoint-specific value. 

 A protocol-specific value can further lower (but NOT raise) 
the limit for the protocol. 

EXAMPLE: A store may wish to generally support sending and 
receiving any data object that is one megabyte or less with the 
exceptions of Wells that are 100 kilobytes or less and Attachments 
that are 5 megabytes or less. A store may further wish to limit the 
size of any data object sent as part of a notification in 
StoreNotification (Protocol 5) to 256 kilobytes. 

Units/Value units: bytes, <number of bytes> 

Min: 100,000 bytes 

long 

OrphanedChildrenPrunedOnDelete For a container data object type (i.e., a data object type that may 
contain other data objects by value), this capability indicates 
whether contained data objects that are orphaned as a result of an 
operation on its container data object may be deleted (pruned).  

NOTES:  

1. Both delete or put operations of a container data object may 
result in contained data objects being orphaned. 

2. For successful pruning operations to occur on a specific data 
object type, both of these conditions MUST be true:  

* This capability MUST be set to true.  

* The pruneContainedObjects Boolean flag on the request 
message MUST be set to true. 

EXAMPLE: If this capability is set to true for ChannelSet, and on a 
DeleteDataObjects message (Store (Protocol 4) for a ChannelSet 
the pruneContainedObjects Boolean flag is set to true, and (after 
the container is deleted) a Channel in that ChannelSet belongs to 
no other ChannelSets, then that "orphaned" Channel is also 
deleted. 

Default: false 

boolean 

SupportsGet Indicates whether get operations are supported for the data object 
type.  

Default: true 

boolean 

SupportsPut Indicates whether put operations are supported for the data object 
type. If the operation can be technically supported by an endpoint, 
this capability should be true. 

Default: true 

boolean 

SupportsDelete Indicates whether delete operations are supported for the data 
object type. If the operation can be technically supported by an 
endpoint, this capability should be true. 

Default: true 

boolean 

MaxSecondaryIndexCount The maximum count of secondary indexes allowed in a single 
instance of the data object type that the capability applies to, 
which may be Channel or ChannelSet.  

long 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 415 

Data Object Capability Description Data Type 

Units/Value Units: count, <count of secondary indexes> 

Default: 1 

Min: 1 

  

Avro Source 

{ 
     "type": "enum", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "DataObjectCapabilityKind", 
     "symbols": 
     [ 
         "ActiveTimeoutPeriod", 
         "MaxContainedDataObjectCount", 
         "MaxDataObjectSize", 
         "OrphanedChildrenPrunedOnDelete", 
         "SupportsGet", 
         "SupportsPut", 
         "SupportsDelete", 
         "MaxSecondaryIndexCount" 
     ] 
} 

  

23.4 EndpointCapabilityKind 

Parameters that are applicable to an endpoint, in any protocol where it makes sense. EXAMPLES: 
MaxWebSocketFramePayloadSize—the maximum size for a WebSocket frame that an endpoint can 
handle—applies to all ETP protocols that are implemented by the endpoint. 

For each parameter, the table below lists the parameter keyword (endpoint capability), description (which 
includes, units/unit values, default, as applicable), and data type. 

For more information about capabilities and how they work, see Section 3.3.  

Endpoint Capability Description Data Type 

ActiveTimeoutPeriod The minimum time period in seconds that a store keeps the 
active status (activeStatus field in ETP) for a data object as 
“active”, after the most recent update causing the data object’s 
active status to be set to true. For growing data objects, this is 
any change to its parts. For channels, this is any change to its 
data points. 

This capability can be set for an endpoint and/or for a data 
object. A data object-specific value overrides an endpoint-
specific value. 

Units/Value units: seconds, <number of seconds> 

Min: 60 seconds 

Default: 3,600 seconds 

long 

AuthorizationDetails 1. Contains an ArrayOfString with WWW-Authenticate style 
challenges. 

2. To support the required authorization workflow (to enable 
an endpoint to acquire an access token with the 
necessary scope from the designated authorization 
server), the AuthorizationDetails endpoint capability 
MUST include at least one challenge with the Bearer 
scheme which must include the ‘authz_server' and ‘scope’ 
parameters.   

a. The 'authz_server' parameter MUST be a URI for an 
authorization server to enable the endpoint to 
acquire any other needed metadata about the 
authorization server using OpenID Connect 
Discovery. 

ArrayOfString 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 416 

Endpoint Capability Description Data Type 

3. An ETP server MUST have the AuthorizationDetails 
endpoint capability, which must meet the requirements of 
Point 2 above.  

4. If an ETP client does NOT need to authorize ETP servers, 
it MAY omit the AuthorizationDetails. 

ChangePropagationPeriod The maximum time period in seconds--under normal operation 
on an uncongested session--for these conditions:  

 after a change in an endpoint before that endpoint sends 
a change notification covering the change to any 
subscribed endpoint in any session. 

 if the change was the result of a message WITHOUT a 
positive response, it is the maximum time until the 
change is reflected in read operations in any session. 

 If the change was the result of a message WITH a 
positive response, it is the maximum time until the 
change is reflected in sessions other than the session 
where the change was made. RECOMMENDATION: Set 
as short as possible (i.e. a few seconds). 

Units/Value units: seconds, <number of seconds> 

Min: 1 second 

Max: 600 seconds 

Default: 5 seconds 

long 

ChangeRetentionPeriod The minimum time period in seconds that a store retains the 
Canonical URI of a deleted data object and any change 
annotations for channels and growing objects. 
RECOMMENDATION: This period should be as long as is 
feasible in an implementation. When the period is shorter, the 
risk is that additional data will need to be transmitted to recover 
from outages, leading to higher initial load on sessions. 

Units/Value units: seconds, <number of seconds> 

Min: 86,400 seconds 

Default: 86,400 seconds 

long 

MaxConcurrentMultipart The maximum count of multipart messages allowed in parallel, 
in a single protocol, from one endpoint to another. The limit 
applies separately to each protocol, and separately from client 
to server and from server to client. The limit for an endpoint 
applies to the multipart messages that the endpoint can 
receive.  

EXAMPLE: If an endpoint's MaxConcurrentMultipart is 5, then 
it can receive 5 messages--each with any number of parts--at 
one time, in Store (Protocol 4) and another 5 messages in 
process in Discovery (Protocol 3). In Discovery (Protocol 3), 
this could be the multipart responses to 5 distinct 
GetResources request messages. 

Units, Value Units: count, <count of messages> 

Min: 1  

long 

MaxDataObjectSize The maximum size in bytes of a data object allowed in a 
complete multipart message. Size in bytes is the size in bytes 
of the uncompressed string representation of the data object in 
the format in which it is sent or received. 

This capability can be set for an endpoint, a protocol, and/or a 
data object. If set for all three, here is how they generally work:  

 An object-specific value overrides an endpoint-specific 
value. 

 A protocol-specific value can further lower (but NOT 
raise) the limit for the protocol. 

EXAMPLE: A store may wish to generally support sending and 
receiving any data object that is one megabyte or less with the 
exceptions of Wells that are 100 kilobytes or less and 

long 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 417 

Endpoint Capability Description Data Type 

Attachments that are 5 megabytes or less. A store may further 
wish to limit the size of any data object sent as part of a 
notification in StoreNotification (Protocol 5) to 256 kilobytes. 

Units/Value units: bytes, <number of bytes> 

Min: 100,000 bytes 

MaxSessionClientCount The maximum count of concurrent ETP sessions that may be 
established for a given endpoint, by a specific client. If 
possible, the determination of whether this limit is exceeded 
should be made at the time of receiving the HTTP WebSocket 
upgrade or connect request based on the authorization details 
provided with the request. At the latest, it should be based on 
an authorized RequestSession message. 

Units/Value Units: count, <count of sessions> 

Min: 2 sessions 

long 

MaxPartSize The maximum size in bytes of each data object part allowed in 
a standalone message or a complete multipart message. Size 
in bytes is the total size in bytes of the uncompressed string 
representation of the data object part in the format in which it is 
sent or received. 

Units/Value Units: bytes, <number of bytes> 

Min: 10,000 bytes 

long 

MaxSessionGlobalCount The maximum count of concurrent ETP sessions that may be 
established for a given endpoint across all clients. The 
determination of whether this limit is exceeded should be made 
at the time of receiving the HTTP WebSocket upgrade or 
connect request. NOTE: Exposing this information may have 
security implications, so it should only be exposed if an 
implementation is comfortable with any potential associated 
risks. 

Units/Value Units: count, <count of sessions> 

Min: 2 sessions 

long 

MaxWebSocketFramePayloadSize The maximum size in bytes allowed for a single WebSocket 
frame payload. The limit to use during a session is the smaller 
of the client's and the server's value for 
MaxWebSocketFramePayloadSize, which should be 
determined by the limits imposed by the WebSocket library 
used by each endpoint. 

Units/Value Units: bytes, <number of bytes> 

long 

MaxWebSocketMessagePayloadSize The maximum size in bytes allowed for a complete WebSocket 
message payload, which is composed of one or more 
WebSocket frames. The limit to use during a session is the 
smaller of the client's and the server's value for 
MaxWebSocketMessagePayloadSize, which should be 
determined by the limits imposed by the WebSocket library 
used by each endpoint. 

Units/Value Units: bytes, <number of bytes> 

long 

MultipartMessageTimeoutPeriod The maximum time period in seconds--under normal operation 
on an uncongested session--allowed between subsequent 
messages in the SAME multipart request or response. The 
period is measured as the time between when each message 
has been fully sent or received via the WebSocket. 

Units/Value Units: seconds, <count of seconds> 

Max: 60 seconds 

long 

ResponseTimeoutPeriod The maximum time period in seconds allowed between a 
request and the standalone response message or the first 
message in the multipart response message. The period is 
measured as the time between when the request message has 
been successfully sent via the WebSocket and when the first 
or only response message has been fully received via the 
WebSocket. When calculating this period, any Acknowledge 
messages or empty placeholder responses are ignored 

long 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 418 

Endpoint Capability Description Data Type 

EXCEPT where these are the only and final response(s) to the 
request. 

Units/Value Units: seconds, <number of seconds>  

Min: 60 seconds 

Default: 300 seconds 

RequestSessionTimeoutPeriod The maximum time period in seconds a server will wait to 
receive a RequestSession message from a client after the 
WebSocket connection has been established. 

Units/Value Units: seconds, <number of seconds> 

Min: 5 seconds 

Default: 45 seconds 

long 

SessionEstablishmentTimeoutPeriod The maximum time period in seconds a client or server will 
wait for a valid ETP session to be established.  

For a server: 

 A valid session is established when it sends an 
OpenSession message to the client, which indicates a 
session has been successfully established. 

 The time period starts when it receives the initial 
RequestSession message from the client. 

For a client: 

 A valid session is established when it receives an 
OpenSession message from the server. 

 The time period starts when it sends the initial 
RequestSession message to the server. 

Units/Value Units: seconds, <number of seconds> 

Min: 5 seconds 

Default: 60 seconds 

long 

SupportsAlternateRequestUris Indicates whether an endpoint supports alternate URI formats--
beyond the canonical Energistics URIs, which MUST be 
supported for requests. 

Default: false 

boolean 

SupportsMessageHeaderExtensions Indicates whether an endpoint supports message header 
extensions. For more information about message header 
extensions and their use, see Section 3.6.2. 

Default: false 

boolean 

  

Avro Source 

{ 
     "type": "enum", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "EndpointCapabilityKind", 
     "symbols": 
     [ 
         "ActiveTimeoutPeriod", 
         "AuthorizationDetails", 
         "ChangePropagationPeriod", 
         "ChangeRetentionPeriod", 
         "MaxConcurrentMultipart", 
         "MaxDataObjectSize", 
         "MaxPartSize", 
         "MaxSessionClientCount", 
         "MaxSessionGlobalCount", 
         "MaxWebSocketFramePayloadSize", 
         "MaxWebSocketMessagePayloadSize", 
         "MultipartMessageTimeoutPeriod", 
         "ResponseTimeoutPeriod", 
         "SupportsAlternateRequestUris", 
         "SupportsMessageHeaderExtensions", 
         "RequestSessionTimeoutPeriod", 
         "SessionEstablishmentTimeoutPeriod" 
     ] 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 419 

} 

  

23.5 ProtocolCapabilityKind 

Parameters that are defined by ETP for use by either endpoint (role) for use in individual protocols to help 
prevent aberrant behavior (e.g., sending oversized messages or sending more messages than an 
endpoint can handle). 

For each parameter, the table below lists the parameter keyword (protocol capability), description (which 
includes, units/unit values, default, as applicable), and data type. 

For more information about capabilities and how they work, see Section 3.3.  

Protocol Capability Description Data Type 

FrameChangeDetectionPeriod The maximum time period in seconds for updates to a channel 
to be visible in ChannelDataFrame (Protocol 2). 

Updates to channels are not guaranteed to be visible in 
responses in less than this period. (EXAMPLE: If your 
requested range includes rows that just received new data, 
the store may not return those rows. The store may be 
allowing time to potentially receive additional values for the 
rows before including them in responses.)  

The intent for this capability is that rows in ChannelDataframe 
messages are complete, and not 'partially updated'. 
ChannelDataFrame (Protocol 2) should not be used to poll for 
realtime data. 

Units/Value Units: seconds, <number of seconds> 

Min: 1 second 

Max: 600 seconds 

Default: 60 seconds 

long 

MaxDataArraySize The maximum size in bytes of a data array allowed in a store. 
Size in bytes is the product of all array dimensions multiplied 
by the size in bytes of a single array element. 

Units/Value Units: bytes, <number of bytes> 

Min: 100,000 bytes 

long 

MaxDataObjectSize The maximum size in bytes of a data object allowed in a 
complete multipart message. Size in bytes is the size in bytes 
of the uncompressed string representation of the data object 
in the format in which it is sent or received. 

This capability can be set for an endpoint, a protocol, and/or a 
data object. If set for all three, here is how they generally 
work:  

 An object-specific value overrides an endpoint-specific 
value. 

 A protocol-specific value can further lower (but NOT 
raise) the limit for the protocol. 

EXAMPLE: A store may wish to generally support sending 
and receiving any data object that is one megabyte or less 
with the exceptions of Wells that are 100 kilobytes or less and 
Attachments that are 5 megabytes or less. A store may further 
wish to limit the size of any data object sent as part of a 
notification in StoreNotification (Protocol 5) to 256 kilobytes. 

Units/Value Units: bytes, <number of bytes> 

Min: 100,000 bytes 

long 

MaxFrameResponseRowCount The maximum total count of rows allowed in a complete 
multipart message response to a single request. 

Units/Value Units: count, <count of rows> 

Min: 100,000 rows 

long 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 420 

Protocol Capability Description Data Type 

MaxIndexCount The maximum index count value allowed for a channel 
streaming request.  

Units/Value Units: count, <count of indexes> 

Min: 1 index 

Default: 100 indexes 

long 

MaxRangeChannelCount The maximum count of channels allowed in a single range 
request. 

Units/Value Units: count, <count of channels> 

Min: Should be equivalent of MaxContainedDataObjectCount 
for a ChannelSet 

long 

MaxRangeDataItemCount The maximum total count of DataItem records allowed in a 
complete multipart range message. 

Units/Value Units: count, <count of records> 

Min: 1,000,000 records 

long 

MaxResponseCount The maximum total count of responses allowed in a complete 
multipart message response to a single request. 

Units/Value Units: count, <count of responses> 

Min: 10,000 responses 

long 

MaxStreamingChannelsSessionCount The maximum total count of channels allowed to be 
concurrently open for streaming in a session. The limit applies 
separately for each protocol with the capability. EXAMPLE: 
Different values can be specified for ChannelSubscribe 
(Protocol 21) and ChannelDataLoad (Protocol 22).  

Units/Value Units: count, <count of channels> 

Min: 10,000 channels 

long 

MaxSubscriptionSessionCount The maximum total count of concurrent subscriptions allowed 
in a session. The limit applies separately for each protocol 
with the capability.  

EXAMPLE: Different values can be specified for 
StoreNotification (Protocol 5) and GrowingObjectNotification 
(Protocol 7).  

Units/Value Units: count, <count of subscriptions> 

Min: 100 subscriptions 

long 

MaxTransactionCount The maximum count of transactions allowed in parallel in a 
session. 

Units/Value Units: count, <count of transactions> 

Min: 1 transaction 

Max: 1 transaction 

Default: 1 transaction 

long 

SupportsSecondaryIndexFiltering Indicates whether an endpoint supports filtering requested 
data by secondary index values. If the filtering can be 
technically supported by an endpoint, this capability should be 
true. 

Default: false 

boolean 

TransactionTimeoutPeriod The maximum time period in seconds allowed between 
receiving a StartTransactionResponse message and 
sending the corresponding CommitTransaction or 
RollbackTransaction request. 

Units/Value Units: seconds, <number of seconds> 

Min: 5 seconds 

long 

  

Avro Source 

{ 
     "type": "enum", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "ProtocolCapabilityKind", 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 421 

     "symbols": 
     [ 
         "FrameChangeDetectionPeriod", 
         "MaxDataArraySize", 
         "MaxDataObjectSize", 
         "MaxFrameResponseRowCount", 
         "MaxIndexCount", 
         "MaxRangeChannelCount", 
         "MaxRangeDataItemCount", 
         "MaxResponseCount", 
         "MaxStreamingChannelsSessionCount", 
         "MaxSubscriptionSessionCount", 
         "MaxTransactionCount", 
         "TransactionTimeoutPeriod", 
         "SupportsSecondaryIndexFiltering" 
     ] 
} 

  

23.6 fixed: Uuid 

Convenience type representing a UUID as an array of 16 bytes. The format and byte order of the UUID 
MUST conform to RFC 4122 (https://tools.ietf.org/html/rfc4122). For more information, see Appendix: 
Energistics Identifiers.  

Avro Schema 

{ 
     "type": "fixed", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "Uuid", 
     "size": 16 
} 

  

23.7 record: ArrayOfBoolean 

Convenience type representing an array of Boolean values. 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "ArrayOfBoolean", 
     "fields": 
     [ 
         {  
             "name": "values", 
             "type": { "type": "array", "items": "boolean" } 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

values An array of Boolean values. boolean 0 * 

  

23.8 record: ArrayOfNullableBoolean 

Convenience type representing an array of nullable Boolean values. 

Avro Schema 

{ 
     "type": "record", 

https://tools.ietf.org/html/rfc4122


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 422 

     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "ArrayOfNullableBoolean", 
     "fields": 
     [ 
         { 
             "name": "values", 
             "type": { "type": "array", "items": ["null", "boolean"] } 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

values An array of nullable Boolean values. boolean 0 * 

  

23.9 record: ArrayOfInt 

Convenience type representing an array of 4-byte integers. 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "ArrayOfInt", 
     "fields": 
     [ 
         {  
             "name": "values", 
             "type": { "type": "array", "items": "int" } 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

values An array of integers. int 0 * 

  

23.10 record: ArrayOfNullableInt 

Convenience type representing an array of nullable 4-byte integers. 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "ArrayOfNullableInt", 
     "fields": 
     [ 
         { 
             "name": "values", 
             "type": { "type": "array", "items": ["null", "int"] } 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

values An array of nullable integers. int 0 * 

  

23.11 record: ArrayOfLong 

Convenience type representing an array of 8-byte long integers. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 423 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "ArrayOfLong", 
     "fields": 
     [ 
         {  
             "name": "values", 
             "type": { "type": "array", "items": "long" } 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

values An array of long integers. long 0 * 

  

23.12 record: ArrayOfNullableLong 

Convenience type representing an array of nullable8-byte long integers. 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "ArrayOfNullableLong", 
     "fields": 
     [ 
         { 
             "name": "values", 
             "type": { "type": "array", "items": ["null", "long"] } 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

values An array of nullable long integers. long 0 * 

  

23.13 record: ArrayOfFloat 

Convenience type representing an array of 4-byte floats. NaN should be used to represent null values. 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "ArrayOfFloat", 
     "fields": 
     [ 
         {  
             "name": "values", 
             "type": { "type": "array", "items": "float" } 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

values An array of single-precision numbers. float 0 * 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 424 

23.14 record: ArrayOfDouble 

Convenience type representing an array of double-precision, floating-point numbers. NaN should be used 
to represent null values. 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "ArrayOfDouble", 
     "fields": 
     [ 
         {  
             "name": "values", 
             "type": { "type": "array", "items": "double" } 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

values An array of double precision numbers. double 0 * 

  

23.15 record: ArrayOfString 

Convenience type representing an array of strings. Empty strings should be used to represent null values. 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "ArrayOfString", 
     "fields": 
     [ 
         {  
             "name": "values", 
             "type": { "type": "array", "items": "string" } 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

values An array of strings. string 0 * 

  

23.16 record: ArrayOfBytes 

Convenience type representing an array of byte arrays (i.e., blobs). 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "ArrayOfBytes", 
     "fields": 
     [ 
         {  
             "name": "values", 
             "type": { "type": "array", "items": "bytes" } 
         } 
     ] 
} 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 425 

Field Name Description Data Type Min Max 

values An array of byte arrays (i.e., blobs). bytes 0 * 

  

23.17 record: AnySparseArray 

Convenience type representing a sparse array. A sparse array linearized from any number of dimensions 
is represented as an array of "slices", each of which contains non-null data. In this way the representation 
avoids having to hold anything to explicitly indicate missing values. 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "AnySparseArray", 
     "fields": 
     [ 
         {  
             "name": "slices", 
             "type": { "type": "array", "items": "Energistics.Etp.v12.Datatypes.AnySubarray" } 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

slices A slice is a sub-part pf a sparse array which 
contains non-null data. 

AnySubarray 1 * 

  

23.18 record: AnySubarray 

Convenience type representing a subarray of any vector array type linearized from any number of 
dimensions, including its length and where it begins. 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "AnySubarray", 
     "fields": 
     [ 
         { "name": "start", "type": "long" }, 
         { "name": "slice", "type": "Energistics.Etp.v12.Datatypes.AnyArray" } 
     ] 
} 

  

Field Name Description Data Type Min Max 

start The index of the start of a subarray within its 
parent array’s linearized indexing scheme. 

long 1 1 

slice A linearized slice of data within the parent array. AnyArray 1 1 

  

23.19 record: ServerCapabilities 

Record that lists key information about a server, as described in the fields below. It allows a server to 
advertise and a client to discover this important information during an HTTP session. The client may use 
the information to determine if it wants to upgrade the connection with the server to WebSocket and ETP 
and to understand the server's capabilities and use that information to correctly do so.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 426 

This record is NOT part of any ETP message. It is used for pre-ETP-session server discovery. Beginning 
with ETP v1.2, servers MUST support this. If a client requests a ServerCapabilities, the server MUST 
provide it. 

For more information about how the ServerCapabilities is exchanged and used, see Section 4.3.  

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "ServerCapabilities", 
     "fields": 
     [ 
         { "name": "applicationName", "type": "string" }, 
         { "name": "applicationVersion", "type": "string" }, 
         { "name": "contactInformation", "type": "Energistics.Etp.v12.Datatypes.Contact" }, 
         { 
             "name": "supportedCompression", 
             "type": { "type": "array", "items": "string" }, "default": [] 
         }, 
         { 
             "name": "supportedEncodings", 
             "type": { "type": "array", "items": "string" }, "default": ["binary"] 
         }, 
         { 
             "name": "supportedFormats", 
             "type": { "type": "array", "items": "string" }, "default": ["xml"] 
         }, 
         {  
             "name": "supportedDataObjects", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.SupportedDataObject" } 
         }, 
         {  
             "name": "supportedProtocols", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.SupportedProtocol" } 
         }, 
         { 
             "name": "endpointCapabilities", 
             "type": { "type": "map", "values": "Energistics.Etp.v12.Datatypes.DataValue" }, 
"default": {} 
         } 
     ] 
} 

  
 

Field Name Description Data Type Min Max 

applicationName The string by which the server identifies itself, 
normally a software product or system name. The 
name may or may not include a version. The 
format is entirely application dependent. Vendors 
are encouraged to identify their company name as 
part of this string. 

string 1 1 

applicationVersion The version of the application identified in 
applicationName. 

string 1 1 

contactInformation The email and phone number of the 
organization/person to contact for questions or 
issues with this application. 

Contact 1 1 

supportedCompression An array of compression algorithms supported by 
the server. An empty array indicates compression 
is not supported. 

EXAMPLES: "gzip" or "gzip, deflate" 

string 0 * 

supportedEncodings The encodings that a server supports for transport 
of ETP messages on the wire. The allowed 
encodings: 

 binary 

string 1 * 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 427 

Field Name Description Data Type Min Max 

 json 

 binary;json 

supportedFormats An array of data formats supported by the server, 
in order of preference. 

The format(s) are used when sending data objects 
or growing data object parts in ETP messages. 
They the receiver of messages know how to 
deserialize the array of bytes representing the 
data object or growing data object part in the 
message.  

Currently, ETP MAY support "xml" and "json". 
Other formats may be supported in the future, and 
endpoints may agree to use custom formats. 

Default: xml 

NOTE: An endpoint indicates in the message, per 
request and response, which format it wants to 
use or is being used. 

string 1 * 

supportedDataObjects A list of data objects that the server supports for 
any of the ETP sub-protocols it supports and the 
data object capabilities for each with the 
endpoint's values for each, which is defined in the 
SupportedDataObject record. 

For the list of data object capabilities defined by 
ETP, see DataObjectCapabilityKind. 

SupportedDataObject 1 * 

supportedProtocols The list of identifiers of the ETP sub-protocols 
supported by the server and the protocol 
capabilities for each with the endpoint's value for 
each capability, as defined on the 
SupportedProtocol record. If the server is able to 
support both roles in a protocol, the protocol will 
appear twice in the list, once with each supported 
role. 

For the list of protocol capabilities defined by ETP, 
see ProtocolCapabilityKind. 

SupportedProtocol 1 * 

endpointCapabilities A map of key-value pairs of endpoint-specific 
capability data (i.e., constraints, limitations). The 
names, defaults, optionality, and expected data 
types are defined by this specification. These 
endpoint capabilities are the ones that will 
normally be provided by the server in 
OpenSession messages.  

 Map keys are capability names, which are 
case-sensitive strings. For ETP-defined 
capabilities, the name must spelled exactly 
as listed in EndpointCapabilityKind. 

 Map values are of type DataValue. 

 For more information about capabilities and 
rules for using them, see Section 3.3. 

DataValue 0 1 

  

23.20 record: SupportedDataObject 

The record that defines each supported data object (which is used in the RequestSession and 
OpenSession messages), it is composed of these fields:  

 qualifiedType 

 dataObjectCapabilities 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 428 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "SupportedDataObject", 
     "fields": 
     [ 
         { "name": "qualifiedType", "type": "string" }, 
         { 
             "name": "dataObjectCapabilities", 
             "type": { "type": "map", "values": "Energistics.Etp.v12.Datatypes.DataValue" }, 
"default": {} 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

qualifiedType This must be a value of dataObjectType as described in 
Appendix: Energistics Identifiers and serialized as 
JSON. It is the semantic equivalent of a 
qualifiedEntityType in OData. 

They ARE case sensitive.  

EXAMPLES: 

"witsml20.Well", 

"witsml20.Wellbore", 

"prodml21.WellTest", 

"resqml20.obj_TectonicBoundaryFeature" 

"eml21.DataAssuranceRecord" 

To indicate that all data objects within a data schema 
version are supported, you can use a star (*) as a 
wildcard, EXAMPLE: 

"witsml20.*", 

"prodml21.*", 

"resqml20.*", 

So "witsml20.*" means all data objects defined by 
WITSML v2.0 data schemas. 

string 1 1 

dataObjectCapabilities A map of key-value pairs that allow an endpoint to 
specify capabilities, parameters, and limits for types of 
data objects. 

 Map keys are capability names, which are case-
sensitive strings. For ETP-defined capabilities, the 
name must be spelled exactly as listed in 
DataObjectCapabilityKind. 

 Map values are of type DataValue. 

For more information about capabilities and rules for 

using them, see Section 3.3. 

DataValue 1 * 

  

23.21 record: SupportedProtocol 

Record that describes a protocol that is supported in a particular role by a given actor. It includes the 
protocol ID, version, role and protocol capabilities. This structure is used primarily in initial session 
negotiation to determine how a client and server will interact for a given session. 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "SupportedProtocol", 
     "fields": 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 429 

     [ 
         { "name": "protocol", "type": "int" }, 
         { "name": "protocolVersion", "type": "Energistics.Etp.v12.Datatypes.Version" }, 
         { "name": "role", "type": "string" }, 
         { 
             "name": "protocolCapabilities", 
             "type": { "type": "map", "values": "Energistics.Etp.v12.Datatypes.DataValue" }, 
"default": {} 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

protocol The ID of the protocol that this 
SupportedProtocol record represents, as 
defined by this specification or the relevant 
custom protocol. The value is an integer value 
rather than an enumerated value to allow custom 
protocols to be supported. 

int 1 1 

protocolVersion The specific version of the protocol to be used. Version 1 1 

role Most of the supported protocols involve two 
mutually exclusive roles: store and customer. 
(ChannelStreaming (Protocol 1) uses producer 
and consumer.) 

The values expected for this string are defined by 
each sub-protocol and included as decorations in 
the Avro schemas. Values are case-sensitive and, 
by modeling convention, should be all lower case 
in the specification and Avro schema files. 

string 1 1 

protocolCapabilities A map of key-value pairs of protocol-specific 
configuration or capability data used to prevent 
aberrant behavior. The names, defaults, 
optionality, and expected data types may be 
defined by each protocol.  

 Map keys are capability names, which are 
case-sensitive strings. For ETP-defined 
capabilities, the name must spelled exactly 
as listed in ProtocolCapabilityKind. 

 Map values are of type DataValue. 

 For more information about capabilities and 
rules for using them, see Section 3.3. 

DataValue 0 * 

  

23.22 record: Version 

Used to identify a unique version of an ETP schema or protocol. The semantics of the individual fields of 
the record follow those that are generally defined for all Energistics data standards. 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "Version", 
     "fields": 
     [ 
         { "name": "major", "type": "int", "default": 0 }, 
         { "name": "minor", "type": "int", "default": 0 }, 
         { "name": "revision", "type": "int", "default": 0 }, 
         { "name": "patch", "type": "int", "default": 0 } 
     ] 
} 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 430 

Field Name Description Data Type Min Max 

major Involves significant change to all schemas, 
protocols, and business rules of a specification. 

int 1 1 

minor Includes significant changes to schemas, most 
probably with breaking changes. The overall 
protocols and approach should not change 
significantly. 

int 1 1 

revision May contain additions to existing schemas but 
does not remove any schema elements. 
Enumerated types may also change.  

int 1 1 

patch Involves minor changes only, usually bug fixes, 
and should not create breaking changes for other 
clients and servers on the same version. 

int 1 1 

  

23.23 record: DataAttribute 

Record for passing attributes (such as quality, confidence, audit information, etc.) that are associated with 
individual data points in a channel. 

ETP provides this mechanism that allows data points to be annotated (or "decorated") with additional 
information. However, ETP does NOT specify the content and usage, which may be specified by 
individual MLs (in relevant implementation specification) or may be custom.  

The AttributeMetadataRecord provides metadata about how to interpret DataAttribute. 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "DataAttribute", 
     "fields": 
     [ 
         { "name": "attributeId", "type": "int" }, 
         { "name": "attributeValue", "type": "Energistics.Etp.v12.Datatypes.DataValue" } 
     ] 
} 

  

Field Name Description Data Type Min Max 

attributeId The identifier for the attribute, as received in the 
AttributeMetadataRecord.. 

int 1 1 

attributeValue The value of an attribute for the given ID, which 
must be of type DataValue. 

The AttributeMetadataRecord can be used to 
specify relevant information about this field. 

DataValue 1 1 

  

23.24 record: AttributeMetadataRecord 

A record that provides metadata to help interpret and understand DataAttributes, which are used to 
annotate (or "decorate") data points in a channel.  

Currently, ETP does NOT define any specific attributes and usage; it only provides the mechanism so that 
organizations (individual MLs or companies) can add their own information.  

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "AttributeMetadataRecord", 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 431 

     "fields": 
     [ 
         { "name": "attributeId", "type": "int" }, 
         { "name": "attributeName", "type": "string" }, 
         { "name": "dataKind", "type": 
"Energistics.Etp.v12.Datatypes.ChannelData.ChannelDataKind" }, 
         { "name": "uom", "type": "string" }, 
         { "name": "depthDatum", "type": "string" }, 
         { "name": "attributePropertyKindUri", "type": "string" }, 
         {  
             "name": "axisVectorLengths", 
             "type": { "type": "array", "items": "int" } 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

attributeName The name of the attribute. string 1 1 

attributeId The identifier assigned to this attribute for this 
ETP session. Each attribute associated with a 
channel must have a unique identifier within a 
session, but attribute identifiers may be reused 
across channels. For example, no channel may 
have 2 attributes with attributeId = 3, but 2 
different channels may each have 1 attribute with 
attributeId = 3. 

int 1 1 

dataKind The kind of data contained in the channel, which 
must be one of the values in ChannelDataKind. 

ChannelDataKind 1 1 

uom The unit of measure for the attribute, if applicable.  string 1 1 

depthDatum If the attribute data is a depth value, this is the 
datum it references. 

string 1 1 

attributePropertyKindUri An optional field that allows an endpoint to specify 
the URI of a property kind data object, which 
MUST be available from the endpoint and MAY be 
from the Energistics PropertyKindDictionary. Use 
of this field lets an endpoint indicate more 
specifically what the attribute is representing.  

The PropertyKindDictionary is an implementation 
of the Practical Well Log Standard (PWLS). For 
more information on how PWLS is used in ETP, 
see Section 3.12.7. 

string 1 1 

axisVectorLengths If the metadata values are arrays, then this field 
MUST be populated. It provides the context for 
how to decode a flattened 1D array back into the 
higher dimension array. 

Rules for populating this field:  

 You MUST encode the positional information 
as an absolute ‘start’ offset between it and 
the length of each subarray that Avro will 
encode onto the wire. 

 The number of elements in the array 
indicates the number of dimensions in the 
data. 

 The elements in the array indicate the length 
of each dimension. 

Rules for ordering:  

 Slowest to fastest. 

 Index 0 is the slowest moving dimension. 

 Last index is the fastest moving dimension. 

EXAMPLE: If you a have a 2D array of 3 rows 
and 20 columns, then this field would contain: 
3,20 

int 1 * 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 432 

  

23.25 record: MessageHeader 

A record that is the protocol control block sent at the beginning of every message. On the wire, every 
message sent contains this block first. From an Avro perspective, the message header can be thought of 
as the first member of every message. However, it MUST be processed independently of the message. 
This independent processing allows agents to inspect the protocol and message type fields in the header 
to determine the appropriate serializer for the rest of the message. 

Additionally, the MessageHeader record has a messageFlags field that contains bit flags, which provide 
information about processing the message body. 

Observe these rules and requirements for a MessageHeader:  

1. The MessageHeader and all of its fields are REQUIRED. 
2. The MessageHeader MUST NOT be compressed. 

NOTE: In the messageFlags field, bit flags 0x01 and 0x04 were used in previous versions of ETP. As of 
ETP v1.2, they are now UNUSED. 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "MessageHeader", 
     "fields": 
     [ 
         { "name": "protocol", "type": "int" }, 
         { "name": "messageType", "type": "int" }, 
         { "name": "correlationId", "type": "long" }, 
         { "name": "messageId", "type": "long" }, 
         { "name": "messageFlags", "type": "int" } 
     ] 
} 

  

Field Name Description Data Type Min Max 

protocol The ETP sub-protocol number in which this message is 
defined or used. EXAMPLES: Core (Protocol 0), 
ChannelStreaming (Protocol 1), ChannelDataFrame (Protocol 
2), Discovery (Protocol 3), etc.).  

In MOST cases, the protocol number where a message is 
defined is also the only place that message may be used.  

EXCEPTIONS: So-called ETP "universal" messages--
ProtocolException and Acknowledge--are defined in Core 
(Protocol 0) but MAY be used in ANY ETP sub-protocol. When 
these universal messages are used, this protocol field is 
populated with the ETP sub-protocol number that was 
responsible for sending the message. EXAMPLE: If an error 
resulting in an endpoint sending a ProtocolException occurs 
in Discovery (Protocol 3), then its protocol field = 3.  

int 1 1 

messageType Contains the enumerated, protocol-specific value for the 
accompanying message, which implicitly defines the schema 
for the message body.  

ETP identifies message types by assigning an integer to each 
unique message in a sub-protocol (EXAMPLE: In Protocol 0, 
RequestSession is message type 1 and OpenSession is 
message type 2. 

Thus a client or server can read the message type from the 
message header and know which schema proxy to use to 
decode the rest of the message. 

int 1 1 

correlationId Used to allow servers and clients to match related messages. 
EXAMPLES: 

long 1 1 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 433 

Field Name Description Data Type Min Max 

 A response message MUST have as its correlationId 
the messageId of the request message it is 
responding to. 

 A ProtocolException message MUST have as its 
correlationId the number of the message that caused 
the exception to be raised. 

Each individual message defined in ETP provides guidance for 
setting its correlationId.  

messageId The unique identifier for a message within an ETP session and 
endpoint. ETP requires that messages within an ETP session 
and endpoint each be uniquely numbered.  

 A messageId of "0" is invalid. 

Message IDs MUST be: 

 Unique within a session, and for a given endpoint (i.e., 
client/server). The IDs used by clients and servers are 
completely independent of one another. Put another way, 
the 'primary key' of any given message could be thought 
of as endpointType + messageId. 

 To help with de-bugging and problem solving, ETP has 
adopted this messageId numbering convention, which 
endpoints MUST observe:  

* the client side of the connection MUST use ONLY non-
zero even-numbered message IDs. 

* the server side of the connection MUST use ONLY non-
zero odd-numbered message IDs. 

NOTE: Message IDs ARE NOT required to be sequential or for 
any correlation between message IDs and any particular sub-
protocol. 

long 1 1 

messageFlags A bit field of flags that apply to a message. When an endpoint 
receives a MessageHeader, it MUST inspect these flags and it 
MUST use the provided information for processing and/or 
perform the requested action (see Section 3.5.4). The bit field 
of flags has the following bits defined (as hexadecimal values): 

 0x01: UNUSED. 

 0x02: Serves as a "finish bit" (FIN bit) to indicate the 
"end" of a request, response, notification or data 
message. Observe these rules for setting the FIN bit: 1) It 
MUST be set by the sender role only. 2) For multipart 
messages (requests, responses and notifications), it 
MUST be set on the last message in the multipart 
message. For messages that are not multipart (i.e., they 
only have a single ETP message), it MUST be set on the 
single message.  

EXAMPLES: a) If an ETP server is streaming ChannelData 
messages; set this flag on each message. b) If a request or 
response is composed of only 1 ETP message, set this flag. c) 
If a request or response is composed of a set of related 
messages, set this flag on the last message of the set only 
(e.g., for a request composed of 5 messages, set this flag on 
the 5th message only.) For more information on how to set this 
flag for multipart requests and responses, see Section 3.7.3. 

 0x04: UNUSED. 

 0x08: Indicates that the body of this message is 
compressed. It may be set by either role. The body of any 
message (except those explicitly excluded in Protocol 0), 
can be compressed, regardless of role, based on the 
compression encoding negotiated during initialization of 
the ETP session. 

 0x10: Indicates that the sender is requesting an 
Acknowledge message receipt of the message. An 

int 1 1 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 434 

Field Name Description Data Type Min Max 

Acknowledge message MUST NOT have this bit flag 
set. 

 0x20: Indicates that the sender is sending an optional 
MessageHeaderExtension (after the MessageHeader 
and before sending the message body). For more 
information, see Section 3.6.2. 

  

23.26 record: MessageHeaderExtension 

An OPTIONAL standalone record that allows additional contextual information (e.g., such as passing 
tracing contexts) to be sent with specific ETP messages. It can be used by ETP implementers for system-
wide custom properties that handle contextual information that needs to be passed up and down a call 
stack. 

 If used, the sender indicates (using the designated bit in the messageFlags field of the standard 
MessageHeader) that a MessageHeaderExtension is being sent, and then sends the 
MessageHeaderExtension between the standard MessageHeader and the MessageBody. 

 If the receiving endpoint does not support or is not interested in the MessageHeaderExtension, then it 
simply ignores it. 

For more information, see Section 3.6.2. 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "MessageHeaderExtension", 
     "fields": 
     [ 
         { 
             "name": "extension", 
             "type": { "type": "map", "values": "Energistics.Etp.v12.Datatypes.DataValue" }, 
"default": {} 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

extension A map of key/value pairs where the value must be 
a type in DataValue, indicating the extension and 
its value.  

 Map keys are case sensitive. 

 Any key that a receiver does not understand 
MUST be ignored (i.e.., no error). 

 Use of properties are either protocol-specific 
or refer to things OUTSIDE of the ETP 
Specification (such as tracing). 

DataValue 1 * 

  

23.27 record: Contact 

A record for the contact information record for capabilities. Because these capabilities vary by software 
application, it can be useful to provide a name and contact information so that users of your application 
can resolve any related issues. 

Avro Schema 

{ 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 435 

     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "Contact", 
     "fields": 
     [ 
         { "name": "organizationName", "type": "string", "default": "" }, 
         { "name": "contactName", "type": "string", "default": "" }, 
         { "name": "contactPhone", "type": "string", "default": "" }, 
         { "name": "contactEmail", "type": "string", "default": "" } 
     ] 
} 

  

Field Name Description Data Type Min Max 

organizationName The name of your company or organization within 
a company.  

string 0 1 

contactName Name of the person to contact. string 0 1 

contactPhone Phone number of the person to contact. string 0 1 

contactEmail Email address of the person to contact. string 0 1 

  

23.28 record: ErrorInfo 

A record that contains the error code and message explaining the error.  

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes", 
     "name": "ErrorInfo", 
     "fields": 
     [ 
         { "name": "message", "type": "string" }, 
         { "name": "code", "type": "int" } 
     ] 
} 

  

Field Name Description Data Type Min Max 

message Text explaining the nature of the error and any 
additional information that an application chooses 
to provide. Chapter 24 identifies human-readable 
error names, numbers, and usage notes. These 
names and notes are informational only; they are 
used in the documentation but have no meaning 
on the wire. Implementers may want to use these 
names as a #define or constant name in their 
code, but this is not part of the specification. 
Additionally, use the name and/or notes as part of 
the text description in this field. 

string 1 1 

code The error code. 

Positive error codes MUST be one of the error 
codes defined by Energistics. The error codes 
currently defined by Energistics are in Chapter 24. 
New error codes may be defined in future 
versions of this specification or in ML 
implementation guides. 

Custom error codes MUST be negative. 

int 1 1 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 436 

23.29 union: AnyArray 

A union representing all of the basic array types supported by DataArray (Protocol 9). 

Field Name Description Data Type Min Max 

arrayOfBoolean Array of Boolean values. ArrayOfBoolean 1 1 

arrayOfInt Array of signed 32-bit integers ArrayOfInt 1 1 

arrayOfLong Array of signed 64-bit integers. ArrayOfLong 1 1 

arrayOfFloat Array of 4-byte floats. ArrayOfFloat 1 1 

arrayOfDouble Array of 8-byte floats. ArrayOfDouble 1 1 

arrayOfString   ArrayOfString 1 1 

bytes Array of bytes. bytes 1 1 

  

23.30 union: DataValue 

The basic union that represents the possible data types for a single data point in ETP. For example, a 
single data point may be in a DataItem record (used in the ChannelData messages), in a FramePoint 
record, and for the data value of key:value pairs used in ETP (for example, to specify values for 
capabilities and for customData fields). 

Field Name Description Data Type Min Max 

null Avro null null 1 1 

boolean Avro Boolean boolean 1 1 

int Avro int int 1 1 

long Avro long long 1 1 

float Avro float float 1 1 

double Avro double double 1 1 

string Avro string. 

NOTE: In ETP, all strings MUST use UTF-8 
encoding.  

string 1 1 

arrayOfBoolean   ArrayOfBoolean 1 1 

arrayOfNullableBoolean   ArrayOfNullableBoolean 1 1 

arrayOfInt   ArrayOfInt 1 1 

arrayOfNullableInt   ArrayOfNullableInt 1 1 

arrayOfLong   ArrayOfLong 1 1 

arrayOfNullableLong   ArrayOfNullableLong 1 1 

arrayOfFloat   ArrayOfFloat 1 1 

arrayOfDouble   ArrayOfDouble 1 1 

arrayOfString   ArrayOfString 1 1 

arrayOfBytes   ArrayOfBytes 1 1 

bytes   bytes 1 1 

anySparseArray   AnySparseArray 1 1 

23.31 union: IndexValue 

A union that represents the numeric portion of a single value in an index. 

Field Name Description Data Type Min Max 

null Used to indicate infinity, for example, if you are 
specifying an interval (see IndexInterval).  

null 1 1 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 437 

Field Name Description Data Type Min Max 

long Avro long long 1 1 

PassIndexedDepth Index type for a wireline operation, as defined in 
PassIndexedDepth.  

PassIndexedDepth 1 1 

double Avro double double 1 1 

  

23.32 DataArrayTypes 

This section contains low-level types used for DataArray (Protocol 9).  

 
Figure 35: DataArrayType: schemas 

23.32.1 record: DataArray 

A record that contains the dimensions of the array and its data.  

class DataArrayTypes

«record»
DataArray

+ data : AnyArray
+ dimens ions : long [1..*] (array)

notes
A record that contains the dimensions of the array and
its data.

«record»
DataArrayIdentifier

+ pathInResource: s tring
+ uri : s tring

notes
A record that contains fields to identify the URI of the resource and the
path in that resource, to identify and find an array.

«record»
GetDataSubarraysType

+ counts : long [0..*] (array) = EmptyArray
+ s tarts : long [0..*] (array) = EmptyArray
+ uid: DataArrayIdenti fier

notes
A record that contains the fields required to get
sub-arrays.

«record»
PutDataArraysType

+ array: DataArray
+ customData: DataValue [0..*] (map) = EmptyMap
+ uid: DataArrayIdenti fier

notes
A record that contains the fields required to put
sub-arrays.

«record»
PutDataSubarraysType

+ counts : long [0..*] (array)
+ data : AnyArray
+ s tarts : long [0..*] (array)
+ uid: DataArrayIdenti fier

notes
A record that contains the field of data needed to put a sub-array.

«record»
DataArrayMetadata

+ customData: DataValue [0..*] (map) = EmptyMap
+ dimens ions : long [1..*] (array)
+ logica lArrayType: AnyLogica lArrayType
+ preferredSubarrayDimens ions : long [0..*] (array) = EmptyArray
+ s toreCreated: long
+ s toreLastWri te: long
+ transportArrayType: AnyArrayType

notes
A record that contains fields for metadata to help interpret and
understand the data in an array (DataArray).

«record»
PutUninitializedDataArrayType

+ metadata : DataArrayMetadata
+ uid: DataArrayIdenti fier

notes
The record that contains the fields required to put an
uninitialized array.



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 438 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.DataArrayTypes", 
     "name": "DataArray", 
     "fields": 
     [ 
         {  
             "name": "dimensions", 
             "type": { "type": "array", "items": "long" } 
         }, 
         { "name": "data", "type": "Energistics.Etp.v12.Datatypes.AnyArray" } 
     ] 
} 

  

Field Name Description Data Type Min Max 

dimensions An array of dimensions for the data array. This 
MUST be the actual size of the included data, 
whether or not it is a sub-array of another array. 

long 1 * 

data The data in the array, which must be a type of 
AnyArray. 

AnyArray 1 1 

  

23.32.2 record: DataArrayMetadata 

A record that contains fields for metadata to help interpret and understand the data in an array 
(DataArray). 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.DataArrayTypes", 
     "name": "DataArrayMetadata", 
     "fields": 
     [ 
         {  
             "name": "dimensions", 
             "type": { "type": "array", "items": "long" } 
         }, 
         { 
             "name": "preferredSubarrayDimensions", 
             "type": { "type": "array", "items": "long" }, "default": [] 
         }, 
         { "name": "transportArrayType", "type": "Energistics.Etp.v12.Datatypes.AnyArrayType" 
}, 
         { "name": "logicalArrayType", "type": 
"Energistics.Etp.v12.Datatypes.AnyLogicalArrayType" }, 
         { "name": "storeLastWrite", "type": "long" }, 
         { "name": "storeCreated", "type": "long" }, 
         { 
             "name": "customData", 
             "type": { "type": "map", "values": "Energistics.Etp.v12.Datatypes.DataValue" }, 
"default": {} 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

dimensions An array of dimension sizes for the data array. 
This MUST be the actual size of the included 
data, whether or not it is a sub-array of another 
array. 

long 1 * 

preferredSubarrayDimensions (Optional) Allows a store to advertise its native 
chunking of array data. A customer is free to 
read/access arrays in whatever order it wants. 
However, doing so in ways that go against the 

long 0 * 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 439 

Field Name Description Data Type Min Max 

store's (backend) native/actual chunking order 
may result in significant performance issues.  

This field is an array of the preferred dimensions. 

transportArrayType The Avro representation of the logical array type; 
this field must be one of the types specified in 
AnyArrayType. 

NOTE: Only certain transport types can be used 
with specific logical array types (logicalArrayType 
field). For rules and the mapping of allowable 
types, see Section 13.2.2.1. 

AnyArrayType 1 1 

logicalArrayType The type of array data that is being transferred; 
this field must be one of the types in 
AnyLogicalArrayType. 

NOTE: Only certain transport types 
(transportArrayType field) can be used with 
specific logical array types. For rules and the 
mapping of allowable types, see Section 13.2.2.1. 

AnyLogicalArrayType 1 1 

storeLastWrite The last time the data array was written in a 
particular store. (See also storeCreated in this 
DataArrayMetadata record.) 

 Its main purpose is for use in workflows for 
eventual consistency between 2 stores. 

 It is maintained by the ETP store. 

 For ANY CHANGES to the array data (E.g., 
values in the array are updated) a store 
MUST update storeLastWrite in this 
metadata. 

 When array data is first created in a store, 
the store MUST set storeLastWrite to the 
same value as storeCreated. 

The value must be a UTC dateTime value, 
serialized as a long, using the Avro logical type 
timestamp-micros (microseconds from the Unix 
Epoch, 1 January 1970 00:00:00.000000 UTC). 

long 1 1 

storeCreated The time that the data array was created in the 
store. (See also storeLastWrite in this 
DataArrayMetadata record.) 

 Its main purpose is for use in workflows for 
eventual consistency between 2 stores. 
Specifically, this field helps with an important 
edge case: on reconnect, an endpoint can 
more easily determine if while disconnected 
a data array was modified OR deleted and 
recreated.  

 Like storeLastWrite, this storeCreated field is 
maintained by the ETP store. 

The value must be a UTC dateTime value, 
serialized as a long, using the Avro logical type 
timestamp-micros (microseconds from the Unix 
Epoch, 1 January 1970 00:00:00.000000 UTC). 

long 1 1 

customData Allows an endpoint to send custom data, which is 
a data type defined by an organization other than 
Energistics (i.e., it's not defined by ETP or any of 
the Energistics domain data models). This custom 
data is also informally referred to as "proprietary 
data or content". 

It contains a key-value pair of custom key names 
and associated values. Observe these rules for 
specifying custom data: 

DataValue 0 * 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 440 

Field Name Description Data Type Min Max 

1. The keys MAY BE both well-known (and 
thus, reserved) names as well as application- 
and vendor-specific names. 
RECOMMENDATION: To specify the 
authority for a key use this convention 
"authority:key". 

2. Keys are case sensitive. 

3. The value MUST be one of the types 
specified in DataValue. 

  

23.32.3 record: DataArrayIdentifier 

A record that contains fields to identify the URI of the resource and the path in that resource, to identify 
and find an array.  

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.DataArrayTypes", 
     "name": "DataArrayIdentifier", 
     "fields": 
     [ 
         { "name": "uri", "type": "string" }, 
         { "name": "pathInResource", "type": "string" } 
     ] 
} 

  

Field Name Description Data Type Min Max 

uri The URI of the resource (NOT a Resource record) containing 
the array data. For more information, see the relevant ML ETP 
implementation specification. 

The resource may be an Energistics data object (that 
references the array), a file, or content in a store.  

For some Energistics domain standards (e.g., RESQML or 
PRODML), the URI may identify the 
EpcExternalPartReference, which acts as a proxy for the 
repository containing the DataArray. (For more information, 
see Section 13.1.1.) 

Some example URIs (from RESQML v2.0.1):  

 eml:///dataspace/resqml20.obj_IjkGridRepresentation(uuid) 

 eml:///dataspace/eml20.obj_EpcExternalPartReference(uuid) 

If both endpoints support alternate URIs for the session, the 
URIs MAY be alternate data object URIs. Otherwise, they 
MUST be canonical Energistics data object URIs. For more 
information, see Appendix: Energistics Identifiers. 

string 1 1 

pathInResource The path within the resource for the array data. If the resource 
is an HDF file, this may be a path within the HDF file. For more 
information, see the relevant ML ETP implementation 
specification. 

string 1 1 

  

23.32.4 record: GetDataSubarraysType 

A record that contains the fields required to get sub-arrays.  

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.DataArrayTypes", 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 441 

     "name": "GetDataSubarraysType", 
     "fields": 
     [ 
         { "name": "uid", "type": 
"Energistics.Etp.v12.Datatypes.DataArrayTypes.DataArrayIdentifier" }, 
         { 
             "name": "starts", 
             "type": { "type": "array", "items": "long" }, "default": [] 
         }, 
         { 
             "name": "counts", 
             "type": { "type": "array", "items": "long" }, "default": [] 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

uid The required identifying information needed as 
defined in DataArrayIdentifier. 

DataArrayIdentifier 1 1 

starts The starting indexes of the sub-array, per 
dimension. 

long 0 * 

counts The count of values along each dimension. long 0 * 

  

23.32.5 record: PutDataArraysType 

A record that contains the fields required to put sub-arrays.  

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.DataArrayTypes", 
     "name": "PutDataArraysType", 
     "fields": 
     [ 
         { "name": "uid", "type": 
"Energistics.Etp.v12.Datatypes.DataArrayTypes.DataArrayIdentifier" }, 
         { "name": "array", "type": "Energistics.Etp.v12.Datatypes.DataArrayTypes.DataArray" }, 
         { 
             "name": "customData", 
             "type": { "type": "map", "values": "Energistics.Etp.v12.Datatypes.DataValue" }, 
"default": {} 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

uid The required identifying information needed as 
defined in DataArrayIdentifier. 

DataArrayIdentifier 1 1 

array The data being put for array as defined in 
DataArray. 

DataArray 1 1 

customData Allows an endpoint to send custom data, which is 
a data type defined by an organization other than 
Energistics (i.e., it's not defined by ETP or any of 
the Energistics domain data models). This custom 
data is also informally referred to as "proprietary 
data or content". 

It contains a key-value pair of custom key names 
and associated values. Observe these rules for 
specifying custom data: 

1. The keys MAY BE both well-known (and 
thus, reserved) names as well as application- 
and vendor-specific names. 
RECOMMENDATION: To specify the 

DataValue 0 * 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 442 

Field Name Description Data Type Min Max 

authority for a key use this convention 
"authority:key".  

2. Keys are case sensitive. 

3. The value MUST be one of the types 
specified in DataValue. 

  

23.32.6 record: PutUninitializedDataArrayType 

The record that contains the fields required to put an uninitialized array.  

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.DataArrayTypes", 
     "name": "PutUninitializedDataArrayType", 
     "fields": 
     [ 
         { "name": "uid", "type": 
"Energistics.Etp.v12.Datatypes.DataArrayTypes.DataArrayIdentifier" }, 
         { "name": "metadata", "type": 
"Energistics.Etp.v12.Datatypes.DataArrayTypes.DataArrayMetadata" } 
     ] 
} 

  

Field Name Description Data Type Min Max 

uid The required identifying information needed as 
defined in DataArrayIdentifier. 

DataArrayIdentifier 1 1 

metadata The metadata for each uninitialized array being 
put as defined in DataArrayMetadata. 

DataArrayMetadata 1 1 

  

23.32.7 record: PutDataSubarraysType 

A record that contains the field of data needed to put a sub-array.  

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.DataArrayTypes", 
     "name": "PutDataSubarraysType", 
     "fields": 
     [ 
         { "name": "uid", "type": 
"Energistics.Etp.v12.Datatypes.DataArrayTypes.DataArrayIdentifier" }, 
         { "name": "data", "type": "Energistics.Etp.v12.Datatypes.AnyArray" }, 
         {  
             "name": "starts", 
             "type": { "type": "array", "items": "long" } 
         }, 
         {  
             "name": "counts", 
             "type": { "type": "array", "items": "long" } 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

uid The required identifying information needed as 
defined in DataArrayIdentifier. 

DataArrayIdentifier 1 1 

data The data in the array, which must of type 
AnyArray. 

AnyArray 1 1 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 443 

Field Name Description Data Type Min Max 

starts The starting indexes of the sub-array, per 
dimension. 

long 0 * 

counts The count of values along each dimension. long 0 * 

  

23.33 ChannelData 

This section contains low-level types used for protocols that stream and handle historical channel data, 
which include:  

 ChannelStreaming (Protocol 1)  

 ChannelDataFrame (Protocol 2)  

 ChannelSubscribe (Protocol 21)  

 ChannelDataLoad (Protocol 22)  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 444 

 
Figure 36: ChannelData: data type schemas 

23.33.1 ChannelDataKind 

An enumeration that lists the possible kinds of data in a Channel data object as specified in its 
ChannelMetadataRecord. It is a union of relevant logical index kinds (see ChannelIndexKind) and Avro 
primitives (i.e., the list from DataValue, excluding arrays).  

class ChannelData - Common Types

«enumeration»
ChannelIndexKind

 DateTime
 ElapsedTime
 MeasuredDepth
 TrueVertica lDepth
 Pass IndexedDepth
 Pressure
 Temperature
 Sca lar

notes
An enumeration that lists the possible kinds of
indexes in a Channel as specified in its
ChannelMetadataRecord and
IndexMetadataRecord.
It indicates the kind of index, so that the index
value can be correctly interpreted/understood.
NOTES:

1. Index units of measure and datum (if
used) are also specified in the
ChannelMetadataRecord.
2. ChannelIndexKind is also used by
GrowingObject (Protocol 7). However, for
growing objects, ChannelIndexKind MUST be
"time" or "depth" only.

«record»
DataItem

+ channel Id: long
+ indexes : IndexValue [1..n] (array)
+ va lue: DataValue
+ va lueAttributes : DataAttribute [0..n] (array) = EmptyArray

notes
A single data point on a channel, it is the data structure used in the streaming
protocols (e.g., ChannelStreaming, ChannelSubscribe, ChannelDataLoad).

«record»
IndexMetadataRecord

+ depthDatum: s tring = EmptyString
+ direction: IndexDirection = Increas ing
+ fi l terable: boolean = true
+ indexKind: Channel IndexKind = DateTime
+ indexPropertyKindUri : s tring
+ interva l : IndexInterva l
+ name: s tring [0..1] = EmptyString
+ uom: s tring

notes
Metadata for an index, which helps an endpoint to
correctly interpret/understand the indexes for a
channel or parts in a growing data object.
This approach of using IndexMetadataRecord
improves efficiency for ETP by allowing the identifying
metadata for each channel or growing object part
index to be sent once (as part of the
ChannelMetadataRecord or PartsMetadataInfo at the
beginning of an ETP session) and subsequent
transmissions include only new data points (as
defined in DataItem or ObjectPart).
NOTE: Some of the fields included here (e.g., uom,
depthDatum) must be duplicated on the
ChannelMetadataRecord and IndexInterval, but have
been included here too to make it easier to clearly
interpret the indexes.

«record»
ChannelMetadataRecord

+ attributeMetadata: AttributeMetadataRecord [0..n] (array) = EmptyArray
+ axisVectorLengths : int [0..*] (array)
+ channelClassUri : s tring
+ channelName: s tring
+ customData: DataValue [0..n] (map) = EmptyMap
+ dataKind: ChannelDataKind
+ depthDatum: s tring
+ id: long
+ indexes : IndexMetadataRecord [1..n] (array)
+ source: s tring
+ s tatus : ActiveStatusKind
+ uom: s tring
+ uri : s tring

notes
Describes the metadata for one channel data object. This metadata provides the
information needed to correctly identify and interpret/understand the data in a channel.
Various messages in the channel streaming protocols (for example: ChannelMetadata
message in ChannelStreaming (Protocol 1); GetChannelMetadataResponse message in
ChannelSubscribe (Protocol 21); and the OpenChannelsResponse message in
ChannelDataLoad (Protocol 22)) send arrays of ChannelMetadataRecords (one per channel
data object).
This approach of using ChannelMetadataRecord improves efficiency for ETP by allowing
the identifying metadata for each channel to be sent once (e.g., at the beginning of an
ETP session) and subsequently only the new data points (as defined in DataItem) need be
sent (e.g., in ChannelData messages) as they become available.
For the complete list of data fields and definitions, see the list below. Some examples:
- Identification information includes information such as URI, name, identifier (id, a
short reference (e.g., consecutive integers) which is assigned for this session to be used
in subsequent operations/messages).
- Information to help understand or interpret the channel data includes indexes (and
related index metadata), units of measure, and data value types.
NOTES:
Some of the fields included here (e.g., uom, depthDatum) must be duplicated on the
IndexMetadataRecord and IndexInterval, but have been included here too to make it
easier to clearly interpret the channel data.

1. The data value in a channel may be an individual value or it may be an array of data
values (of the kind specified in the dataKind field, which must be one of the enumerations
in ChannelDataKind). If it is an array of data values,  the accessVectorLengths field MUST
be populated to specify the dimensions of the array.

«record»
ChannelSubscribeInfo

+ channel Id: long
+ dataChanges : boolean = true
+ requestLatestIndexCount: int [0..1]
+ s tartIndex: IndexValue

notes
Data structure containing detailed information about
a subscription to one channel.

«enumeration»
IndexDirection

 Increas ing
 Decreas ing

notes
The possible values for the direction of an
index. This field describes the CURRENT sort
order of the indexes; PassDirection describes
the absolute order of the indexes.

«enumeration»
Object::ActiveStatusKind

 Active
 Inactive

notes
Enumeration of possible channel or
growing data object statuses. Statuses
are mapped from domain data objects,
such as wellbores, channels, and
growing data objects.

«union»
Datatypes::DataValue

+ anySparseArray: AnySparseArray
+ arrayOfBoolean: ArrayOfBoolean
+ arrayOfBytes : ArrayOfBytes
+ arrayOfDouble: ArrayOfDouble
+ arrayOfFloat: ArrayOfFloat
+ arrayOfInt: ArrayOfInt
+ arrayOfLong: ArrayOfLong
+ arrayOfNul lableBoolean: ArrayOfNul lableBoolean
+ arrayOfNul lableInt: ArrayOfNul lableInt
+ arrayOfNul lableLong: ArrayOfNul lableLong
+ arrayOfString: ArrayOfString
+ boolean: boolean
+ bytes : bytes
+ double: double
+ float: float
+ int: int
+ long: long
+ nul l : nul l
+ s tring: s tring

notes
The basic union that represents the possible data types for a single
data point in ETP. For example, a single data point may be in a
DataItem record (used in the ChannelData messages), in a
FramePoint record, and for the data value of key:value pairs used
in ETP (for example, to specify values for capabilities and for
customData fields).

«record»
Datatypes::DataAttribute

+ attributeId: int
+ attributeValue: DataValue

notes
Record for passing attributes (such as quality,
confidence, audit information, etc.) that are
associated with individual data points in a channel.
ETP provides this mechanism that allows data points
to be annotated (or "decorated") with additional
information.  However, ETP does NOT specify the
content and usage, which may be specified by
individual MLs (in relevant implementation
specification) or may be custom.
The AttributeMetadataRecord provides metadata
about how to interpret DataAttribute.

«record»
OpenChannelInfo

+ dataChanges : boolean = true
+ metadata: ChannelMetadataRecord
+ preferRealtime: boolean = true

notes
A record that contains an array of information for each channel in
an OpenChannelsResponse message. Key information includes a
ChannelMetadataRecord for each channel and others listed below.

«record»
Datatypes::AttributeMetadataRecord

+ attributeId: int
+ attributeName: s tring
+ attributePropertyKindUri : s tring
+ axisVectorLengths : int [1..*] (array)
+ dataKind: ChannelDataKind
+ depthDatum: s tring
+ uom: s tring

notes
A record that provides metadata to help interpret and
understand DataAttributes, which are used to
annotate (or "decorate") data points in a channel.
Currently, ETP does NOT define any specific attributes
and usage; it only provides the mechanism so that
organizations (individual MLs or companies) can add
their own information.

«record»
FrameChannelMetadataRecord

+ attributeMetadata: AttributeMetadataRecord [0..n] (array) = EmptyArray
+ axisVectorLengths : int [1..*] (array)
+ channelName: s tring
+ channelPropertyKindUri : s tring
+ customData: DataValue [0..*] (map) = EmptyMap
+ dataKind: ChannelDataKind
+ depthDatum: s tring
+ source: s tring
+ s tatus : ActiveStatusKind
+ uom: s tring
+ uri : s tring

notes
Record containing channel metadata needed to describe each channel that comprises a
frame (e.g., for use in ChannelDataFrame (Protocol 2)).

«record»
ChannelRangeInfo

+ channel Ids : long [1..n] (array)
+ interva l : IndexInterva l
+ secondaryInterva ls : IndexInterva l  [0..*] (array) = EmptyArray

notes
Data structure for specifying a list of channels and the primary and optionally
secondary intervals over which you want to retrieve data for. It is used in range
operations in ChannelSubscribe (Protocol 21).

«record»
FramePoint

+ va lue: DataValue
+ va lueAttributes : DataAttribute [0..*] (array) = EmptyArray

notes
Record used to compose a FrameRow.
The size of the 'points' array MUST always be the same in every 'Row', and MUST be
the same as the size of the channelUri's array in GetFrameResponseHeader message.

«record»
FrameRow

+ indexes : IndexValue [1..*] (array)
+ points : FramePoint [1..*] (array)

notes
Record that defines each row returned in the
GetFrameResponseRows message. This
structure is composed of an IndexValue and
multiple FramePoints (for each channel
requested that has data point at the specified
index).

«record»
TruncateInfo

+ channel Id: long
+ newEndIndex: IndexValue

notes
Record containing the channel ID and new end index. The
following messages send arrays of these to establish new end
indexes (which are typically corrections of erroneous data).
- ChannelStreaming (Protocol 1): TruncateChannels
- ChannelSubscribe (Protocol 21): ChannelsTruncated
- ChannelDataLoad (Protocol 22): TruncateChannels

«record»
Object::ChangeAnnotation

+ changeTime: long
+ interva l : IndexInterva l

notes
Record that indicates the interval in a channel data
object or growing data object that changed and the
time that change occurred.
NOTE: A store MUST aggregate overlapping change
intervals/annotations and MAY aggregate change
intervals/annotations for simplification and efficiency.
For more information on requirements for this
aggregating behavior, see Section 19.2.2.

«record»
Object::ChangeResponseInfo

+ changes : ChangeAnnotation [1..*] (map of array)
+ responseTimestamp: long

notes
Record that details the information that comprises the content of
these messages:
- GrowingObject (Protocol 6): GetChangeAnnotationsResponse
- ChannelSubscribe (Protocol 21):
GetChangeAnnotationsResponse
It is a map of arrays of ChangeAnnotation records.
To populate the map keys:
- For GrowingObject (Protocol 6), the map keys must be the URI
of the growing data object.
- ChannelSubscribe (Protocol 21), the map keys must be the
string representation of the channel ID (because map keys must be
strings/cannot be integers).

«record»
PassIndexedDepth

+ depth: double
+ direction: PassDirection
+ pass : long

notes
Record that identifies the pass and its depth
(which is used to disambiguate where the
same depth occurs more than once in a
logging run) and direction.

«enumeration»
ChannelDataKind

 DateTime
 ElapsedTime
 MeasuredDepth
 Pass IndexedDepth
 TrueVertica lDepth
 typeBoolean
 typeInt
 typeLong
 typeFloat
 typeDouble
 typeString
 typeBytes

notes
An enumeration that lists the possible kinds of
data in a Channel data object as specified in its
ChannelMetadataRecord. It is a union of
relevant logical index kinds (see
ChannelIndexKind) and Avro primitives (i.e., the
list from DataValue, excluding arrays).
NOTE: Channel data may also be an ARRAY of
the Avro types listed below. If it is an array, the
axisVectorLengths field in the
ChannelMetadataRecord must be populated so
that the array can be correctly interpreted.

«record»
ChannelChangeRequestInfo

+ channel Ids : long [1..*] (array)
+ s inceChangeTime: long

notes
Record that details the information that comprises
the request in ChannelSubscribe (Protocol 21)
GetChangeAnnotations message.



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 445 

NOTE: Channel data may also be an ARRAY of the Avro types listed below. If it is an array, the 
axisVectorLengths field in the ChannelMetadataRecord must be populated so that the array can be 
correctly interpreted. 

Channel Data Kind Description Data Type 

DateTime Each value for channel data is a timestamp.  

The actual channel data is a UTC dateTime value, 
serialized as a long, using the Avro logical type 
timestamp-micros (microseconds from the Unix Epoch, 
1 January 1970 00:00:00.000000 UTC). 

string 

ElapsedTime Each value for channel data is an elapsed time.  

The actual channel data is the number of microseconds 
from zero and is an Avro long.  

NOTE:  

1. This value is NOT related to any time datum. 

2. The index UOM MUST be set to "us". 

EXAMPLE elapsed time use case: Engine hours for 
equipment, which is how long the equipment has been 
running. 

string 

MeasuredDepth Each value for channel data represents a measured 
depth (MD).  

string 

PassIndexedDepth Each value for channel data represents a pass indexed 
depth.  

string 

TrueVerticalDepth Each value for channel data represents a true vertical 
depth (TVD). 

string 

typeBoolean   string 

typeInt   string 

typeLong   string 

typeFloat   string 

typeDouble   string 

typeString   string 

typeBytes   string 

  

Avro Source 

{ 
     "type": "enum", 
     "namespace": "Energistics.Etp.v12.Datatypes.ChannelData", 
     "name": "ChannelDataKind", 
     "symbols": 
     [ 
         "DateTime", 
         "ElapsedTime", 
         "MeasuredDepth", 
         "PassIndexedDepth", 
         "TrueVerticalDepth", 
         "typeBoolean", 
         "typeInt", 
         "typeLong", 
         "typeFloat", 
         "typeDouble", 
         "typeString", 
         "typeBytes" 
     ] 
} 

  

23.33.2 ChannelIndexKind 

An enumeration that lists the possible kinds of indexes in a Channel as specified in its 
ChannelMetadataRecord and IndexMetadataRecord. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 446 

It indicates the kind of index, so that the index value can be correctly interpreted/understood.  

NOTES:  

1. Index units of measure and datum (if used) are also specified in the ChannelMetadataRecord. 
2. ChannelIndexKind is also used by GrowingObject (Protocol 7). However, for growing objects, 

ChannelIndexKind MUST be "time" or "depth" only.  

Channel Index Kind Description Data Type 

DateTime The index for the channel is a timestamp. 

Each actual index value is a UTC dateTime value, serialized as a 
long, using the Avro logical type timestamp-micros (microseconds 
from the Unix Epoch, 1 January 1970 00:00:00.000000 UTC).  

  

ElapsedTime The index for the channel is an elapsed time.  

Each actual index value is the number of microseconds from zero 
and is an Avro long.  

NOTES:  

1. This value is NOT related to any time datum. 

2. The index UOM MUST be set to "us". 

EXAMPLE elapsed time use case: Engine hours for equipment, 
which is how long the equipment has been running. 

  

MeasuredDepth The index of the channel is measure depth (MD).    

TrueVerticalDepth The index of the channel is a true vertical depth (TVD).   

PassIndexedDepth The index of the channel is a pass indexed depth.    

Pressure The index of the channel is a pressure.    

Temperature The index of a channel is a temperature.    

Scalar The index of the channel represents values that are temperature or 
pressure. It indicates that the index is of type Avro double.  

NOTES:  

1. Even if the index values are integer numbers, the index values 
MUST be sent as Avro doubles. 

2. Optionally, you may specify a datum (in the 
ChannelMetadataRecord). 

  

  

Avro Source 

{ 
     "type": "enum", 
     "namespace": "Energistics.Etp.v12.Datatypes.ChannelData", 
     "name": "ChannelIndexKind", 
     "symbols": 
     [ 
         "DateTime", 
         "ElapsedTime", 
         "MeasuredDepth", 
         "TrueVerticalDepth", 
         "PassIndexedDepth", 
         "Pressure", 
         "Temperature", 
         "Scalar" 
     ] 
} 

  

23.33.3 IndexDirection 

The possible values for the direction of an index. This field describes the CURRENT sort order of the 
indexes; PassDirection describes the absolute order of the indexes. 

Field Name Description Data Type Min Max 

Increasing The index values increase.    1 1 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 447 

Field Name Description Data Type Min Max 

Decreasing The index values decrease.    1 1 

Unordered The index values are unordered. This MUST NOT 
be used for primary indexes. This value ONLY 
applies to secondary indexes. 

 1 1 

  

Avro Source 

{ 
     "type": "enum", 
     "namespace": "Energistics.Etp.v12.Datatypes.ChannelData", 
     "name": "IndexDirection", 
     "symbols": 
     [ 
         "Increasing", 
         "Decreasing", 
         "Unordered" 
     ] 
} 

  

23.33.4 PassDirection 

The possible values for the direction of a pass in a wireline operation. It defines the absolute ordering for 
PassIndexedDepth data (compared to IndexDirection which is the current sort order).  

Field Name Description Data Type Min Max 

Up The wireline tool is moving up in the 
hole/wellbore.  

  1 1 

HoldingSteady The wireline tool is not moving in the 
hole/wellbore. NOTE: This MUST NOT be used 
for primary indexes. This value ONLY applies to 
secondary indexes. 

  1 1 

Down The wireline tool is moving down in the 
hole/wellbore.  

  1 1 

  

Avro Source 

{ 
     "type": "enum", 
     "namespace": "Energistics.Etp.v12.Datatypes.ChannelData", 
     "name": "PassDirection", 
     "symbols": 
     [ 
         "Up", 
         "HoldingSteady", 
         "Down" 
     ] 
} 

  

23.33.5 record: DataItem 

A single data point on a channel, it is the data structure used in the streaming protocols (e.g., 
ChannelStreaming, ChannelSubscribe, ChannelDataLoad).  

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.ChannelData", 
     "name": "DataItem", 
     "fields": 
     [ 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 448 

         { "name": "channelId", "type": "long" }, 
         {  
             "name": "indexes", 
             "type": { "type": "array", "items": "Energistics.Etp.v12.Datatypes.IndexValue" } 
         }, 
         { "name": "value", "type": "Energistics.Etp.v12.Datatypes.DataValue" }, 
         { 
             "name": "valueAttributes", 
             "type": { "type": "array", "items": "Energistics.Etp.v12.Datatypes.DataAttribute" 
}, "default": [] 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

channelId The identifier of the channel for this point, as 
received in a ChannelMetadata record. 

long 1 1 

indexes The value of the indexes for this data point, which 
MUST be of type IndexValue. 

 The array MUST be of length 0, or the length 
of the corresponding index metadata array 
for the channelId.  

 If the length is 0, then the index values are 
the same as the indexes in the previous item 
in the array of DataItem, which MUST have 
identical index metadata as the channelId of 
this record. 

 If the length is not 0, individual elements in 
the indexes may be null to indicate that 
specific index value is the same as the 
previous item in the array of DataItem. 

IndexValue 1 n 

value The value of this data point, which must be of a 
type specified in DataValue. 

DataValue 1 1 

valueAttributes (Optional) Any qualifiers, such as quality, 
accuracy, etc., attached to this data point. It is an 
array of ID-value pairs, where the IDs and the 
values are NOT described as part of this 
specification. Use of this field is defined by the 
relevant implementation specification or can be for 
custom use. 

MUST be of type DataAttribute. 

The AttributeMetadataRecord contains the 
metadata for interpreting/understanding the data 
attributes.  

DataAttribute 0 n 

  

23.33.6 record: IndexMetadataRecord 

Metadata for an index, which helps an endpoint to correctly interpret/understand the indexes for a channel 
or parts in a growing data object.  

This approach of using IndexMetadataRecord improves efficiency for ETP by allowing the identifying 
metadata for each channel or growing object part index to be sent once (as part of the 
ChannelMetadataRecord or PartsMetadataInfo at the beginning of an ETP session) and subsequent 
transmissions include only new data points (as defined in DataItem or ObjectPart).  

NOTE: Some of the fields included here (e.g., uom, depthDatum) must be duplicated on the 
ChannelMetadataRecord and IndexInterval, but have been included here too to make it easier to clearly 
interpret the indexes. 

Avro Schema 

{ 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 449 

     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.ChannelData", 
     "name": "IndexMetadataRecord", 
     "fields": 
     [ 
         { "name": "indexKind", "type": 
"Energistics.Etp.v12.Datatypes.ChannelData.ChannelIndexKind", "default": "DateTime" }, 
         { "name": "interval", "type": "Energistics.Etp.v12.Datatypes.Object.IndexInterval" }, 
         { "name": "direction", "type": 
"Energistics.Etp.v12.Datatypes.ChannelData.IndexDirection", "default": "Increasing" }, 
         { "name": "name", "type": "string", "default": "" }, 
         { "name": "uom", "type": "string" }, 
         { "name": "depthDatum", "type": "string", "default": "" }, 
         { "name": "indexPropertyKindUri", "type": "string" }, 
         { "name": "filterable", "type": "boolean", "default": true } 
     ] 
} 

  

Field Name Description Data Type Min Max 

indexKind Main type of the index (time, depth, etc.) as 
defined in ChannelIndexKind. 

ChannelIndexKind 1 1 

interval The information that defines the interval as 
specified in the IndexInterval record, which 
includes the pair of indexes that define the interval 
and other data common to the interval including 
unit and depth datum. The uom and depthDatum 
fields on the interval record MUST match the uom 
and depthDatum fields on this record. 

IndexInterval 1 1 

direction The direction of the index values, increasing or 
decreasing. Must remain constant for the life of a 
channel. 

If the IndexMetadataRecord is describing a part in 
a growing data object (ObjectPart), then direction 
MUST BE increasing.  

Primary indexes MUST be either Increasing or 
Decreasing. For primary indexes, Increasing 
means strictly increasing, and Decreasing means 
strictly decreasing. 

The direction for secondary indexes MUST reflect 
the order that the secondary index values will 
appear when data is ordered by the primary index 
in its specified direction. When ordered by the 
primary index, secondary indexes may be 
monotonically increasing, monotonically 
decreasing or unordered. For secondary indexes, 
Increasing means monotonically increasing, 
Decreasing means monotonically decreasing, and 
Unordered means neither monotonically 
increasing nor monotonically decreasing. 

IndexDirection 1 1 

name A mnemonic description of the index. This is an 
optional field; in the absence of a value, the string 
representation of the indexType enumeration 
SHOULD be considered the mnemonic. 

string 0 1 

uom The unit of measure of the index.  string 1 1 

depthDatum If the index is depth, this is the depth datum it 
references.  

string 1 1 

indexPropertyKindUri An optional field that allows an endpoint to specify 
the URI of a property kind data object, which 
MUST be available from the endpoint and MAY be 
from the Energistics PropertyKindDictionary. Use 
of this field lets an endpoint indicate more 
specifically what the index described by the 
IndexMetatdataRecord is representing.  

The PropertyKindDictionary is an implementation 
of the Practical Well Log Standard (PWLS). For 

string 1 1 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 450 

Field Name Description Data Type Min Max 

more information on how PWLS is used in ETP, 
see Section 3.12.7. 

filterable Flag that indicates that the index described by this 
record can be used as a filter. Use of this field is 
optional; if not used it must be false. 

boolean 1 1 

  

23.33.7 record: ChannelMetadataRecord 

Describes the metadata for one channel data object. This metadata provides the information needed to 
correctly identify and interpret/understand the data in a channel.  

Various messages in the channel streaming protocols (for example: ChannelMetadata message in 
ChannelStreaming (Protocol 1); GetChannelMetadataResponse message in ChannelSubscribe 
(Protocol 21); and the OpenChannelsResponse message in ChannelDataLoad (Protocol 22)) send 
arrays of ChannelMetadataRecords (one per channel data object).  

This approach of using ChannelMetadataRecord improves efficiency for ETP by allowing the identifying 
metadata for each channel to be sent once (e.g., at the beginning of an ETP session) and subsequently 
only the new data points (as defined in DataItem) need be sent (e.g., in ChannelData messages) as they 
become available.  

For the complete list of data fields and definitions, see the list below. Some examples: 

 Identification information includes information such as URI, name, identifier (id, a short reference 
(e.g., consecutive integers) which is assigned for this session to be used in subsequent 
operations/messages). 

 Information to help understand or interpret the channel data includes indexes (and related index 
metadata), units of measure, and data value types. 

NOTES:  

1. Some of the fields included here (e.g., uom, depthDatum) must be duplicated on the 
IndexMetadataRecord and IndexInterval, but have been included here too to make it easier to clearly 
interpret the channel data. 

2. The data value in a channel may be an individual value or it may be an array of data values (of the 
kind specified in the dataKind field, which must be one of the enumerations in ChannelDataKind). If it 
is an array of data values, the accessVectorLengths field MUST be populated to specify the 
dimensions of the array. 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.ChannelData", 
     "name": "ChannelMetadataRecord", 
     "fields": 
     [ 
         { "name": "uri", "type": "string" }, 
         { "name": "id", "type": "long" }, 
         {  
             "name": "indexes", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.ChannelData.IndexMetadataRecord" } 
         }, 
         { "name": "channelName", "type": "string" }, 
         { "name": "dataKind", "type": 
"Energistics.Etp.v12.Datatypes.ChannelData.ChannelDataKind" }, 
         { "name": "uom", "type": "string" }, 
         { "name": "depthDatum", "type": "string" }, 
         { "name": "channelClassUri", "type": "string" }, 
         { "name": "status", "type": "Energistics.Etp.v12.Datatypes.Object.ActiveStatusKind" }, 
         { "name": "source", "type": "string" }, 
         {  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 451 

             "name": "axisVectorLengths", 
             "type": { "type": "array", "items": "int" } 
         }, 
         { 
             "name": "attributeMetadata", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.AttributeMetadataRecord" }, "default": [] 
         }, 
         { 
             "name": "customData", 
             "type": { "type": "map", "values": "Energistics.Etp.v12.Datatypes.DataValue" }, 
"default": {} 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

uri MUST be the URI to a domain-specific data 
object that identifies and describes the channel. 

The URI MUST be a canonical Energistics data 
object URI; for more information, see Appendix: 
Energistics Identifiers. 

string 1 1 

id An integer identifier assigned to the channel in a 
specific protocol for the ETP session, which 
must be provided by the producer or store role. 
These integer IDs are used to reduce data on 
the wire and are used (instead of URIs) for 
subsequent operations/messages.  

Channel IDs are only unique or meaningful 
within a specific protocol in a given ETP session. 
If you start a new session or use the channel in a 
different protocol within the same session, the 
same channel URI may result in different 
channel IDs. If the channel has been deleted 
and recreated during a session, it MUST be 
assigned a new ID in that session. 

long 1 1 

indexes The metadata for the indexes associated with 
this channel as specified in the 
IndexMetadataRecord. 

 The array MUST have a length of at least 1. 

 The record for the primary index MUST 
always be the first record in the array. 

 The values of the primary index MUST be 
unique within the channel. 

IndexMetadataRecord 1 n 

channelName The name for the channel.  string 1 1 

uom The unit of measure for the channel. All 
DataItem records send data using this UOM. For 
Energistics domain standards (i.e., WITSML, 
PRODML, RESQML) version 2.0 or above, the 
UOM MUST be a valid value from QuantityClass 
in Energistics common (which is an 
implementation of the Energistics UOM 
Standard). ETP does not support conversion to a 
customer-requested system of measurement. 

string 1 1 

dataKind The kind of data contained in the channel, which 
must be one of the values in ChannelDataKind. 

ChannelDataKind 1 1 

depthDatum If the channel data is a depth value, this is the 
datum it references. 

string 1 1 

channelClassUri MUST populate this field with the URI of a 
property kind data object, which MUST be 
available from the endpoint and MAY be from 
the Energistics PropertyKindDictionary. Use of 
this field means an endpoint can specifically 

string 1 1 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 452 

Field Name Description Data Type Min Max 

describe what property the channel data 
represents.   

The PropertyKindDictionary is an implementation 
of the Practical Well Log Standard (PWLS). For 
more information on how PWLS is used in ETP, 
see Section 3.12.7. 

status Current status of this channel as defined in 
ActiveStatusKind. 

ActiveStatusKind 1 1 

source It is the provider, typically a company, that is the 
source of the data in this channel. This field 
maps to the source field on a Channel data 
object in WITSML.  

string 1 1 

axisVectorLengths If the channel data is an array, then this field 
MUST be populated. It provides the context for 
how to decode a flattened 1D array back into the 
higher dimension array. 

Rules for populating this field:  

 You MUST encode the positional 
information as an absolute ‘start’ offset 
between it and the length of each subarray 
that Avro will encode onto the wire. 

 The number of elements in the array 
indicates the number of dimensions in the 
data. 

 The elements in the array indicate the 
length of each dimension.  

Rules for ordering:  

 Slowest to fastest. 

 Index 0 is the slowest moving dimension. 

 Last index is the fastest moving dimension. 

EXAMPLE: If you a have a 2D array of 3 rows 
and 20 columns, then this field would contain: 
3,20 

int 0 * 

attributeMetadata An array of metadata (as specified in 
AttributeMetadataRecord) that describes the 
DataAttributes that may be provided for 
individual DataItems in a channel. 

AttributeMetadataRecord 0 n 

customData Allows an endpoint to send custom data, which 
is a data type defined by an organization other 
than Energistics (i.e., it's not defined by ETP or 
any of the Energistics domain data models). This 
custom data is also informally referred to as 
"proprietary data or content". 

It contains a key-value pair of custom key names 
and associated values. Observe these rules for 
specifying custom data: 

1. The keys MAY BE both well-known (and 
thus, reserved) names as well as 
application- and vendor-specific names. 
RECOMMENDATION: To specify the 
authority for a key use this convention 
"authority:key".  

2. Keys are case sensitive. 

3. The value MUST be one of the types 
specified in DataValue. 

DataValue 0 n 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 453 

23.33.8 record: ChannelRangeInfo 

Data structure for specifying a list of channels and the primary and optionally secondary intervals over 
which you want to retrieve data for. It is used in range operations in ChannelSubscribe (Protocol 21). 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.ChannelData", 
     "name": "ChannelRangeInfo", 
     "fields": 
     [ 
         {  
             "name": "channelIds", 
             "type": { "type": "array", "items": "long" } 
         }, 
         { "name": "interval", "type": "Energistics.Etp.v12.Datatypes.Object.IndexInterval" }, 
         { 
             "name": "secondaryIntervals", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.Object.IndexInterval" }, "default": [] 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

channelIds One or more channel IDs for which this range is 
requested. All channels MUST have a common 
index type, UOM, and direction. 

long 1 n 

interval Specifies the primary interval, which defines the 
range of interest, as defined in IndexInterval. 

IndexInterval 1 1 

secondaryIntervals (Optional) Specifies one or more secondary 
intervals, as defined in IndexInterval. This 
secondary interval is additional filtering of the data 
returned from the primary interval (specified in the 
interval field above). 

NOTE: If a store's 
SupportsSecondaryIndexFiltering protocol 
capability is false and a customer populates this 
field, then the Store MUST deny the request and 
send error ENOTSUPPORTED (7). 

IndexInterval 0 * 

  

23.33.9 record: ChannelSubscribeInfo 

Data structure containing detailed information about a subscription to one channel.  

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.ChannelData", 
     "name": "ChannelSubscribeInfo", 
     "fields": 
     [ 
         { "name": "channelId", "type": "long" }, 
         { "name": "startIndex", "type": "Energistics.Etp.v12.Datatypes.IndexValue" }, 
         { "name": "dataChanges", "type": "boolean", "default": true }, 
         { "name": "requestLatestIndexCount", "type": ["null", "int"] } 
     ] 
} 

  

Field Name Description Data Type Min Max 

channelId The ID of the channel to be started or stopped. 
This is the UID that was assigned to the channel 
(in place of the longer channel URI) with the 

long 1 1 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 454 

Field Name Description Data Type Min Max 

ChannelMetadataRecord returned in the 
GetChannelMetadataResponse. 

startIndex The starting index that the customer is requesting 
the store start streaming from. It must be of a type 
specified in IndexValue . NOTE: Optionally, an 
endpoint can specify a requestLatestIndexCount; 
if it is populated this start index is ignored.  

IndexValue 1 1 

requestLatestIndexCount If specified, the store MUST return the latest n 
values from the specified channel and continue 
streaming per the subscription. If this property is 
provided, i.e., not null, the store MUST ignore the 
start index (startIndex field).  

int 0 1 

dataChanges Boolean. If true, it indicates that data changes are 
being requested (in addition to real-time streaming 
data).  

boolean 1 1 

  

23.33.10 record: OpenChannelInfo 

A record that contains an array of information for each channel in an OpenChannelsResponse message. 
Key information includes a ChannelMetadataRecord for each channel and others listed below.  

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.ChannelData", 
     "name": "OpenChannelInfo", 
     "fields": 
     [ 
         { "name": "metadata", "type": 
"Energistics.Etp.v12.Datatypes.ChannelData.ChannelMetadataRecord" }, 
         { "name": "preferRealtime", "type": "boolean", "default": true }, 
         { "name": "dataChanges", "type": "boolean", "default": true } 
     ] 
} 

  

Field Name Description Data Type Min Max 

metadata The metadata for each channel as specified in the 
ChannelMetadataRecord. 

ChannelMetadataRecord 1 1 

preferRealtime Boolean. If true, it indicates the receiver has a 
preference to receive realtime data first (before 
historical data). Default = true 

boolean 1 1 

dataChanges Boolean. If true, indicates that data changes 
(which are sent with ReplaceRange and 
TruncateChannels messages) are also being 
requested (in addition to realtime streaming data). 
Default = true 

boolean 1 1 

  

23.33.11 record: FrameChannelMetadataRecord 

Record containing channel metadata needed to describe each channel that comprises a frame (e.g., for 
use in ChannelDataFrame (Protocol 2)). 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.ChannelData", 
     "name": "FrameChannelMetadataRecord", 
     "fields": 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 455 

     [ 
         { "name": "uri", "type": "string" }, 
         { "name": "channelName", "type": "string" }, 
         { "name": "dataKind", "type": 
"Energistics.Etp.v12.Datatypes.ChannelData.ChannelDataKind" }, 
         { "name": "uom", "type": "string" }, 
         { "name": "depthDatum", "type": "string" }, 
         { "name": "channelPropertyKindUri", "type": "string" }, 
         { "name": "status", "type": "Energistics.Etp.v12.Datatypes.Object.ActiveStatusKind" }, 
         { "name": "source", "type": "string" }, 
         {  
             "name": "axisVectorLengths", 
             "type": { "type": "array", "items": "int" } 
         }, 
         { 
             "name": "attributeMetadata", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.AttributeMetadataRecord" }, "default": [] 
         }, 
         { 
             "name": "customData", 
             "type": { "type": "map", "values": "Energistics.Etp.v12.Datatypes.DataValue" }, 
"default": {} 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

uri The Energistics URI for an Energistics channel set 
data object. 

The URI MUST be a canonical Energistics data 
object URI; for more information, see Appendix: 
Energistics Identifiers. 

string 1 1 

channelName The name for the channel.  string 1 1 

dataKind The kind of data contained in the channel, which 
must be one of the values in ChannelDataKind. 

ChannelDataKind 1 1 

uom The unit of measure for the channel. All 
FramePoint data use this UOM. For Energistics 
domain standards (i.e., WITSML, PRODML, 
RESQML) version 2.0 or above, the UOM MUST 
be a valid value from QuantityClass in Energistics 
common. ETP does not support conversion to a 
consumer-requested system of measurement. 

string 1 1 

depthDatum If the channel data is a depth value, this is the 
datum it references. 

string 1 1 

channelPropertyKindUri MUST populate this field with the URI of a 
property kind (PropertyKind) from the Energistics 
PropertyKindDictionary. Use of this field means an 
endpoint can specifically describe what property 
the channel data represents.  

The PropertyKindDictionary is an implementation 
of the Practical Well Log Standard (PWLS). For 
more information on how PWLS is used in ETP, 
see Section 3.12.7. 

string 1 1 

status Current status of this channel as defined in 
ActiveStatusKind. 

ActiveStatusKind 1 1 

source It is the provider, typically a company, that is the 
source of the data in this channel. This field maps 
to the source field on a Channel data object in 
WITSML.  

string 1 1 

axisVectorLengths If the channel data is an array, then this field 
MUST be populated. It provides the context for 
how to decode a flattened 1D array back into the 
higher dimension array. 

Rules for populating this field:  

int 1 * 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 456 

Field Name Description Data Type Min Max 

 You MUST encode the positional information 
as an absolute ‘start’ offset between it and 
the length of each subarray that Avro will 
encode onto the wire. 

 The number of elements in the array 
indicates the number of dimensions in the 
data. 

 The elements in the array indicate the length 
of each dimension. 

Rules for ordering:  

 Slowest to fastest. 

 Index 0 is the slowest moving dimension. 

 Last index is the fastest moving dimension. 

EXAMPLE: If you a have a 2D array of 3 rows 
and 20 columns, then this field would contain: 
3,20 

attributeMetadata An array of metadata (as specified in 
AttributeMetadataRecord) that describes the 
DataAttributes that may be provided for individual 
FramePoints in a channel frame. 

AttributeMetadataRecord 0 n 

customData Allows an endpoint to send custom data, which is 
a data type defined by an organization other than 
Energistics (i.e., it's not defined by ETP or any of 
the Energistics domain data models). This custom 
data is also informally referred to as "proprietary 
data or content". 

It contains a key-value pair of custom key names 
and associated values. Observe these rules for 
specifying custom data: 

1. The keys MAY BE both well-known (and 
thus, reserved) names as well as application- 
and vendor-specific names.  
RECOMMENDATION: To specify the 
authority for a key use this convention 
"authority:key". 

2. Keys are case sensitive. 

3. The value MUST be one of the types 
specified in DataValue. 

DataValue 0 * 

  

23.33.12 record: FramePoint 

Record used to compose a FrameRow.  

The size of the 'points' array MUST always be the same in every 'Row', and MUST be the same as the 
size of the channelUri's array in GetFrameResponseHeader message.  

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.ChannelData", 
     "name": "FramePoint", 
     "fields": 
     [ 
         { "name": "value", "type": "Energistics.Etp.v12.Datatypes.DataValue" }, 
         { 
             "name": "valueAttributes", 
             "type": { "type": "array", "items": "Energistics.Etp.v12.Datatypes.DataAttribute" 
}, "default": [] 
         } 
     ] 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 457 

} 

  

Field Name Description Data Type Min Max 

value The value of a given point, which must be of a 
type in DataValue.  

DataValue 1 1 

valueAttributes (Optional) Any qualifiers, such as quality, 
accuracy, etc., attached to this data point. It is an 
array of ID-value pairs, where the IDs and the 
values are NOT described as part of this 
specification. Use of this field is defined by the 
relevant implementation specification or can be for 
custom use. 

MUST be of type DataAttribute.  

The AttributeMetadataRecord contains the 
metadata for interpreting/understanding the data 
attributes.  

DataAttribute 0 * 

  

23.33.13 record: FrameRow 

Record that defines each row returned in the GetFrameResponseRows message. This structure is 
composed of an IndexValue and multiple FramePoints (for each channel requested that has data point at 
the specified index).  

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.ChannelData", 
     "name": "FrameRow", 
     "fields": 
     [ 
         {  
             "name": "indexes", 
             "type": { "type": "array", "items": "Energistics.Etp.v12.Datatypes.IndexValue" } 
         }, 
         {  
             "name": "points", 
             "type": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.ChannelData.FramePoint" } 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

indexes The index for each row as defined in IndexValue. IndexValue 1 * 

points The value of the points as defined in FramePoint. FramePoint 1 * 

  

23.33.14 record: TruncateInfo 

Record containing the channel ID and new end index. The following messages send arrays of these to 
establish new end indexes (which are typically corrections of erroneous data).  

 ChannelStreaming (Protocol 1): TruncateChannels 

 ChannelSubscribe (Protocol 21): ChannelsTruncated 

 ChannelDataLoad (Protocol 22): TruncateChannels 

Avro Schema 

{ 
     "type": "record", 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 458 

     "namespace": "Energistics.Etp.v12.Datatypes.ChannelData", 
     "name": "TruncateInfo", 
     "fields": 
     [ 
         { "name": "channelId", "type": "long" }, 
         { "name": "newEndIndex", "type": "Energistics.Etp.v12.Datatypes.IndexValue" } 
     ] 
} 

  

Field Name Description Data Type Min Max 

channelId The channel ID of the channel whose index you 
want to change.  

long 1 1 

newEndIndex The new end index for the specified channel, 
which must be of type IndexValue. 

IndexValue 1 1 

  

23.33.15 record: ChannelChangeRequestInfo 

Record that details the information that comprises the request in ChannelSubscribe (Protocol 21) 
GetChangeAnnotations message. 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.ChannelData", 
     "name": "ChannelChangeRequestInfo", 
     "fields": 
     [ 
         { "name": "sinceChangeTime", "type": "long" }, 
         {  
             "name": "channelIds", 
             "type": { "type": "array", "items": "long" } 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

sinceChangeTime The start time for changes. That is, the customer 
is requesting changes that happened since this 
time.  

This time MUST BE less than or equal to the 
store's ChangeRetentionPeriod endpoint 
capability. 

MUST be a UTC dateTime value, serialized as a 
long, using the Avro logical type timestamp-micros 
(microseconds from the Unix Epoch, 1 January 
1970 00:00:00.000000 UTC). 

long 1 1 

channelIds The UIDs of the channels for which change 
annotations are being requested.  

long 1 * 

  

23.33.16 record: PassIndexedDepth 

Record that identifies the pass and its depth (which is used to disambiguate where the same depth occurs 
more than once in a logging run) and direction.  

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.ChannelData", 
     "name": "PassIndexedDepth", 
     "fields": 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 459 

     [ 
         { "name": "pass", "type": "long" }, 
         { "name": "direction", "type": 
"Energistics.Etp.v12.Datatypes.ChannelData.PassDirection" }, 
         { "name": "depth", "type": "double" } 
     ] 
} 

  

Field Name Description Data Type Min Max 

pass A unique identifier for a logging pass. long 1 1 

direction The direction that the tool is moving in a wireline 
operation as defined in PassDirection. 

PassDirection 1 1 

depth The depth for this pass. double 1 1 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 460 

23.34 Object 

This section contains datatypes for working with data objects. These datatypes are used by Discovery 
(Protocol 3), Store (Protocol 4), Store Notification (Protocol 5), GrowingObject (Protocol 6), 
GrowingObjectNotification (Protocol 7), StoreQuery (Protocol 14), and GrowingObjectQuery (Protocol 16). 

 
Figure 37: Object: datatype schemas 

class Object - Common Types

«enumeration»
ActiveStatusKind

 Active
 Inactive

notes
Enumeration of possible channel or growing data object statuses.
Statuses are mapped from domain data objects, such as wellbores,
channels, and growing data objects.

«record»
DataObject

+ blobId: Uuid [0..1]
+ data: bytes  [0..1] = EmptyString
+ format: s tring [0..1] = xml
+ resource: Resource

notes
Record that must carry a single data object. This record encapsulates a
Resource record, which contains most of the metadata, and carries the
object data as a byte array. To specify the format of the data (e.g.,
XML or JSON) use the format field. If the data object is too large
(binary large object--BLOB) for the WebSocket message size, use the
blobId field to identify the BLOB and Chunk messages to send actual
data.

«record»
ObjectChange

+ changeKind: ObjectChangeKind
+ changeTime: long
+ dataObject: DataObject

notes
A record describing a single data object change event.

«enumeration»
ObjectChangeKind

 insert = 0
 update = 1
 authorized = 2
 joined = 3
 unjoined = 4
 joinedSubscription = 5
 unjoinedSubscription = 6

notes
Enumeration of the kinds of change that can be supplied in a
notification record. Although the Store protocol uses upsert semantics
for PutObject, a notification record will specify whether an object was
created or replaced so that a customer can distinguish the actual type
of change that occurred in the store. If a server does not know if a
change type is an "insert" or an "update" use "update".

«record»
IndexInterval

+ depthDatum: s tring [0..1]
+ endIndex: IndexValue
+ s tartIndex: IndexValue
+ uom: s tring

notes
A record describing a pair of indexes that comprise an interval,
normally a time or depth interval. The values share a UOM and a
depth datum (if applicable), which are also included in this record.
This structure is used by channel data objects and growing data
objects.
The meanings of startIndex and endIndex are found in the object that
uses this type, because it may depend on factors like the index
direction, whether depths are negative or positive, etc.

«record»
Resource

+ activeStatus : ActiveStatusKind
+ a l ternateUris : s tring [0..1] (array) = EmptyArray
+ customData: DataValue [0..n] (map) = EmptyMap
+ lastChanged: long
+ name: s tring
+ sourceCount: int [0..1] = nul l
+ s toreCreated: long
+ s toreLastWrite: long
+ targetCount: int [0..1] = nul l
+ uri : s tring

notes
Record for resource descriptions on a graph. The record is actually a
meta-object, not the resource itself, which in ETP are data objects.
This Resource structure is used by:
- Discovery (Protocol 3) and DiscoveryQuery (Protocol 13) to provide
information about the contents of a store.
- Store (Protocol 4), StoreNotification (Protocol 5) and StoreQuery
(Protocol 14), where resource is encapsulated in dataObject in
response messages only.
The use of the "lighter-weight" resources in ETP reduces traffic on the
wire for initial inquiries such as Discovery, which allows customer
applications to determine when to do the "heavy lifting" of getting the
full data object and/or all of its associated data.

«record»
SubscriptionInfo

+ context: ContextInfo
+ format: s tring [0..1] = xml
+ includeObjectData: boolean
+ requestUuid: Uuid
+ scope: ContextScopeKind

notes
Record for the information that a customer must provide when
setting up a notification subscription, i.e., a request to be notified of
any updates to objects within the context of a given URI.

«record»
PartsMetadataInfo

+ customData: DataValue [0..n] (map) = EmptyMap
+ index: IndexMetadataRecord
+ name: s tring
+ uri : s tring

notes
Record to carry metadata about an ObjectPart, which helps to
interpret and understand the data in the ObjectPart of a growing
data object.

«record»
ContextInfo

+ dataObjectTypes : s tring [0..n] (array) = EmptyArray
+ depth: int
+ includeSecondarySources : boolean = fa lse
+ includeSecondaryTargets : boolean = fa lse
+ navigableEdges : RelationshipKind
+ uri : s tring

notes
Record that is a collection of fields used to identify the part (or area) of the
data model that is of interest for a given request. Used in Discovery
(Protocol 3), StoreNotification (Protocol 5) and StoreQuery (Protocol 14)
and other protocols.
EXAMPLE: A customer may be interested in any and all new data objects
and changes to existing data objects that happen in a particular well. The
customer request must specify the well (by its Energistics URI) and other
relevant information using the other fields in this ContextInfo record.
This ContextInfo is based on the notion of Energistics data models as
graphs. For more information, see Section 8.1.1.

«enumeration»
ContextScopeKind

 sel f = 0
 sources  = 1
 targets  = 2
 sourcesOrSel f = 3
 targetsOrSel f = 4

notes
Energistics data models can be considered directed graphs. (For more
information on this concept, see Section 8.1.1).
For certain ETP operations (such as Discovery (Protocol 3) and
notifications (StoreNotification (Protocol 5) and
GrowingObjectNotification (Protocol 7) and others) you must specify a
"context" (ContextInfo), which simplistically is where in the data model
(at what node/data object) you want to start the operation and what
direction you want to navigate.
ContextScopeKind lets you specify the "direction" in the graph that you
want the operation to navigate.
NOTE: If contextScopeKind = "self" then depth in ContextInfo is ignored.

«record»
ObjectPart

+ data: bytes
+ uid: s tring

notes
Record that must carry a single object part. This structure includes the
part identifier (UID) and (optionally) the part data as a byte array.
NOTE: The format of the data (e.g., XML or JSON) for the part is
specified in the format field of the message this record is included in.

«record»
SupportedType

+ dataObjectType: s tring
+ objectCount: int [0..1]
+ relationshipKind: RelationshipKind

notes
Record for data fields that must be provided for a type of data object. It
MUST be populated. Client and server use this data to negotiate the
objects that will be used during the session.

«record»
Dataspace

+ customData: DataValue [0..n] (map) = EmptyMap
+ path: s tring [0..1] = EmptyString
+ s toreCreated: long
+ s toreLastWrite: long
+ uri : s tring

notes
Record containing data fields for dataspaces.

«record»
PutResponse

+ createdContainedObjectUris : s tring [0..*] (array) = EmptyArray
+ deletedContainedObjectUris : s tring [0..*] (array) = EmptyArray
+ joinedContainedObjectUris : s tring [0..*] (array) = EmptyArray
+ unjoinedContainedObjectUris : s tring [0..*] (array) = EmptyArray

notes
Record used in the PutDataObjectsResponse message (Store (Protocol
4)) when putting contained data objects.

«record»
Edge

+ customData: DataValue [0..*] (map) = EmptyMap
+ relationshipKind: RelationshipKind
+ sourceUri : s tring
+ targetUri : s tring

notes
Record that contains the information to define an edge between 2
nodes in a graph data model.

«record»
DeletedResource

+ customData: DataValue [0..n] (map) = EmptyMap
+ deletedTime: long
+ uri : s tring

notes
Record for data fields retained for deleted data objects (tombstones).
NOTE: The fields on DeletedResource are a subset of the fields on the
Resource record and include the fields most likely to be retained for a
deleted object plus customData (which the store may use to send any
custom or additional information).



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 461 

23.34.1 ActiveStatusKind 

Enumeration of possible channel or growing data object statuses. Statuses are mapped from domain data 
objects, such as wellbores, channels, and growing data objects. 

Active Status Description Data Type 

Active The data object is currently producing data points. Same as 
ObjectGrowing = true in WITSML 1.x 

  

Inactive The data object is not currently producing data points. Same as 
ObjectGrowing = False in WITSML 1.x 

  

  

Avro Source 

{ 
     "type": "enum", 
     "namespace": "Energistics.Etp.v12.Datatypes.Object", 
     "name": "ActiveStatusKind", 
     "symbols": 
     [ 
         "Active", 
         "Inactive" 
     ] 
} 

  

23.34.2 RelationshipKind 

Energistics data models can be considered directed graphs. (For more information on this concept, see 
Section 8.1.1).  

For discovery and notification operations, a customer can specify the kinds of relationship it wants to be 
included.  

Relationship Description Data Type 

Primary The nature of a Primary relationship has to do with organizing or 
grouping data objects, for example organizing Channels into 
ChannelSets or organizing ChannelSets into Logs.  

Characteristics of a Primary relationship: 

 One end of the relationship is almost always mandatory; that 
is, one object cannot exist (as a data object in the system) 
without the other. In the above example: A ChannelSet 
cannot exist without at least 1 Channel. 

 In Energistics data models, a ByValue relationship is 
ALWAYS organizational. NOTE: A ByValue relationship is 
one where one data object "contains" one or more other data 
objects, indicated with the ByValue construct in XML, such as 
ChannelSets containing Channels. 

  

Secondary Secondary relationships provide additional contextual information 
about a data object, to improve understanding. For example, the 
reference from a Channel to a Wellbore.  

Characteristics of a Secondary relationship:  

 Both ends of the relationship are usually optional. 

 It is always specified using the Energistics Data Object 
Reference (DOR) construct (never the ByValue construct). 
For more information about DORs, see Energistics Online. 

  

Both Refers to both Primary and Secondary relationships.   

  

Avro Source 

{ 
     "type": "enum", 

https://docs.energistics.org/#CTA/CTA_TOPICS/CTA-000-065-0-C-sv2100.html


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 462 

     "namespace": "Energistics.Etp.v12.Datatypes.Object", 
     "name": "RelationshipKind", 
     "symbols": 
     [ 
         "Primary", 
         "Secondary", 
         "Both" 
     ] 
} 

  

23.34.3 ContextScopeKind 

Energistics data models can be considered directed graphs. (For more information on this concept, see 
Section 8.1.1).  

For certain ETP operations (such as Discovery (Protocol 3) and notifications (StoreNotification (Protocol 
5) and GrowingObjectNotification (Protocol 7) and others) you must specify a "context" (ContextInfo), 
which simplistically is where in the data model (at what node/data object) you want to start the operation 
and what direction you want to navigate.  

ContextScopeKind lets you specify the "direction" in the graph that you want the operation to navigate. 

NOTE: If contextScopeKind = "self" then depth in ContextInfo is ignored.  

Context Scope Description Data Type 

self The data object as specified in the context URI.  

If contextScopeKind = "self", then depth in ContextInfo is ignored.  

int 

sources For a complete definition of sources, see Section 8.1.1.  int 

targets For a complete definition of targets, see Section 8.1.1. int 

sourcesOrSelf Those objects in the data model that are sources of self or self (the 
data object referred to by the URI in ContextInfo).  

For a complete definition of sources, see Section 8.1.1.  

int 

targetsOrSelf Those objects in the data model that are targets of self or self (the 
data object referred to by the URI in ContextInfo).  

For a complete definition of targets, see Section 8.1.1.  

int 

  

Avro Source 

{ 
     "type": "enum", 
     "namespace": "Energistics.Etp.v12.Datatypes.Object", 
     "name": "ContextScopeKind", 
     "symbols": 
     [ 
         "self", 
         "sources", 
         "targets", 
         "sourcesOrSelf", 
         "targetsOrSelf" 
     ] 
} 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 463 

23.34.4 ObjectChangeKind 

Enumeration of the kinds of change that can be supplied in a notification record. Although the Store 
protocol uses upsert semantics for PutObject, a notification record will specify whether an object was 
created or replaced so that a customer can distinguish the actual type of change that occurred in the 
store. If a server does not know if a change type is an "insert" or an "update" use "update". 

Object Change Description Data Type 

insert Object has been inserted (or added) to a store. int 

update The object has been updated in the store or the store cannot 
determine if the object has been inserted or updated. 

int 

authorized A user has been authorized (given permissions) to a data object.  int 

joined A data object now references another data object with a ByValue 
reference. The contained object is said to be "joined" to the 
container object. For more information, about containers and 
contained objects, see Section 9.1.3.  

int 

unjoined A contained data object has been "removed" from its container 
data object. The contained object is said to be "unjoined" from the 
container object. For more information, about containers and 
contained objects, see Section 9.1.3.  

int 

joinedSubscription A data object has been added to the scope and context of a 
StoreNotification (Protocol 5) subscription. 

int 

unjoinedSubscription A data object has been removed from the scope and context of a 
StoreNotification (Protocol 5) subscription. 

int 

  

Avro Source 

{ 
     "type": "enum", 
     "namespace": "Energistics.Etp.v12.Datatypes.Object", 
     "name": "ObjectChangeKind", 
     "symbols": 
     [ 
         "insert", 
         "update", 
         "authorized", 
         "joined", 
         "unjoined", 
         "joinedSubscription", 
         "unjoinedSubscription" 
     ] 
} 

  

23.34.5 record: DataObject 

Record that must carry a single data object. This record encapsulates a Resource record, which contains 
most of the metadata, and carries the object data as a byte array. To specify the format of the data (e.g., 
XML or JSON) use the format field. If the data object is too large (binary large object--BLOB) for the 
WebSocket message size, use the blobId field to identify the BLOB and Chunk messages to send actual 
data.  

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.Object", 
     "name": "DataObject", 
     "fields": 
     [ 
         { "name": "resource", "type": "Energistics.Etp.v12.Datatypes.Object.Resource" }, 
         { "name": "format", "type": "string", "default": "xml" }, 
         { "name": "blobId", "type": ["null", "Energistics.Etp.v12.Datatypes.Uuid"] }, 
         { "name": "data", "type": "bytes", "default": "" } 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 464 

     ] 
} 

  

Field Name Description Data Type Min Max 

resource Contains high-level metadata about the data 
object being transferred, in the form of a Resource 
record.  

Resource 1 1 

format Specifies the format (e.g., XML or JSON) of the 
data for the data object in this record or in 
correlated Chunk messages. 

When included in a request, this MUST be a 
format that was negotiated when establishing the 
session. 

When included in a response, this MUST match 
the format in the request. 

When included in a notification, this MUST match 
the format in the SubscriptionInfo record for the 
subscription. 

Currently, ETP MAY support "xml" and "json". 
Other formats may be supported in the future, and 
endpoints may agree to use custom formats. 

string 0 1 

blobId Used when a binary large object (BLOB) will be 
sent in several Chunk messages (NOT in the 
data field of this DataObject record). 

Must be of type Uuid (Section 23.6). 

1. The blobId MUST be a UUID, and it MUST be 
unique within an ETP session. 

2. When you populate the blobId field, the data field 
(on the DataObject record) MUST be empty. 

3. Populating the blobId field means that the actual 
data will be sent in the Chunk message (not in 
the DataObject record). 

For more information about how blob IDs are 
assigned and used, see Section 3.7.3.2.  

Uuid 0 1 

data A byte array containing the encoded object, as per 
the format field above. Note, for StoreNotification 
(Protocol 5) messages, if includeObjectData is 
false in the NotificationRequest record, this field 
has zero bytes.  

If the blobId field is populated, this field MUST be 
empty. 

bytes 0 1 

  

23.34.6 record: ObjectPart 

Record that must carry a single object part. This structure includes the part identifier (UID) and 
(optionally) the part data as a byte array.  

NOTE: The format of the data (e.g., XML or JSON) for the part is specified in the format field of the 
message this record is included in. 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.Object", 
     "name": "ObjectPart", 
     "fields": 
     [ 
         { "name": "uid", "type": "string" }, 
         { "name": "data", "type": "bytes" } 
     ] 
} 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 465 

  

Field Name Description Data Type Min Max 

uid The ID of the part contained in this record. The 
UID MUST be unique within the parent growing 
data object.  

string 1 1 

data The data being sent for one part.  bytes 1 1 

  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 466 

23.34.7 record: ObjectChange 

A record describing a single data object change event. 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.Object", 
     "name": "ObjectChange", 
     "fields": 
     [ 
         { "name": "changeKind", "type": 
"Energistics.Etp.v12.Datatypes.Object.ObjectChangeKind" }, 
         { "name": "changeTime", "type": "long" }, 
         { "name": "dataObject", "type": "Energistics.Etp.v12.Datatypes.Object.DataObject" } 
     ] 
} 

  

Field Name Description Data Type Min Max 

changeKind The kind of change that occurred, which must be 
one of the enumerations listed in 
ObjectChangeKind. 

ObjectChangeKind 1 1 

changeTime The time the data-change event occurred. This is 
not the time the event happened in the "real 
world"; it is the time that the change occurred in 
the store database (as indicated by the 
storeLastWrite field; for more information, see 
Resource ).  

It must be a UTC dateTime value, serialized as a 
long, using the Avro logical type timestamp-micros 
(microseconds from the Unix Epoch, 1 January 
1970 00:00:00.000000 UTC). 

long 1 1 

dataObject If the customer requested that object data be 
included in the subscription (the 
includeObjectData field was true on the 
SubscriptionInfo record of the 
SubscribeNotifications message that created the 
subscription) then this field contains the full object 
data, as specified in DataObject. Otherwise it only 
contains the resource, which is also specified in 
DataObject.  

DataObject 1 1 

  

23.34.8 record: IndexInterval 

A record describing a pair of indexes that comprise an interval, normally a time or depth interval. The 
values share a UOM and a depth datum (if applicable), which are also included in this record.  

This structure is used by channel data objects and growing data objects. 

The meanings of startIndex and endIndex are found in the object that uses this type, because it may 
depend on factors like the index direction, whether depths are negative or positive, etc. 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.Object", 
     "name": "IndexInterval", 
     "fields": 
     [ 
         { "name": "startIndex", "type": "Energistics.Etp.v12.Datatypes.IndexValue" }, 
         { "name": "endIndex", "type": "Energistics.Etp.v12.Datatypes.IndexValue" }, 
         { "name": "uom", "type": "string" }, 
         { "name": "depthDatum", "type": "string", "default": "" } 
     ] 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 467 

} 

  

Field Name Description Data Type Min Max 

startIndex The index that defines the beginning of the 
interval. Must be of data type IndexValue. 

Use of a null implies infinity.  

IndexValue 1 1 

endIndex The index that defines the end of the interval. 
Must be of data type IndexValue. 

Use of a null implies infinity. 

IndexValue 1 1 

uom The unit of measure for the indexes in this 
interval.  

string 1 1 

depthDatum If the indexes are depths, a value must be 
provided.  

For a time or other non-depth index, the datum is 
implied and is described elsewhere in the 
documentation. 

string 0 1 

  

23.34.9 record: PutResponse 

Record used in the PutDataObjectsResponse message (Store (Protocol 4)) when putting contained data 
objects. 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.Object", 
     "name": "PutResponse", 
     "fields": 
     [ 
         { 
             "name": "createdContainedObjectUris", 
             "type": { "type": "array", "items": "string" }, "default": [] 
         }, 
         { 
             "name": "deletedContainedObjectUris", 
             "type": { "type": "array", "items": "string" }, "default": [] 
         }, 
         { 
             "name": "joinedContainedObjectUris", 
             "type": { "type": "array", "items": "string" }, "default": [] 
         }, 
         { 
             "name": "unjoinedContainedObjectUris", 
             "type": { "type": "array", "items": "string" }, "default": [] 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

createdContainedObjectUris An array of the URIs of the contained data objects 
that were created as a result of the put operation. 

The URIs MUST be canonical Energistics data 
object URIs; for more information, see Appendix: 
Energistics Identifiers.  

string 0 * 

deletedContainedObjectUris An array of the URIs of the contained data objects 
that were deleted (pruned) as a result of the put 
operation.  

The URIs MUST be canonical Energistics data 
object URIs; for more information, see Appendix: 
Energistics Identifiers. 

string 0 * 

joinedContainedObjectUris An array of the URIs of the existing contained 
data objects that were joined ("linked") to a 

string 0 * 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 468 

Field Name Description Data Type Min Max 

container data object as a result of the put 
operation. 

The URIs MUST be canonical Energistics data 
object URIs; for more information, see Appendix: 
Energistics Identifiers. 

unjoinedContainedObjectUris An array the URIs of the contained data objects 
that were unjoined ("unlinked") from a container 
data object as a result of the put operation. 

The URIs MUST be canonical Energistics data 
object URIs; for more information, see Appendix: 
Energistics Identifiers. 

string 0 * 

  

23.34.10 record: Dataspace 

Record containing data fields for dataspaces.  

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.Object", 
     "name": "Dataspace", 
     "fields": 
     [ 
         { "name": "uri", "type": "string" }, 
         { "name": "path", "type": "string", "default": "" }, 
         { "name": "storeLastWrite", "type": "long" }, 
         { "name": "storeCreated", "type": "long" }, 
         { 
             "name": "customData", 
             "type": { "type": "map", "values": "Energistics.Etp.v12.Datatypes.DataValue" }, 
"default": {} 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

uri The URI for a dataspace. It MUST be a canonical 
Energistics URI. For more information, see 
Section 25.3.6.  

The URI MUST be a canonical Energistics 
dataspace URI; for more information, see 
Appendix: Energistics Identifiers. 

string 1 1 

path The unique location associated with the 
dataspace, which is used to construct the 
dataspace’s URI. EXAMPLE: /folder-
name/project-name 

string 0 1 

storeLastWrite The last time the dataspace was written in a 
particular store. This is an ETP-only field. (See 
also storeCreated).  

 Its main purpose is for use in workflows for 
eventual consistency between 2 stores. 

 It is carried in ETP only, thereby separating 
transport properties from data object 
properties. 

 When a dataspace is first created in a store, 
the store MUST set storeLastWrite to the 
same value as storeCreated. 

 RECOMMENDATION: The storeLastWrite 
value be maintained indefinitely or as long as 
possible. 

long 1 1 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 469 

Field Name Description Data Type Min Max 

The value must be a UTC dateTime value, 
serialized as a long, using the Avro logical type 
timestamp-micros (microseconds from the Unix 
Epoch, 1 January 1970 00:00:00.000000 UTC). 

storeCreated The time that the dataspace was first created in a 
particular store. This is an ETP-only field. (See 
also storeLastWrite).  

 Its main purpose is for use in workflows for 
eventual consistency between 2 stores. 

 It is carried in ETP only, thereby separating 
transport properties from data object 
properties. 

 When a dataspace is first created in a store, 
the store MUST set storeLastWrite to the 
same value as storeCreated. 

 RECOMMENDATION: The storeLastWrite 
value be maintained indefinitely or as long as 
possible. 

The value must be a UTC dateTime value, 
serialized as a long, using the Avro logical type 
timestamp-micros (microseconds from the Unix 
Epoch, 1 January 1970 00:00:00.000000 UTC). 

long 1 1 

customData Allows an endpoint to send custom data, which is 
a data type defined by an organization other than 
Energistics (i.e., it's not defined by ETP or any of 
the Energistics domain data models). This custom 
data is also informally referred to as "proprietary 
data or content". 

It contains a key-value pair of custom key names 
and associated values. Observe these rules for 
specifying custom data: 

1. The keys MAY BE both well-known (and 
thus, reserved) names as well as application- 
and vendor-specific names 
RECOMMENDATION: To specify the 
authority for a key use this convention 
"authority:key".  

2. Keys are case sensitive. 

3. The value MUST be one of the types 
specified in DataValue. 

DataValue 0 n 

  

23.34.11 record: Resource 

Record for resource descriptions on a graph. The structure is actually a meta-object, not the resource 
itself, which in ETP are data objects. This Resource record is used by: 

 Discovery (Protocol 3) and DiscoveryQuery (Protocol 13) to provide information about the contents of 
a store. 

 Store (Protocol 4), StoreNotification (Protocol 5) and StoreQuery (Protocol 14), where resource is 
encapsulated in dataObject in response messages only. 

The use of the "lighter-weight" resources in ETP reduces traffic on the wire for initial inquiries such as 
Discovery, which allows customer applications to determine when to do the "heavy lifting" of getting the 
full data object and/or all of its associated data. 

Avro Schema 

{ 
     "type": "record", 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 470 

     "namespace": "Energistics.Etp.v12.Datatypes.Object", 
     "name": "Resource", 
     "fields": 
     [ 
         { "name": "uri", "type": "string" }, 
         { 
             "name": "alternateUris", 
             "type": { "type": "array", "items": "string" }, "default": [] 
         }, 
         { "name": "name", "type": "string" }, 
         { "name": "sourceCount", "type": ["null", "int"], "default": null }, 
         { "name": "targetCount", "type": ["null", "int"], "default": null }, 
         { "name": "lastChanged", "type": "long" }, 
         { "name": "storeLastWrite", "type": "long" }, 
         { "name": "storeCreated", "type": "long" }, 
         { "name": "activeStatus", "type": 
"Energistics.Etp.v12.Datatypes.Object.ActiveStatusKind" }, 
         { 
             "name": "customData", 
             "type": { "type": "map", "values": "Energistics.Etp.v12.Datatypes.DataValue" }, 
"default": {} 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

uri The Energistics URI for an Energistics data object. 

The URI MUST be a canonical Energistics data object 
URI; for more information, see Appendix: Energistics 
Identifiers. 

string 1 1 

alternateUris In addition to the canonical URI, a store MAY support 
alternate URI formats.  

Use this field to send one or more alternate URI 
format(s).  

Usage Rules for STORES:  

1. To use this field, the store MUST set the endpoint 
capability (see EndpointCapabilityKind) 
SupportsAlternateRequestUris to true. 

2. If SupportsAlternateRequestUris is set to false, 
and a store receives an alternate URI format, it 
MUST send error EINVALID_URI (9). 

3. Alternate URIs MUST be valid Energistics URIs, 
but they need not be canonical URIs. (For more 
information, see Appendix: Energistics 
Identifiers. 

4. If a store supports alternate URIs, it MUST return 
its allowed alternate URIs in Discovery (Protocol 
3) in the GetResourcesResponse message 
(which uses this Resource data structure). 

5. If a store supports alternate URIs, it is expected 
to support them in ALL protocols that it supports 
(see exceptions below). 

6. There is no expectation that alternate URIs can 
be used in a different store.  

Usage Rules for CUSTOMERS 

1. A customer should not populate this alternateUris 
field in the PutDataObjects message in Store 
(Protocol 4) or the 
PutGrowingDataObjectsHeader message in 
GrowingObject (Protocol 6) (both of those 
messages use Resource); it should be set to an 
empty array. If present, the store MUST ignore it. 

2. A customer SHOULD only send/use alternate 
URIs (e.g., in other protocols/messages) that it 
received from the store (i.e., an alternate URI that 
the store returned in Discovery (Protocol 3) in the 
GetResourcesResponse message). 

string 0 1 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 471 

Field Name Description Data Type Min Max 

name A human-readable name for the data object. There is 
no expectation of uniqueness or any particular 
semantic for this value. The name comes from the Title 
field in the Citation of the data object; for more 
information on Citation, see 
http://docs.energistics.org/#COM/COM_TOPICS/COM-
000-005-0-R-sv2100.html  

string 1 1 

sourceCount Indicates that the DataObject resource node has links 
whose source is the node. This value must be one of 
the following: 

 null: there is no count or count is not relevant in 
the given context. 

 0 (no source links exist). 

 a positive integer (the count of source links). 

NOTE: This field is NOT used in the following 
protocols and must be set to null in all operations:  

 Store (Protocol 4) 

 StoreNotification (Protocol 5) 

 StoreQuery (Protocol 14) 

int 0 1 

targetCount Indicates that the DataObject resource node has links 
whose target is the node. This value must be one of 
the following: 

 null: there is no count or count is not relevant in 
the given context. 

 0 (no target links exist). 

 a positive integer (the count of target links). 

NOTE: This field is NOT used in the following 
protocols and must be set to null in all operations:  

 Store (Protocol 4) 

 StoreNotification (Protocol 5) 

 StoreQuery (Protocol 14) 

int 0 1 

storeLastWrite The last time the data object was written in a particular 
store, which IS NOT the same as the lastChanged field 
on a data object's Citation element. (See also 
storeCreated, which is also only on the Resource).  

This storeLastWrite field may be the last time the data 
object was saved to a database or the last time a file 
was written (depending on the store).  

 Its main purpose is for use in workflows for 
eventual consistency between 2 stores. 

 It is carried on the Resource only (not the data 
object), thereby separating transport properties 
from data object properties. 

 For ANY CHANGES to a data object or its data 
(E.g., parts of a growing data object or channel 
data in a channel data object) a store MUST 
update storeLastWrite.  

 When a data object is first created in a store, the 
store MUST set storeLastWrite to the same value 
as storeCreated. 

 RECOMMENDATION: The storeLastWrite value 
be maintained indefinitely or as long as possible. 

The value must be a UTC dateTime value, serialized 
as a long, using the Avro logical type timestamp-
micros (microseconds from the Unix Epoch, 1 January 
1970 00:00:00.000000 UTC). 

long 1 1 

https://docs.energistics.org/#COM/COM_TOPICS/COM-000-005-0-R-sv2100.html
https://docs.energistics.org/#COM/COM_TOPICS/COM-000-005-0-R-sv2100.html


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 472 

Field Name Description Data Type Min Max 

lastChanged The date and time (time stamp) of the last change to 
the data object that this resource represents. This field 
must be populated from data in the Citation of the 
relevant data object as follows:  

 If lastUpdate field is populated, use that value. 

 If lastUpdate is NOT populated, use the value in 
the Creation field. 

For more information about Citation, see 
http://docs.energistics.org/#COM/COM_TOPICS/COM-
000-005-0-R-sv2100.html  

The value must be a UTC dateTime value, serialized 
as a long, using the Avro logical type timestamp-
micros (microseconds from the Unix Epoch, 1 January 
1970 00:00:00.000000 UTC). 

long 1 1 

storeCreated The time that the data object (that the Resource 
represents) was created in the store, which IS NOT the 
same as the creation field in the Citation in Energistics 
common. (See also the storeLastWrite field, also on 
the Resource.) 

 Its main purpose is for use in workflows for 
eventual consistency between 2 stores. 
Specifically, this field helps with an important 
edge case: on reconnect, an endpoint can more 
easily determine if while disconnected a data 
object was modified OR deleted and recreated. 
(Each of these scenarios would require different 
actions.)  

 Like storeLastWrite, this storeCreated field is also 
only stored on the Resource. 

The value must be a UTC dateTime value, serialized 
as a long, using the Avro logical type timestamp-
micros (microseconds from the Unix Epoch, 1 January 
1970 00:00:00.000000 UTC). 

long 1 1 

activeStatus The active status for channel data object or growing 
data object, which must be a value in ActiveStatusKind 
enumeration.  

This field is for WITSML channel data objects and 
growing data objects based on the value in the data 
object's GrowingStatus field, which may be: 

 active = A channel or growing data object is 
actively producing data points. 

 inactive = A channel or growing object is offline or 
not currently producing data points. 

ActiveStatusKind 1 1 

customData Allows an endpoint to send custom data, which is a 
data type defined by an organization other than 
Energistics (i.e., it's not defined by ETP or any of the 
Energistics domain data models). This custom data is 
also informally referred to as "proprietary data or 
content". 

It contains a key-value pair of custom key names and 
associated values. Observe these rules for specifying 
custom data: 

1. The keys MAY BE both well-known (and thus, 
reserved) names as well as application- and 
vendor-specific names.  
RECOMMENDATION: To specify the authority 
for a key use this convention "authority:key". 

2. Keys are case sensitive. 

3. The value MUST be one of the types specified in 
DataValue. 

DataValue 0 n 

  

https://docs.energistics.org/#COM/COM_TOPICS/COM-000-005-0-R-sv2100.html
https://docs.energistics.org/#COM/COM_TOPICS/COM-000-005-0-R-sv2100.html


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 473 

23.34.12 record: DeletedResource 

Record for data fields retained for deleted data objects (tombstones). NOTE: The fields on 
DeletedResource are a subset of the fields on the Resource record and include the fields most likely to 
be retained for a deleted object plus customData (which the store may use to send any custom or 
additional information).  

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.Object", 
     "name": "DeletedResource", 
     "fields": 
     [ 
         { "name": "uri", "type": "string" }, 
         { "name": "deletedTime", "type": "long" }, 
         { 
             "name": "customData", 
             "type": { "type": "map", "values": "Energistics.Etp.v12.Datatypes.DataValue" }, 
"default": {} 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

uri The URI of a deleted Energistics data object. 

The URI MUST be a canonical Energistics data 
object URI; for more information, see Appendix: 
Energistics Identifiers. 

string 1 1 

deletedTime The time the object was deleted from the store.  

Must be a UTC dateTime value, serialized as a 
long, using the Avro logical type timestamp-micros 
(microseconds from the Unix Epoch, 1 January 
1970 00:00:00.000000 UTC). 

long 1 1 

customData Allows an endpoint to send custom data, which is 
a data type defined by an organization other than 
Energistics (i.e., it's not defined by ETP or any of 
the Energistics domain data models). This custom 
data is also informally referred to as "proprietary 
data or content". 

It contains a key-value pair of custom key names 
and associated values. Observe these rules for 
specifying custom data: 

1. The keys MAY BE both well-known (and 
thus, reserved) names as well as application- 
and vendor-specific names. 
RECOMMENDATION: To specify the 
authority for a key use this convention 
"authority:key". 

2. Keys are case sensitive. 

3. The value MUST be one of the types 
specified in DataValue. 

DataValue 0 n 

  

23.34.13 record: Edge 

Record that contains the information to define an edge between 2 nodes in a graph data model.  

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.Object", 
     "name": "Edge", 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 474 

     "fields": 
     [ 
         { "name": "sourceUri", "type": "string" }, 
         { "name": "targetUri", "type": "string" }, 
         { "name": "relationshipKind", "type": 
"Energistics.Etp.v12.Datatypes.Object.RelationshipKind" }, 
         { 
             "name": "customData", 
             "type": { "type": "map", "values": "Energistics.Etp.v12.Datatypes.DataValue" }, 
"default": {} 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

sourceUri The URI for the source Energistics data object. 

The URI MUST be a canonical Energistics data 
object URI; for more information, see Appendix: 
Energistics Identifiers.  

For definitions of sources and targets, see Section 
8.1.1.1.1. 

string 1 1 

targetUri The URI for the target Energistics data object. 

The URI MUST be a canonical Energistics data 
object URI; for more information, see Appendix: 
Energistics Identifiers.  

For definitions of sources and targets, see Section 
8.1.1.1.1. 

string 1 1 

relationshipKind The kind of relationship that this edge represents 
as specified in RelationshipKind, which may be 
Contextual or Organizational.  

NOTE: For edges, RelationshipKind CANNOT be 
Both.  

RelationshipKind 1 1 

customData Allows an endpoint to send custom data, which is 
a data type defined by an organization other than 
Energistics (i.e., it's not defined by ETP or any of 
the Energistics domain data models). This custom 
data is also informally referred to as "proprietary 
data or content". 

It contains a key-value pair of custom key names 
and associated values. Observe these rules for 
specifying custom data: 

1. The keys MAY BE both well-known (and 
thus, reserved) names as well as application- 
and vendor-specific names.  
RECOMMENDATION: To specify the 
authority for a key use this convention 
"authority:key". 

2. Keys are case sensitive. 

3. The value MUST be one of the types 
specified in DataValue. 

DataValue 0 * 

  

23.34.14 record: SupportedType 

Record for data fields that must be provided for a type of data object. It MUST be populated. Client and 
server use this data to negotiate the objects that will be used during the session.  

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.Object", 
     "name": "SupportedType", 
     "fields": 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 475 

     [ 
         { "name": "dataObjectType", "type": "string" }, 
         { "name": "objectCount", "type": ["null", "int"] }, 
         { "name": "relationshipKind", "type": 
"Energistics.Etp.v12.Datatypes.Object.RelationshipKind" } 
     ] 
} 

  

Field Name Description Data Type Min Max 

objectCount The value is the number of instances of the type: 

 -1 (instance count is unknown) 

 0 (no instances) 

 a positive integer (the count of instances)  

int 0 1 

dataObjectType This must be a value of dataObjectType as 
described in Appendix: Energistics Identifiers. 
It is the semantic equivalent of a 
qualifiedEntityType in OData. 

They ARE case sensitive.  

EXAMPLES: 

"witsml20.Well", 

"witsml20.Wellbore", 

"prodml21.WellTest", 

"resqml20.obj_TectonicBoundaryFeature" 

"eml21.DataAssuranceRecord" 

To indicate that all data objects within a data 
schema version are supported, you can use a star 
(*) as a wildcard, EXAMPLE: 

"witsml20.*", 

"prodml21.*", 

"resqml20.*", 

So "witsml20.*" means all data objects defined by 
WITSML v2.0 data schemas. 

string 1 1 

relationshipKind The kind of relationship which must be a value 
from the RelationshipKind enumeration.  

Relationship kinds can be used in Discovery 
(Protocol 3) when discovering data objects 
(resources) on a graph. For more information, see 
the descriptions in the enumeration and Section 
8.1.1.1.2.  

RelationshipKind 1 1 

  

23.34.15 record: ContextInfo 

Record that is a collection of fields used to identify the part (or area) of the data model that is of interest 
for a given request. Used in Discovery (Protocol 3), StoreNotification (Protocol 5) and StoreQuery 
(Protocol 14) and other protocols. 

EXAMPLE: A customer may be interested in any and all new data objects and changes to existing data 
objects that happen in a particular well. The customer request must specify the well (by its Energistics 
URI) and other relevant information using the other fields in this ContextInfo record. 

This ContextInfo record is based on the notion of Energistics data models as graphs. For more 
information, see Section 8.1.1.  

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.Object", 
     "name": "ContextInfo", 
     "fields": 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 476 

     [ 
         { "name": "uri", "type": "string" }, 
         { "name": "depth", "type": "int" }, 
         { 
             "name": "dataObjectTypes", 
             "type": { "type": "array", "items": "string" }, "default": [] 
         }, 
         { "name": "navigableEdges", "type": 
"Energistics.Etp.v12.Datatypes.Object.RelationshipKind" }, 
         { "name": "includeSecondaryTargets", "type": "boolean", "default": false }, 
         { "name": "includeSecondarySources", "type": "boolean", "default": false } 
     ] 
} 

  

Field Name Description Data Type Min Max 

uri The URI where you want to begin discovering, 
subscribing to notifications, or querying a store 
(the operation depends on which ETP sub-
protocol message is using this ContextInfo 
record).  

The URI MAY be either: 

 A root URI, such as eml:/// or another 
dataspace URI (NOTE: When discovering a 
dataspace URI, the scope and depth fields 
MUST be ignored. 

 An Energistics URI for a data object 

 For DiscoveryQuery (Protocol 13), it must be 
a data object query URI (which includes the 
OData-style string used in ETP). For more 
information, see Chapter 14. 

Depending on the message that this record is 
used in, it may either be required to be a 
canonical Energistics URI or allowed to be an 
alternate URI. For the rules that apply to that 
message, see the documentation for the message 
where this record is used. For more information 
on Energistics URIs, see Appendix: Energistics 
Identifiers. 

string 1 1 

depth The "depth" or how many "levels" (or "jumps") in 
the data model (graph) from the starting point 
(specified by the URI) that you want to discover, 
search, or receive notifications for.  

NOTES:  

1. Depth MUST always be greater than zero. 

2. Individual domain data models specify 
appropriate values for depth. For details, see 
the relevant ML for ETP implementation 
specification (which is a companion to this 
main ETP Specification).  

RECOMMENDATION: For maximum efficiency in 
discovery and notification operations, understand 
how the graph is intended to work and specify an 
appropriate value here (i.e., for Discovery 
(Protocol 3) DO NOT simply set depth =1 and 
iterate). For more information, see Section 8.1.1. 

  If scope = "self", then depth is ignored.  

int 1 1 

dataObjectTypes Optionally, specify the types of data objects that 
you want. The default is an empty array, which 
means ALL data types negotiated for the current 
ETP session.  

If specific values are specified each must be a 
value of dataObjectType as described in 
Appendix: Energistics Identifiers and serialized as 

string 0 n 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 477 

Field Name Description Data Type Min Max 

JSON. It is the semantic equivalent of a 
qualifiedEntityType in OData. 

They ARE case sensitive.  

EXAMPLES: 

"witsml20.Well", 

"witsml20.Wellbore", 

"prodml21.WellTest", 

"resqml20.obj_TectonicBoundaryFeature" 

"eml21.DataAssuranceRecord" 

To indicate that all data objects within a data 
schema version are supported, you can use a star 
(*) as a wildcard, EXAMPLE: 

"witsml20.*", 

"prodml21.*", 

"resqml20.*", 

So "witsml20.*" means all data objects defined by 
WITSML v2.0 data schemas. 

navigableEdges Edges in a graph indicate relationships between 
objects. This field indicates the type of edge 
(relationship) to be navigated during the discovery 
operation, as specified in RelationshipKind. 
Choices are Primary or Secondary (NOTE: This 
field SHOULD NOT be set to Both.)  

Only edges of the specified type are navigated 
during discovery. Use of this field helps to exclude 
unwanted objects being returned in Discovery. 

RelationshipKind 1 1 

includeSecondaryTargets Boolean. If true, the initial candidate set of nodes 
is expanded with, targets (depth=1) of secondary 
relationships of nodes in the initial candidate set 
of nodes. The edges for these secondary 
relationships are also included.  

NOTE: This flag and includeSecondarySources 
MUST be applied "simultaneously" (not in 
sequence) so the candidate set is expanded once, 
not twice. 

Default=false 

boolean 1 1 

includeSecondarySources Boolean. If true, the initial candidate set of nodes 
is expanded with sources (depth=1) of secondary 
relationships of nodes in the initial candidate set 
of nodes. The edges for these secondary 
relationships are also included.  

NOTE: This flag and includeSecondaryTargets 
MUST be applied "simultaneously" (not in 
sequence) so the candidate set is expanded once, 
not twice. 

Default=false 

boolean 1 1 

  

23.34.16 record: SubscriptionInfo 

Record for the information that a customer must provide when setting up a notification subscription, i.e., a 
request to be notified of any updates to objects within the context of a given URI.  

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.Object", 
     "name": "SubscriptionInfo", 
     "fields": 
     [ 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 478 

         { "name": "context", "type": "Energistics.Etp.v12.Datatypes.Object.ContextInfo" }, 
         { "name": "scope", "type": "Energistics.Etp.v12.Datatypes.Object.ContextScopeKind" }, 
         { "name": "requestUuid", "type": "Energistics.Etp.v12.Datatypes.Uuid" }, 
         { "name": "includeObjectData", "type": "boolean" }, 
         { "name": "format", "type": "string", "default": "xml" } 
     ] 
} 

  

Field Name Description Data Type Min Max 

context Specifies the extent in the data model of a 
subscription to notifications of change, as defined 
in the ContextInfo record, which includes the URI 
of the node/data object to begin an operation, how 
many "levels" of relationships in the model should 
be navigated or included, and what specific types 
of data objects are of interest.  

ContextInfo 1 1 

scope The scope of the subscription as enumerated in 
ContextScopeKind. That is, are you interested in 
only the data object as specified in the context 
URI (self)? Those objects that point to "self" 
(which are called "sources")? Or objects that "self" 
points to (which are called "targets")? Or a 
specified combination of these (i.e., 
"sourcesOrSelf" or "targetOrSelf"? 

For more information including definitions of 
targets and sources, see Section 8.1.1. 

ContextScopeKind 1 1 

requestUuid A UUID for this request (e.g., in StoreNotification 
(Protocol 5), SubscribeNotifications message). 
This MUST be a newly-generated UUID from the 
customer sending the request message. This ID 
can be used to cancel the notification later. This 
MUST be of datatype Uuid (Section 23.6). 

Uuid 1 1 

includeObjectData  If true, then notification MUST contain the 
complete data object, corresponding to the 
put operation in the ObjectChange 
message. NOTE: Does not apply to the 
DeleteNotification message. 

 If false, only a Resource record for the data 
object is sent. If the customer requires the 
data object, it MUST use Store (Protocol 4) 
to get the data object. 

Growing parts of data objects, such as trajectory 
stations or data arrays, MUST NOT be sent as a 
result of this parameter being set to true. To work 
with parts of growing data objects, you MUST use 
GrowingObject (Protocol 6). To work with data 
arrays, you must use DataArray (Protocol 9).  

boolean 1 1 

format Specifies the format (e.g., XML or JSON) for data 
for the data objects or parts that may be sent as 
part of a notification (i.e., if the includeObjectData 
field is set to true). This MUST be a format that 
was negotiated when establishing the session. 

Currently, ETP MAY support "xml" and "json". 
Other formats may be supported in the future, and 
endpoints may agree to use custom formats. 

string 0 1 

  

23.34.17 record: PartsMetadataInfo 

Record to carry metadata about an ObjectPart, which helps to interpret and understand the data in the 
ObjectPart of a growing data object. 

Avro Schema 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 479 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.Object", 
     "name": "PartsMetadataInfo", 
     "fields": 
     [ 
         { "name": "uri", "type": "string" }, 
         { "name": "name", "type": "string" }, 
         { "name": "index", "type": 
"Energistics.Etp.v12.Datatypes.ChannelData.IndexMetadataRecord" }, 
         { 
             "name": "customData", 
             "type": { "type": "map", "values": "Energistics.Etp.v12.Datatypes.DataValue" }, 
"default": {} 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

uri The Energistics URI for an Energistics growing 
data object. 

The URI MUST be a canonical Energistics data 
object URI; for more information, see Appendix: 
Energistics Identifiers. 

string 1 1 

name A one-line description or name of that growing 
data object to which a part belongs, which is the 
Title field in the data object's Citation element. 
NOTE: For more information on the Citation and 
its elements, see Energistics Online.  

string 1 1 

index The metadata about the index for the parts as 
specified in the IndexMetadataRecord. 

IndexMetadataRecord 1 1 

customData Allows an endpoint to send custom data, which is 
a data type defined by an organization other than 
Energistics (i.e., it's not defined by ETP or any of 
the Energistics domain data models). This custom 
data is also informally referred to as "proprietary 
data or content". 

It contains a key-value pair of custom key names 
and associated values. Observe these rules for 
specifying custom data: 

1. The keys MAY BE both well-known (and 
thus, reserved) names as well as application- 
and vendor-specific names. 
RECOMMENDATION: To specify the 
authority for a key use this convention 
"authority:key".  

2. Keys are case sensitive. 

3. The value MUST be one of the types 
specified in DataValue. 

DataValue 0 n 

  

23.34.18 record: ChangeAnnotation 

Record that indicates the interval in a channel data object or growing data object that changed and the 
time that change occurred.  

NOTE: A store MUST aggregate overlapping change intervals/annotations and MAY aggregate change 
intervals/annotations for simplification and efficiency. For more information on requirements for this 
aggregating behavior, see Section 19.2.2. 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.Object", 

https://docs.energistics.org/#COM/COM_TOPICS/COM-000-005-0-R-sv2100.html


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 480 

     "name": "ChangeAnnotation", 
     "fields": 
     [ 
         { "name": "changeTime", "type": "long" }, 
         { "name": "interval", "type": "Energistics.Etp.v12.Datatypes.Object.IndexInterval" } 
     ] 
} 

  

Field Name Description Data Type Min Max 

changeTime The time of the change in the store, which MUST 
be a UTC dateTime value, serialized as a long, 
using the Avro logical type timestamp-micros 
(microseconds from the Unix Epoch, 1 January 
1970 00:00:00.000000 UTC). 

NOTE: Stores can aggregate change intervals 
and annotations, but must reflect the most recent 
change for an interval. For more information about 
this aggregation behavior, see Section 19.2.2. 

long 1 1 

interval The interval where the change occurred as 
specified in IndexInterval. 

IndexInterval 1 1 

  

23.34.19 record: ChangeResponseInfo 

Record that details the information that comprises the content of these messages:  

 GrowingObject (Protocol 6): GetChangeAnnotationsResponse 

 ChannelSubscribe (Protocol 21): GetChangeAnnotationsResponse 

It is a map of arrays of ChangeAnnotation records.  

To populate the map keys:  

 For GrowingObject (Protocol 6), the map keys must be the URI of the growing data object. 

 ChannelSubscribe (Protocol 21), the map keys must be the string representation of the channel ID 
(because map keys must be strings/cannot be integers). 

Avro Schema 

{ 
     "type": "record", 
     "namespace": "Energistics.Etp.v12.Datatypes.Object", 
     "name": "ChangeResponseInfo", 
     "fields": 
     [ 
         { "name": "responseTimestamp", "type": "long" }, 
         { 
             "name": "changes", 
             "type": { "type": "map", "values": { "type": "array", "items": 
"Energistics.Etp.v12.Datatypes.Object.ChangeAnnotation" } } 
         } 
     ] 
} 

  

Field Name Description Data Type Min Max 

responseTimestamp The time that the 
GetChangeAnnotationsResponse message 
was sent. When there are no ChangeAnnotation 
changes available for a particular channel or 
growing data object, this timestamp serves as a 
"high-water mark" for that channel or growing data 
object. That is, it is the timestamp at which it is 
known that the channel or growing data object has 
no known historical changes that were made 
within the ChangeRetentionPeriod.  

long 1 1 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 481 

Field Name Description Data Type Min Max 

MUST be a UTC dateTime value, serialized as a 
long, using the Avro logical type timestamp-micros 
(microseconds from the Unix Epoch, 1 January 
1970 00:00:00.000000 UTC). 

changes The interval(s) that were changed for each 
channel data object or growing data object, as 
specified in ChangeAnnotation. 

ChangeAnnotation 1 * 

  
 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 482 

24 ETP Error Codes  
When an error occurs, an endpoint sends a ProtocolException message, with an appropriate error code, 
as defined throughout this specification. The table in Section 24.3 lists the ETP-defined error codes. 

Each error code has a Code/number (column 1), Name (column 2) and Notes (column 3), which provide a 
description and possible usage comments. Note that the Name and Notes columns are informational only; 
they are used in the documentation to make references to error codes more human readable but have no 
meaning on the wire. Implementers may wish to use these Names as a #define or constant name in their 
code, but this is not part of the ETP Specification. Additionally, implementers may want to use the Name 
as part of the text description in the ProtocolException message. 

24.1 Error Code Numbering Scheme 

The following are the general rules for assigning error codes: 

1. Positive error codes are reserved for error codes defined by Energistics. The error codes currently 
defined by Energistics are in this chapter. New error codes may be defined in future versions of this 
specification or in ML implementation guides. 

2. Custom error codes MAY be defined but MUST be negative. Implementers should make consistent 
use of any custom error codes that they define, but nothing prevents multiple implementers from each 
assigning their own meaning to the same error code. Implementers should use care when interpreting 
the meaning of custom error codes that they receive from other implementations, especially when the 
custom error code number matches one that they have defined. Because of this, it is recommended 
to use the error codes defined by Energistics whenever possible. 

3. Beginning in ETP v1.2, error codes may be used in ANY ETP protocol as appropriate. Previous 
versions of ETP specified error codes for each protocol; only a subset of error codes were specified 
as "global" so those codes were defined in Core (Protocol 0). The error code numbering scheme 
reflects this previous assignment to specific protocols (e.g., error codes for Store (Protocol 4) are 
numbered 4003, 4004, etc.).  

For changes to the error codes since the previous ETP version, see Section 2.1.5.  

24.2 Domain Model-Defined Error Codes 

Each Energistics domain model (WITSML, RESQML and PRODML) may define additional error codes, 
required for that domain. Those error codes are published in the respective ML's ETP implementation 
specification (a companion document to this specification). However, periodically, those ML-assigned 
codes will be added to the ETP error code table below. Please refer to ML implementation specifications 
for any domain-specific error codes that may have been issued since this specification was published.  

24.3 Current ETP Error Codes 

Code Name Notes 

1 ENOROLE The server does not support the requested role. 

2 ENOSUPPORTEDPROTOCOLS The server does not support any of the requested protocols. 

3 EINVALID_MESSAGETYPE 

The message type ID is either: 1) not defined at all in the ETP 
Specification (e.g., no schema for it); or 2) not a correct message type 
ID for the receiving role (EXAMPLE: Per this specification, only the 
store role may SEND a GetDataObjectsResponse message; if the 
store RECEIVES a GetDataObjectsResponse message, it MUST 
send this error code.) 

4 EUNSUPPORTED_PROTOCOL 
The endpoint does not support the protocol identified in a message 
header. 

5 EINVALID_ARGUMENT 
Logically invalid argument. Use this error code in any situation where a 
logically invalid argument is encountered. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 483 

Code Name Notes 

6 EREQUEST_DENIED 

The receiving endpoint has denied the request. RECOMMENDATION: 
Endpoints should supply an error message explaining why the request 
was denied. (EXAMPLE: If a customer attempts to change immutable 
fields in a data object, the store should send EREQUEST_DENIED, 
and the message could be “Cannot change the unit of measure for a 
channel".) 

7 ENOTSUPPORTED The endpoint does not support the operation. 

8 EINVALID_STATE 

Indicates that the message is not allowed in the current state of the 
protocol. EXAMPLE: In Protocol 21, a customer sending a 
SubscribeChannels message for a channel that the customer is 
already subscribed to, or receiving a message that is not applicable for 
the current operation (as defined in this specification). 

9 EINVALID_URI 

The URI sent is either a malformed URI, is not a valid URI format for 
ETP, or is not appropriate for specific requirements of a field in a 
message. EXAMPLE: If a customer sends an alternate URI format to 
a store that does not accept/support alternate URIs, the store MUST 
send this error code.  

10 EAUTHORIZATION_EXPIRED 
Sent from server to client when the server is about to terminate the 
session because of an expired authorization. 

11 ENOT_FOUND 
Used when a resource, a data object, part or range is not found. May 
be used in any situation, as appropriate.  

12 ELIMIT_EXCEEDED 

Sent by either endpoint if a request, response, or notification exceeds 
allowed or stated limits specified by the other endpoint when a more 
specific error code has not been specified. EXAMPLES:  

 In Protocol 13 (DataArray) if the customer attempts to put an 
array into the store that exceeds the store’s MaxDataArraySize 
capability. 

 In Protocol 21 (ChannelSubscribe) if a customer exceeds a 
store’s value for MaxStreamingChannelsSessionCount capability. 

13 ECOMPRESSION_NOTSUPPORTED 

Sent by either endpoint when it receives a message whose 
MessageHeader has a protocolId field = 0 AND whose message body 
is compressed. (That is, messages defined and used in Core (Protocol 
0) MUST NEVER be compressed.)  

14 EINVALID_OBJECT 

Sent in any protocol when either role sends an invalid XML document. 
NOTE: ETP does not distinguish between malformed and well-formed 
but invalid for this purpose. The same error message is used in both 
cases. 

15 EMAX_TRANSACTIONS_EXCEEDED.  

The maximum number of transactions per ETP session has been 
exceeded. Currently, Transaction (Protocol 18) is the only ETP 
protocol that has the notion of a "transaction" and allows only 1 
transaction per session.  

16 EDATAOBJECTTYPE_NOTSUPPORTED 
The data object type is not supported by the endpoint or was not 
negotiated for use during the current ETP session.  

17 EMAXSIZE_EXCEEDED 
Sent from a store to a customer when the customer attempts a get or 
put operation that exceeds the store's maximum advertised values for 
MaxDataObjectSize, MaxPartSize, or MaxDataArraySize capabilities.  

18 EMULTIPART_CANCELLED 

Sent by either role to notify of canceled transmission of multipart 
response or request. EXAMPLE: When an endpoint's advertised value 
for the MaxConcurrentMultipart endpoint capability has been 
exceeded.   

19 EINVALID_MESSAGE 
Sent by either role when it is unable to de-serialize the header or body 
of a message. 

20 EINVALID_INDEXKIND 
Sent by either role when an index kind used in a message is invalid for 
the data. 

21  ENOSUPPORTEDFORMATS The server does not support any of the client's supported formats. 

22  EREQUESTUUID_REJECTED 
Sent by the store when it rejects a customer-assigned request UUID 
(requestUuid), most likely because the request UUID is not unique. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 484 

Code Name Notes 

23  EUPDATEGROWINGOBJECT_DENIED  

Sent by a store when a customer tries to update an existing growing 
data object (i.e., do a put operation) using Store (Protocol 4) or 
includes parts when updating a growing data object header using 
GrowingObject (Protocol 6).  

24 EBACKPRESSURE_LIMIT_EXCEEDED 

If the sender's queuing capacity is exhausted and it is imminently 
unable to send a message to the receiver, the sender MUST attempt 
to send this error and then attempt to send the CloseSession 
message. Sender MUST then close the connection, regardless of 
whether or not the ProtocolException and CloseSession messages 
were sent.  

25 EBACKPRESSURE_WARNING 
If sender starts to detect sending backpressure (e.g., queues of 
outgoing messages are starting to fill up), sender MAY send this 
warning. 

26 ETIMED_OUT 

May be sent by either role to cancel an operation when the response 
time for a relevant operation is exceeded, such as 
ResponseTimeoutPeriod or MultipartMessageTimeoutPeriod 
capabilities. 

27 EAUTHORIZATION_REQUIRED 

Sent from an endpoint during session negotiation (and ONLY during 
session negotiation) to indicate that the other endpoint requires 
authorization. 

28 EAUTHORIZATION_EXPIRING 

Optionally sent from an endpoint when the other endpoint's 
authorization will expire soon. The receiving endpoint should follow the 
necessary authorization workflow to renew its authorization. If it does 
not, the sending endpoint will eventually terminate the connection.  

The precise definition of "soon" and the required re-authorization 
workflow are intentionally out of the scope of the ETP Specification. 

29 ENOSUPPORTEDDATAOBJECTTYPES 
The server does not support any of the client's supported data object 
types.  

30 ERESPONSECOUNT_EXCEEDED 

Sent by a store endpoint to terminate a non-map response once the 
number of responses sent has reached the allowed or stated limits 
specified by the relevant capabilities. This lets customers know that 
the store has more data than it could return to the customer. 
EXAMPLES:  

 In Protocol 3 (Discovery) and all query protocols, sent by the 
store if it must stop sending responses to the customer because 
it has already sent MaxResponseCount responses to a customer 
request. 

 In Protocol 21 (ChannelSubscribe), sent by the store if it must 
stop sending data points to a customer in response to a 
GetRanges request because the store has already sent 
MaxRangeDataItemCount data points in response to the request. 

31 EINVALID_APPEND 
Sent in response to a ChannelData message that is not appending 
data to a channel. 

32 EINVALID_OPERATION 

Sent in response to a request when the requested operation would be 
invalid. EXAMPLE: In Protocol 6 (GrowingObject), a 
ReplacePartsByRange message where some replacement parts are 
not covered by the delete range is an invalid operation. 

1002 EINVALID_CHANNELID 
Sent by either role when operations are requested on a channel ID 
that is not valid for the session.  

4003 ENOCASCADE_DELETE 
Sent when an attempt is made to delete an object that has children 
and the store does not support cascading deletes (prune operations). 

4004 EPLURAL_OBJECT 

Sent when an endpoint attempts put operations for more than one 
data object under the plural root of a 1.x Energistics data object. ETP 
only supports a single data object, one XML document. ETP 1.2 is not 
designed to work with 1.x Energistics data objects, but this error code 
is left for use with custom protocols. 

5001 ERETENTION_PERIOD_EXCEEDED 
Sent from a store to a customer when the client asks for changes 
beyond the stated change period of a server. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 485 

Code Name Notes 

6001 ENOTGROWINGOBJECT 

Sent from a store to a customer when the customer attempts to 
perform a growing object operation on an object that is not defined as 
a growing data object type. EXAMPLE: A store would send this if the 
customer attempted to add parts to a WITSML well object, which is not 
a growing data object. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 486 

25 Appendix: Energistics Identifiers 
This appendix serves as an interim Energistics Identifier Specification until that document can be 
updated, reviewed, and published. These definitions and rules MUST be observed with the Energistics 
Transfer Protocol (ETP) v1.2.  

This appendix describes the syntax and semantics of data object and dataspace identifiers as used within 
the Energistics family of data exchange standards and ETP. 

25.1 Definitions: Data Objects, Resources, and Dataspaces 

Messages in ETP are the mechanism to communicate about and perform actions on data objects and 
resources. Some definitions for context:  

 Energistics domain specifications—WITSML, RESQML, PRODML and EML (i.e., Energistics 
common, which is shared by the other 3 MLs)—define data objects, which represent real-world 
business objects such as wellbores, logs, channels, earth models, faults, production reports, and PVT 
data, to name a few.  

A data object is a valid document of the specified format (XML, JSON, other), which conforms to one 
of the schemas specified in the Energistics namespace and inherits from AbstractObject, which is 
defined in Energistics common.  

Energistics has these broad categories of data objects, each of which has some specific 
considerations when being operated upon by the various sub-protocols that comprise ETP:  

 "static" data objects. These are informally referred to as "static" (compared to "growing"; see 
below) because they change only when people, process, and/or software change them. 
Additionally, they may have a "main" object (sometimes called a "header" object) and associated 
arrays of numeric data.  

 "growing" data objects. Objects that change inherently over time by adding to them. These 
objects typically exist in the drilling domain and are defined in WITSML, such as trajectories 
(grows as new trajectory stations are added), and "mud logs" (now called wellbore geology) 
which grow in several ways with the evaluation and recordings at different intervals for geological 
cuttings samples, lithology sequences along the length of the wellbore, and interpretations of the 
quality of hydrocarbon shows along the wellbore). 

 channel data objects. A channel is a series of values, usually measured or calculated, that are 
referenced to one or more indexes, usually time or depth. Groups of channels are informally 
called “logs” and individual channels are sometimes referred to as “curves”. Channels are similar 
to growing data objects, but they are important enough and different enough to be treated as a 
distinct type of object. In ETP, the channel protocols are dedicated to handling channel data. 

- "contained" and "container" data object. A contained data object refers to a data object that is 
contained by another data object (the container) with a ByValue reference (and ONLY a ByValue 
reference; i.e., relationships specified by an Energistics Data Object Reference (DOR) do not 
result in container/contained objects). An Energistics data object MAY be included in one or more 
container data objects. 

One of the best-known examples come from WITSML where:  

 One or more Channel data objects can be contained in one or more ChannelSet data objects. 
In this example, the Channels are the "contained" data objects and the Channel Set is the 
"container".  

 One or more ChannelSet data objects can be contained in one or more Log data objects. In 
this example, the ChannelSets are the "contained" data objects and the Log is the 
"container". 

NOTE: Individual data objects that may be containers or contained data objects are listed in the 
relevant ML's ETP implementation specification (which is a companion document to this ETP 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 487 

Specification). For example, Channel, Channel Set and other contained data objects defined in 
WITSML are listed in the ETP v1.2 for WITSML v2.0 Implementation Specification. 

 A resource is a meta-object that contains information that identifies an actual data object. A resource 
contains a mix of fields: some fields are from the data object and some fields are from the data object 
as instantiated on a particular store, for example, the storeLastWrite field. The use of the "lighter-
weight" resources for some use cases in ETP reduces traffic on the wire for initial inquiries (such as 
discovery operations), which allows customer applications to determine when to do the "heavy lifting" 
of getting the full data object and/or all of its associated data.  

 A dataspace is an abstraction representing a distinct collection of data objects, such as a project or a 
specific database. (For more information, see Section 21.1.1.) 

25.2 Mechanisms for Identification: UUIDs and URIs 

Energistics has 2 main mechanisms for identification: UUIDs and URIs. This section explains UUIDs; for 
information about URIs, see Section 25.3. 

 Unique instances of data objects defined by Energistics data models must be identified with a UUID 
as defined by RFC 4122 (https://tools.ietf.org/html/rfc4122). A UUID is an array of 16 unsigned bytes 
(or a single 128-bit unsigned integer), and can be printed and serialized in various ways.  

 For use in Energistics domain standards, for string representation of a data object, a UUID MUST 
be serialized using Microsoft Registry Format; that is, with dashes inside the UUID and without 
curly braces.  

 For use in ETP messages–with the exception of string representation of data objects that may be 
conveyed with message (see next bullet) –ETP uses the Uuid datatype (Section 23.6) to send 
UUIDs. The Uuid data type is encoded as an array of 16 bytes in big-endian format. EXAMPLE: 
The UUID “00112233-4455-6677-8899-aabbccddeeff” is encoded as the byte array [ 0x00, 0x11, 
0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff ] in the Uuid 
data type. 

 The application that first creates a data object assigns its UUID. If during data transfer an application 
changes the UUID of an object, that application MUST preserve the original UUID as an alias and it is 
up to the application to change the authority.  

25.3 Energistics URIs 

An Energistics uniform resource identifier (URI) provides a mechanism to identify dataspaces and data 
objects. Energistics URIs are formatted according to RFC 3986 (Uniform Resource Identifier (URI): 
Generic Syntax (https://tools.ietf.org/html/rfc3986)), and, beginning with ETP v1.2, Energistics URIs are 
based on OData URI syntax (http://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part2-url-
conventions.html) with some tailoring as described here. 

IMPORTANT: The URI formats specified here are for ETP v1.2 and higher (ETP v1.2+). Previous 
versions of ETP used a different URI format. 

This section:   

 Defines the term canonical URI. 

 Specifies the form of canonical Energistics URIs for dataspaces, data objects, and queries that will 
match a collection of data objects within a dataspace and provides examples.  

 Defines so-called "alternate" URIs and their usage.  

 Provides regular expressions (REGEXes) and examples of each.  

25.3.1 Requirements for Supporting URIs 

An endpoint in an ETP session: 

 MUST support the canonical Energistics URIs. 

https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc3986
http://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part2-url-conventions.html


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 488 

 MUST support eml:///, which is the URI for the default dataspace, which may or may not be empty.  

 MAY support alternate URI formats, which are explained in Section 25.3.9. 

25.3.2 Overview 

Energistics URIs provide a flexible way to identify dataspaces and data objects within dataspaces. By 
building on OData URI syntax, Energistics URIs can represent: 

 individual dataspaces and data objects 

 hierarchical relationships between objects 

 sub-elements within data objects 

 queries for collections of objects 

ETP v1.2+ uses a subset of Energistics URIs to identify: 

 Dataspaces 

 Individual data objects within a dataspace 

 A query that will match a collection of data objects within a dataspace 

When both ETP endpoints in a session can support them, ETP v1.2+ allows optional use of other forms of 
Energistics URIs in some protocol messages, which may have application-specific meaning. For more 
information on optional use of other URI forms, see Sections 25.3.4 and Section 25.3.9. 

25.3.3 URI Notation 

When describing the form of URIs in this document: 

 { } indicate a parameter that is substituted with an actual value 

 [ ] indicate an optional portion of the URI, which may be omitted 

25.3.4 Canonical URIs 

Because of the flexibility of Energistics URIs, many URIs can be semantically equivalent—that is, they 
identify the same unique dataspace or data object or they represent the same query. 

A canonical URI is the preferred, and often shortest, URI out of a set of semantically equivalent URIs. 

In ETP, observe these rules about use of canonical URIs: 

 ETP endpoints MUST support canonical Energistics URIs. In some ETP messages, their use is 
always required. In other messages, their use is required unless both ETP endpoints in the session 
support alternate forms of Energistics URIs.  

 Even when the use of canonical URIs is optional, use of canonical URIs MUST always be supported. 

25.3.5 Canonical Energistics URIs 

This section defines the form of canonical Energistics URIs for ETP v1.2+. 

25.3.6 Dataspace URIs 

Dataspace URIs identify individual dataspaces, which contain zero or more data objects. ETP supports 
named dataspaces, which use a path as a name, and the default dataspace, which has no name. 

 The canonical form of the default dataspace URI is: 
eml:///  

 The canonical form for named dataspace URIs is: 
eml:///dataspace('{path}') 

 An example dataspace URI is: 
eml:///dataspace('/folder-name/project-name') 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 489 

 For named dataspaces, the path may be a relative path. For example: 
eml:///dataspace('rdms-db') 

Observe these rules for dataspace URIs: 

 In addition to named dataspaces, all ETP stores and producers MUST support the default, nameless 
dataspace, which is identified by the empty string.  

- While the default dataspace MUST be supported, it MAY be empty; that is, it may not have any 
data objects in it. 

IMPORTANT: The default dataspace is NOT an alias for a named dataspace. It is a simplification for ETP 
stores and producers that do not need to support named dataspaces. 

25.3.7 Data Object URIs 

A data object URI is one that provides direct reference to a single data object in a dataspace contained 
behind an ETP endpoint. A data object URI may optionally refer to a specific version of a data object. 

 The canonical form of a data object URI without a version is: 
eml:///[dataspace('{path}')/]{DataObjectType}({uuid}) 

 The canonical form of a data object URI with a version is: 
eml:///[dataspace('{path}')/]{DataObjectType}(uuid={uuid},version='{version}') 

Example data object URIs are: 

 eml:///witsml20.ChannelSet(2c0f6ef2-cc54-4104-8523-0f0fbaba3661) 

 eml:///dataspace('rdms-db')/resqml20.obj_HorizonInterpretation(uuid=421a7a05-033a-450d-bcef-
051352023578,version='2.0') 

25.3.7.1 Data Object Types 
In ETP, a data object type (dataObjectType) is the semantic equivalent of a qualifiedEntityType in OData. 
It is composed of:  

 The Energistics domain standard or Energistics common (designated by eml) and version where the 
data object type is defined. 

 The data object type name as defined by its schema. 

Examples: 

 witsml20.Well 

 resqml20.UnstructuredGridRepresentation 

 prodml20.ProductVolume 

 eml21.DataAssuranceRecord 

NOTES:  

1. The qualifiedType field on the SupportedDataObject record (used on the RequestSession and 
OpenSession messages) is a dataObjectType and uses the rules below for deriving a data object 
type.  

2. DataObjectType replaces the ContentType, which was specified in the last-published version of the 
Energistics Identifier Specification (see the topic ContentType in Energistics Online). ContentType is 
an important component of the DataObjectReference (DOR) (see ObjectReference in Energistics 
Online), which is an important mechanism for defining the graph—the relationships between objects 
in Energistics data models. For more information on changes to DORs and how this works, see 
Section 8.2.2. 

You MUST follow these rules to create a valid dataObjectType (or qualifiedType): 

1. The Energistics domain standard MUST be one of the three Energistics domain standards or eml (for 

https://docs.energistics.org/#EID/EID_TOPICS/EID-000-006-0-C-sv4000.html
https://docs.energistics.org/#EID/EID_TOPICS/EID-000-013-0-C-sv4000.html


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 490 

data object types that are defined in Energistics common for use by the domain standards), all in 
lower case concatenated with the first 2 digits of its version. For example, RESQML v2.0.1 would use: 
resqml20. Supported versions of the other Energistics standards include: witsml20, prodml20, 
prodml21, eml20, eml21, and eml22.  

2. The data object type name MUST be the schema name of the data object as defined in the 
Energistics standard. It IS case sensitive. 

25.3.7.2 Rules for Using Dataspaces and Version in Data Object URIs 
Observe these rules for using dataspaces and version in data object URIs: 

 If the dataspace is the default dataspace, then the dataspace segment MUST be omitted from the 
canonical URI. 

 Data objects identified by Energistics URIs are always in a dataspace, so the data object URI is 
prefixed with the relevant dataspace.  

- If the dataspace is omitted from the URI, then the URI implicitly refers to the default dataspace. 

 If version is omitted and there are multiple versions of a data object behind an ETP endpoint, then the 
URI implicitly refers to the most recent version.  

 ETP 1.2 does not provide rules that define which of two versions of a data object is the most 
recent version. The data object version that is most recent is ETP-endpoint-dependent. 

- If the intent is to refer to the most recent version of the data object, then the version segment 
SHOULD be omitted from the canonical URI. 

The data object URI uses these conventions from OData: 

 The data object type in a data object URI is semantically equivalent to an OData qualifiedEntityType; 
for example: witsml20.Well (as described above).  

 The specification of the uuid and the optional version are semantically equivalent to keys in OData 
collections. 

25.3.8 Data Object Query URIs 

A data object query URI is one that refers to a collection of data objects in a dataspace contained behind 
an ETP endpoint. 

The canonical form of a data object query URI MUST be one of the following: 

 {DataObjectUri}/{DataObjectType}[?{query}] 

 eml:///[dataspace('{path}')]/{DataObjectType}[?{query}] 

 {DataObjectUri}?{query} 

Example data object query URIs are: 

 eml:///dataspace('rdms-db')/resqml20.obj_HorizonInterpretation 

 eml:///witsml20.Well(uuid=ec8c3f16-1454-4f36-ae10-27d2a2680cf2,version='1.0')/witsml20.Wellbore 

 eml:///witsml20.Channel?$filter=ChannelClass/Title eq 'Gamma'&$top=300 

25.3.8.1 Rules for Using Dataspaces and Version in Data Object Query URIs 
Observe these rules for using dataspaces and version in data object query URIs: 

 If the dataspace is the default dataspace, then the dataspace segment MUST be omitted from the 
canonical URI.  

 If the intent is to refer to the most recent version of the data object, then the version segment 
SHOULD be omitted from the canonical URI. 

 A data object query URI MAY specify an OData Entity Collection. That is, a data object type without 
associated uuid or version. This represents a query for objects of the specified type. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 491 

 When a data object query URI includes a specific data object uuid, the query operates on data 
objects that have some relationship to the data object specified by the uuid. 

 Whether the relationship is primary or secondary or goes from sources to targets or targets to 
sources depends on other contextual information where the URI is used. EXAMPLE: In 
DiscoveryQuery, the context and scope fields on the FindResources message will provide this 
information. 

 A data object query URI MAY also include a URI query string (for details, see Chapter 14).  

- When the URI path ends with an OData Entity Collection, the query string is optional (because 
the OData Entity Collection represents an implicit query).  

- When the URI path ends with a specific data object, the query string is required. 

25.3.9 Alternate URIs 

In some situations, ETP v1.2+ also allows applications to use so-called alternate URIs. These URIs 
MUST be valid Energistics URIs, but they need not be canonical URIs. Alternate URIs may have 
application-specific meaning. 

NOTE: For alternate URIs to be used in an ETP session, the store MUST return the allowed alternate 
formats in Discovery (Protocol 3). For more information, see Chapter 8. 

Here is a non-exhaustive list of alternate URI forms and examples of them: 

1. URIs prefixed with eml:/ instead of eml:/// 

2. Hierarchical data object URIs where more than one path segment uniquely identifies a data object 
and the path indicates a navigable relationship between the objects. 
eml:///witsml20.Well(ec8c3f16-1454-4f36-ae10-27d2a2680cf2)/witsml20.Wellbore(81bb7920-
fa42-48cb-b9ac-38031e2703a8) 

3. Template URIs where multiple path segments specify a data object type. 
eml:///witsml20.Well/witsml20.Wellbore 

4. URIs with hash segments. 
eml:///resqml20.obj_HorizonInterpretation(421a7a05-033a-450d-bcef-051352023578)#hash 

5. Dataspace URIs with query segments. 
eml:///dataspace('rdms-db')?$filter=Name eq 'mydb' 

6. URIs with path segments that address elements within data objects. 
eml:///witsml20.Channel(53b3bf2b-3aa3-458d-b40c-9a4cb754210e)/ChannelClass/Title 

7. URIs that include the primary key name: 
eml:///witsml20.Well(uuid=ec8c3f16-1454-4f36-ae10-27d2a2680cf2) 

8. URIs that use alternate OData keys: 
eml:///witsml20.ChannelSet(2c0f6ef2-cc54-4104-8523-
0f0fbaba3661)/witsml20.Channel(Mnemonic='HKLD') 

9. URIs that support earlier ML versions: 
eml:///witsml14.well(uid='abc')/witsml14.wellbore(uid='def') 

Observe these rules for using alternate URIs: 

 To use alternate URIs in an ETP session, BOTH ETP endpoints MUST have set the 
SupportsAlternateRequestUris endpoint capability to "true" in the RequestSession and 
OpenSession messages (in their respective endpointCapabilities fields) that were exchanged to 
establish the ETP session.  

 ETP does not provide functionality for an endpoint to advertise all possible alternate URIs it supports. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 492 

- An ETP endpoint that wants to use alternate URIs in requests SHOULD assume the other 
endpoint in the session supports only alternate URIs it has explicitly received in response to 
previous requests. 

- Even if an endpoint indicates it supports alternate URIs, it is NOT required or guaranteed that all 
possible forms of alternate URIs are supported.  

25.3.10 Regular Expressions for Validating Canonical Energistics URIs 

The following regular expressions can be used to validate canonical Energistics URIs. These regular 
expressions use ECMAScript regular expression syntax. 

 Canonical Dataspace URIs: 

^eml:\/\/\/(?:dataspace\('(?<dataspace>[^']*?(?:''[^']*?)*)'\))?$ 

EXAMPLES: 

 eml:/// 

 eml:///dataspace('/folder-name/project-name') 

- eml:///dataspace('rdms-db') 

 Canonical Data Object URIs: 

^eml:\/\/\/(?:dataspace\('(?<dataspace>[^']*?(?:''[^']*?)*)'\)\/)?(?<domain>witsml|resqml|prodml|eml)(?<
domainVersion>[1-9]\d)\.(?<objectType>\w+)\((?:(?<uuid>[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-
[0-9a-fA-F]{4}-[0-9a-fA-F]{12})|uuid=(?<uuid2>[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-
F]{4}-[0-9a-fA-F]{12}),version='(?<version>[^']*?(?:''[^']*?)*)')\)$ 

EXAMPLES: 

 eml:///witsml20.Well(ec8c3f16-1454-4f36-ae10-27d2a2680cf2) 

 eml:///witsml20.Well(uuid=ec8c3f16-1454-4f36-ae10-27d2a2680cf2,version='1.0') 

- eml:///dataspace('/folder-name/project-
name')/resqml20.obj_HorizonInterpretation(uuid=421a7a05-033a-450d-bcef-
051352023578,version='2.0') 

 Canonical Data Object Query URIs with both Data Object and OData Entity Collection: 

^eml:\/\/\/(?:dataspace\('(?<dataspace>[^']*?(?:''[^']*?)*)'\)\/)?(?<domain>witsml|resqml|prodml|eml)(?<
domainVersion>[1-9]\d)\.(?<objectType>\w+)\((?:(?<uuid>[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-
[0-9a-fA-F]{4}-[0-9a-fA-F]{12})|uuid=(?<uuid2>[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-
F]{4}-[0-9a-fA-
F]{12}),version='(?<version>[^']*?(?:''[^']*?)*)')\)\/(?<collectionDomain>witsml|resqml|prodml|eml)(?<co
llectionDomainVersion>[1-9]\d)\.(?<collectionType>\w+)(?:\?(?<query>[^#]+))?$ 

EXAMPLES: 

 eml:///witsml20.Well(ec8c3f16-1454-4f36-ae10-27d2a2680cf2)/witsml20.Wellbore?query 

 eml:///witsml20.Well(uuid=ec8c3f16-1454-4f36-ae10-
27d2a2680cf2,version='1.0')/witsml20.Wellbore?query 

- eml:///dataspace('/folder-name/project-name')/witsml20.Well(uuid=ec8c3f16-1454-4f36-ae10-
27d2a2680cf2,version='1.0')/witsml20.Wellbore?query 

 Canonical Data Object Query URIs with OData Entity Collection but no Data Object: 

^eml:\/\/\/(?:dataspace\('(?<dataspace>[^']*?(?:''[^']*?)*)'\)\/)?(?<collectionDomain>witsml|resqml|prod
ml|eml)(?<collectionDomainVersion>[1-9]\d)\.(?<collectionType>\w+)(?:\?(?<query>[^#]+))?$ 

EXAMPLES: 

 eml:///witsml20.Well?query 

- eml:///dataspace('/folder-name/project-name')/resqml20.obj_HorizonInterpretation?query 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 493 

 Canonical Data Object Query URIs with Data Object but no OData Entity Collection: 

^eml:\/\/\/(?:dataspace\('(?<dataspace>[^']*?(?:''[^']*?)*)'\)\/)?(?<domain>witsml|resqml|prodml|eml)(?<
domainVersion>[1-9]\d)\.(?<objectType>\w+)\((?:(?<uuid>[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-
[0-9a-fA-F]{4}-[0-9a-fA-F]{12})|uuid=(?<uuid2>[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-
F]{4}-[0-9a-fA-F]{12}),version='(?<version>[^']*?(?:''[^']*?)*)')\)\?(?<query>[^#]+)$  

EXAMPLES: 

 eml:///witsml20.Well(ec8c3f16-1454-4f36-ae10-27d2a2680cf2)?query 

 eml:///witsml20.Well(uuid=ec8c3f16-1454-4f36-ae10-27d2a2680cf2,version='1.0')?query 

- eml:///dataspace('/folder-name/project-
name')/resqml20.obj_HorizonInterpretation(uuid=421a7a05-033a-450d-bcef-
051352023578,version='2.0')?query 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 494 

26 Appendix: Data Replication and Outage 
Recovery Workflows 

While the definition, support and execution of specific business use cases and related workflows are 
governed by the Energistics domain standards (WITSML, RESQML and PRODML), data replication and 
outage recovery can be seen as commonly used, high-level workflows across the domains. This appendix 
provides an "ML-neutral" overview of these workflows. It also provides a good example of how the ETP 
sub-protocols are intended to work together.   

While the section on outage recovery focuses on recovery during the replication process, the principles 
apply to and can be used for outage recovery for most domain workflows.  

For more detailed ML-specific information on these workflows, see the relevant ETP implementation 
guide for a particular domain standard.  

26.1 Goal and Scope of Replication 

The goal of data replication is for a destination data store to be eventually consistent with a source data 
store. A definition from Wikipedia (https://en.wikipedia.org/wiki/Eventual_consistency): 

Eventual consistency is a consistency model used in distributed computing to achieve high availability 
that informally guarantees that, if no new updates are made to a given data item, eventually all 
accesses to that item will return the last updated value. 

Leveraging new features in ETP v1.2, these replication workflows have been defined so that endpoints 
can reliably replicate data and recover from unintended disconnects/outages with a significantly reduced 
likelihood of having to "resend all data again"—which of course is costly and time consuming. The 
reliability features also support better decision making around when it is necessary to resend everything. 

The following scenarios were explicitly NOT considered when designing the ETP features for reliable 
replication:  

 Multi-master replication and Bi-directional replication. In multi-master replication, more than one 
entity may be changing data in a store at the same time. In bi-directional replication (which is a 
special case of multi-master replication) changes to data in either endpoint must be replicated. ETP 
provides features to detect when another ETP session has changed data in a destination data store, 
but ETP does not provide features to prevent other ETP sessions from changing data. This means 
that there can be race conditions when two or more sessions try to update the same data, especially 
considering that ETP does not support partial edits to data objects. These scenarios were not 
considered because they are not common, and the features to support them would be complex. 

 Handling changes to clocks in the source store. ETP is not immune to nor can it automatically 
detect clock changes. If it's really important to detect clock changes, individual implementations may 
be able to use out-of-band communications or features of ETP (EXAMPLE: Ping and Pong 
messages). This version of ETP does NOT explicitly address this issue because correctly recovering 
from clock changes usually requires external intervention.   

26.2 Key Concepts and Definitions for Replication 

This section explains key concepts and definitions that are important to understanding how replication is 
intended work. RECOMMENDATION: Familiarize yourself with these concepts before reading the 
workflow sections. 

26.2.1 Change Annotations 

ETP v1.2 introduces the use of change annotations. For more information, see Section 11.1.4. 

https://en.wikipedia.org/wiki/Eventual_consistency


Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 495 

26.2.2 Replication Approaches and Related Definitions 

ETP supports these data replication approaches, which are shown in Figure 38 and further explained 
below the figure: 

 "Push" workflow, where the source data store actively pushes data to the destination data store. For 
more information, see Section 26.4 Push Workflow.  

 "Pull" workflow, where the destination data store actively pulls data from the source data store. For 
more information, see Section 26.5 Pull Workflow. 

 “Man-in-the-middle” workflow includes a specially designed synchronization application, which 
replicates data by executing both the pull and the push workflow using only ETP functionality, as 
shown in Figure 38.  

 
Figure 38: ETP now supports push and pull data replication workflows, as well as "man-in-the-middle" 
synchronization applications. The words in parenthesis (either customer or store) refer to the ETP role 
assigned to that endpoint. 

The source is the data store from which the data is being replicated; the destination is the data store to 
which the data is be replicated. The goal of replication is for the destination to be eventually consistent 
with the source.  

NOTE: The source and destination DO NOT necessarily coincide with the client and server endpoints in 
an ETP session. (For more information about clients, servers, and ETP-assigned endpoint roles, see 
Section 3.1.2.)  

Source and destination are determined by whether the workflow is "push" or "pull". A key factor to how 
the workflows function is the ETP-assigned role of each endpoint, (in all but one ETP sub-protocol the two 
defined endpoint roles are "customer" or "store").  

 In the push workflow, the endpoint with the customer role is the source. It controls the workflow 
operations by using "put" messages from the various ETP sub-protocols to push data to the store. 

 In the pull workflow, the endpoint with the customer role is the destination. It controls the operations 
by using "subscribe" and "get" messages to pull data from the store (source). 

 In the man-in-the middle workflow, the synchronization application (sync app) is the customer in both 
the push and pull workflows. (NOTE: Though the sync app has the customer role in both the pull and 
push workflows, two separate ETP sessions must be created: one for the pull workflow and one for 
the push workflow.) 

In both push and pull workflows, the ETP customer role is the active participant, which is an informal 
general term used in this appendix for the ETP endpoint that is in control of the replication operation. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 496 

26.2.3 Graphs, Scope and Replication Scope 

ETP is designed to interpret the data models that it operates on (WITSML, RESQML and PRODML) as 
graphs. Scope refers to a specified area of the graph, based on a starting node of interest specified by a 
URI, and further defined by a direction and depth in the data model. (For more information on graphs and 
related concepts including scope, see Section 8.1.1, Data Model as a Graph.) 

An ETP endpoint can specify a scope in the context of discovery operations (using Discovery (Protocol 
3)) and in setting up subscriptions to receive change notifications and new data as they become available, 
which may occur using StoreNotification (Protocol 5), GrowingObjectNotification (Protocol 7) or 
ChannelSubscribe (Protocol 21).  

The term replication scope refers informally to the data that an endpoint is required to replicate. 
Replication scope may be all of the data in a store, one or more specific data objects, or (a most likely 
scenario) all of the data objects associated with a particular data object (e.g., all the channels in a 
particular well).  

EXAMPLE (from WITSML): The replication scope is Well XYZ and all data objects associated with it. So 
this is not an explicit list of data objects (i.e., the actual set of data objects in the replication scope is Well 
XYZ, Wellbore ABC, ChannelSet DEF that is added later, etc.) 

ETP concepts of graphs and scope along with ETP functionality (in discovery and notification protocols) 
help an endpoint to determine the list of data objects in the replication scope, monitor the scope for 
changes, and receive the necessary change data for replicating it. 

26.2.4 Understanding the Workflows in this Appendix 

The following sections in this appendix explain how to do these replication tasks for the "push" and "pull" 
approaches. (The man-in-the-middle apps use both approaches; pull on one end and push on the other.)  

For brevity, the notation used in the workflows is: ProtocolName.MessageName, for example, 
Store.PutDataObjects is the PutDataObjects message from Store (Protocol 4). 

NOTE: For the details about the requirements, rules, and error handling for the message flow and 
protocol-level operations (e.g., how the PutDataObjects message works, fields, options, etc.) see the 
specific protocol chapter in this guide (e.g., Chapter 9, Store (Protocol 4)). 

26.3 Main Replication Tasks 

Currently ETP supports the main data-replication tasks listed below. The scope of all of these tasks 
includes replicating subsequent changes once a replication operation has begun. (EXAMPLE: Data 
Object A is replicated from source to destination, then Data Object A is updated in the source. These 
workflows address how this subsequent update to Data Object A in the source is replicated in the 
destination, as part of the ongoing replication operation.)  

All of these replication tasks can be done using either the push or pull workflow, which is explained in 
subsequent sections:  

 Identify Replication Scope: Given a replication scope, identify the actual set of data objects in it, 
including any changes to the set over time (for more information about replication scope, see Section 
26.2.3 above).  

 Replicate this data:  

 Data Objects: Replicate identified data object (for growing data objects, the "header"), including 
any subsequent changes. 

 Growing data object Parts: Replicate parts of identified growing data objects, including any 
subsequent changes (adds, edits, and deletes). 

- Channel Data: Replicate channel data from identified channels, including any subsequent 
changes (adds/appends, edits, and deletes). 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 497 

NOTE: ETP has similar features that can be used to support replication for other objects (such as 
dataspaces and data arrays) however, those workflows have not yet been documented.  

26.4 Push Workflow 

In the push workflow, the source (with the ETP-assigned role of customer) actively pushes data to the 
destination (with the ETP-assigned role of store). (For more information about source and destination, see 
Section 26.2.1.) 

The main replication tasks in the push workflow are accomplished as follows:  
 Replication Scope Identification: 

 The replication scope comes from an external source, for example, a contract that says what data 
your endpoint is expected to deliver (EXAMPLE: Your rigsite store as a logging/data acquisition 
company must replicate data for Well XYZ to the destination endpoint (e.g., a client oil company's 
data store)). That is, you cannot discover the replication scope with ETP functionality.  

 When a data store itself is the source, the scope details are provided in an externally supplied 
configuration, which the data store must use to identify the specific data objects in itself that fall 
within the replication scope. The data store must use internal knowledge of itself to track changes 
to the set of objects that fall within the scope. 

- When a synchronization application (sync app) is the source, the sync app receives the scope 
details from an externally supplied configuration and uses the pull workflow from the data store it 
is replicating to identify the specific data objects within the replication scope and any changes to 
the set of objects that fall within the scope. 

 Data Object Replication: Once you have identified the data objects within the replication scope, you 
must replicate these data objects and any changes for each with these operations:  

For creates and updates: 

 For growing data objects (which does not include channels, which are different a type of data 
object), push the header using GrowingObject.PutGrowingDataObjectsHeader. (For details of 
the message flows for this protocol, see Chapter 11 GrowingObject (Protocol 6).)  

- For all other data objects (including channel), push the data object using Store.PutDataObjects. 
(For details of the message flows for this protocol, see Chapter 9 Store (Protocol 4).)   

For deletes: 

 For all data objects, delete the data objects using Store.DeleteDataObjects. (For details of the 
message flows for this protocol, see Chapter 9 Store (Protocol 4).) 

 Growing data object Part Replication: 

- Push part creates, changes and deletes using GrowingObject.PutParts, 
GrowingObject.DeleteParts and/or GrowingObject.ReplacePartsByRange. The 
recommendation is always to work as efficiently as possible; EXAMPLE: If you are deleting 1000 
contiguous parts, you can do this using a single ReplacePartsByRange message. But the 
combination of messages used to replicate those changes is up to the implementer. (For details 
of the message flows for this protocol, see Chapter 11 GrowingObject (Protocol 6).) 

 Channel Data Replication: 

 Push existing channel data using either ChannelDataLoad.ChannelData or 
ChannelDataLoad.ReplaceRange. 

 Push new channel data (i.e., appended index/data points) using 
ChannelDataLoad.ChannelData. (For details of the message flows for this protocol, see 
Chapter 20 ChannelDataLoad (Protocol 22).)  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 498 

- Push data edits and deletes using ChannelDataLoad.TruncateChannels and/or 
ChannelDataLoad.ReplaceRange. (For details of the message flows for this protocol, see 
Chapter 20 ChannelDataLoad (Protocol 22).) 

NOTE: To push data in this data replication workflow, it is STRONGLY recommended to use the ETP 
customer role and send the request messages listed above (instead of using the ETP store role and 
sending notification messages, which technically can "work") for these reasons: 

 By design, request messages must give positive confirmation that the destination data store has 
successfully processed the requested changes, thereby improving reliability (i.e., the destination 
confirms it has successfully processed the message pushed by the source). 

 Notification messages do NOT give this confirmation, which increases the chances for data loss 
under failure scenarios. 

- Notification messages are more suitable for applications that consume but do not persist the data 
(e.g., a visualization or dashboard application) or do not need full eventual consistency. 

26.5 Pull Workflow 

In the pull workflow, the destination actively pulls data from the source and subscribes to data changes in 
the source (so it can receive subsequent updates to objects in its replication scope). The pull workflow is 
more complex than the push workflow, and it relies on the destination endpoint using more information 
that is available through ETP. 

The destination has the ETP role of customer and it pulls data from the source, which has the ETP role of 
store. In general, replication occurs by getting data (using Store (Protocol 4), GrowingObject (Protocol 6) 
and ChannelSubscribe (Protocol 21)) and subscribing to notifications of change (StoreNotification 
(Protocol 5), GrowingObjectNotification (Protocol 7) and ChannelSubscribe (Protocol 21)). 

The main replication tasks in the pull workflow are accomplished as follows: 
 Replication Scope Identification 

 The replication scope comes from an external source, as described for the push workflow (see 
Section 26.4).  

 The set of objects in the scope MAY come from an external source when it is a static, explicit list 
(e.g. replicate Channel 123 and Channel 456 and nothing else). 

 When the set of objects in the scope is dynamic (which is the most likely scenario): 

• Discover the initial set of objects in the scope using Discovery.GetResources. (For details of 
the message flows for this protocol, see Chapter 8 Discovery (Protocol 3).)   

• Subscribe to changes to the set of objects in the scope with 
StoreNotification.SubscribeNotifications. 

• Receive changes to the set of objects in the scope with StoreNotification.ObjectChanged, 
StoreNotification.ObjectAccessRevoked and StoreNotification.ObjectDeleted. 
EXAMPLE: If data objects are added, removed or deleted from a scope, the destination 
endpoint is notified of these changes through these notification messages. (For details of the 
message flows for this protocol, see Chapter 10 StoreNotification (Protocol 5).) 

 Data Object Replication 

 Discover the initial set of data objects, including growing data objects, using Discovery (Protocol 
3) (which tells you their current state and when they last changed) and, based on the results of 
discovery, pull the desired objects using Store.GetDataObjects. (For details of the message 
flows for this protocol, see Chapter 9 Store (Protocol 4).) 

For creates, joins, and updates: 

- Receive created, updated, and joined (i.e. existing data objects added to the replication scope) 
data objects with StoreNotification.ObjectChanged. In some cases, the notification includes the 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 499 

actual data object (which reduces traffic on the wire because you don't have to issue a request for 
it). However, in some scenarios, you will not get the data object with the notification, so must get 
it using Store.GetDataObjects (Chapter 9 Store (Protocol 4)) or 
GrowingObject.GetDataObjectsHeader (Chapter 11 GrowingObject (Protocol 6)). 

For deletes, unjoins and access revocations: 

 Receive unjoins (i.e. data objects removed from the replication scope without being deleted) with 
StoreNotification.ObjectChanged (see Chapter 10 StoreNotification (Protocol 5)). 

 Receive access revocations with StoreNotification.ObjectAccessRevoked (see Chapter 10 
StoreNotification (Protocol 5)). 

 Receive deletes with StoreNotification.ObjectDeleted (see Chapter 10 StoreNotification 
(Protocol 5)).  

 Growing data object Part Replication 

 Pull the initial set of parts together with the data object header using Store.GetDataObjects 
(Chapter 9 Store (Protocol 4)). 

 Subscribe to growing data objects in the replication scope using 
GrowingObjectNotification.SubscribePartNotificaitons (see Chapter 12 
GrowingObjectNotification (Protocol 7)) to receive part creates, changes and deletes. 

 Receive part creates, changes and deletes with GrowingObjectNoficiation.PartsChanged, 
GrowingObjectNoficiation.PartsDeleted and/or 
GrowingObjectNoficiation.PartsReplacedByRange (see Chapter 12 
GrowingObjectNotification (Protocol 7)). 

 Channel Data Replication 

 Get metadata for channels in the replication scope using 
ChannelSubscribe.GetChannelMetadata. 

 Pull existing channel data in the data ranges provided in the returned channel metadata using 
ChannelSubscribe.GetRanges. 

 Subscribe to the channels starting from the end of the existing data range provided in the channel 
metadata using ChannelSubscribe.SubscribeChannels (see Chapter 19 ChannelSubscribe 
(Protocol 21)) to receive new, streaming channel data. 

 Receive new (i.e. appended) data as it becomes available with 
ChannelSubscribe.ChannelData. 

 Receive data edits and deletes with ChannelSubscribe.ChannelsTruncated and/or 
ChannelSubscribe.RangeReplaced. 

26.6 Outage Recovery: Resuming Operations After a Disconnect 

The most commonly occurring (at least in the drilling/WITSML world) and problematic failure is the 
sudden loss of connectivity in the middle of data replication/transmission. The information in this section 
deals with recovery around that scenario.  

This Appendix is focused specifically on data replication workflows (potentially one of the most complex 
and comprehensive workflows). However, the general principles and tasks in this outage recovery 
workflow are applicable for recovery from the sudden interruption of nearly any domain workflow.  

NOTES:  

1. The active participant (an informal term for the endpoint that is controlling the replication operation; 
for more information see Section 26.2.1) in the replication workflow must initiate the outage recovery 
workflow.  

2. For the details about the requirements, rules, and error handling for the message flow and protocol-
level operations (e.g., how the PutDataObjects message works, fields, options, etc.) see the specific 
protocol chapter in this guide (e.g., Chapter 9, Store (Protocol 4)). 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 500 

26.6.1 Goal of Outage Recovery 

The main goal of outage recovery is to resume the data transmission connection after a session was 
interrupted and resume operations that were in process before the outage without missing or losing any 
data. Ideally, this operation can resume "where" it was interrupted; however, that resumption isn't always 
easy because the endpoint "producing" or sending data may continue to do so even after the connection 
was dropped. 

So when the session resumes, in addition to resuming the current operation, the active participant must 
determine: if any data was "missed" during the outage, what that missed data was, and get the "missed" 
data—ideally, without having to start the operation all over again (i.e., resend all data from the beginning 
of the disconnected session).  

Leveraging new features in ETP v1.2, these replication and outage-recovery workflows have been 
defined so that endpoints can reliably replicate data and recover from unintended disconnects/outages 
with a significantly reduced likelihood of having to "resend everything again"—which of course is costly 
and time consuming. The reliability features support better decision making around when it is necessary 
to resend everything. 

26.6.2 Key Concepts for Outage Recovery 

This section explains key concepts and definitions that are important to understanding how outage 
recovery is intended work. (For definitions not provided here, see Section 26.2 above.) 
RECOMMENDATION: Familiarize yourself with these concepts before reading the workflow sections.  

26.6.2.1 Timestamps from the ETP Store 
This section explains what a timestamp is and where (in what ETP messages) they occur. The next 
section (Section 26.6.2.2 Change Retention Period) and the workflow sections below explain how 
timestamps are used to recover from an outage.  

Timestamps from the clock of the endpoint that is acting as the ETP store (the destination in the push 
workflow and the source in the pull workflow) play an important role in outage recovery.  

ETP defines timestamps in several messages, for example:  
 In Core (Protocol 0), the RequestSession and OpenSession messages have the field 

currentDateTime.  

 Change messages defined in notification protocols include a changeTime indicating when the change 
happened.  

All such timestamps are defined in ETP as a UTC dateTime value, serialized as a long, using the Avro 
logical type timestamp-micros (microseconds from the Unix Epoch, 1 January 1970 00:00:00.000000 
UTC). (For more information about timestamps, see Section 3.12.5.) 

In general, the timestamps are used as follows: 
 When an ETP session is established, the store's currentDateTime is exchanged and established. 

 When changes (additions, deletions, or updates to data objects) occur in the endpoint acting as the 
ETP store, the ETP customer receives timestamps of when these changes happened in the store via 
notifications in the pull workflow and via positive response messages in the push workflow. NOTE: 
Whether the change is pushed or pulled, depends on the replication workflow in use. 

26.6.2.2 Change Retention Period 
The change retention period (ChangeRetentionPeriod (CRP)) is an endpoint capability defined by ETP. 
(For more information on capabilities and their purposes, see Section 3.3.)  

Specifically, the CRP is the minimum time period in seconds that a store retains the canonical URI of a 
deleted data object and any change annotations for data objects, including channels and growing data 
objects. It is recommended that the CRP be as long as is feasible in an implementation, but per this 
specification it must be at least 24 hours (84,600 seconds). When the period is shorter, the risk is that 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 501 

additional data will need to be transmitted to recover from outages, leading to higher initial load on 
sessions. 

In some stores, the retention history may be lost from time to time (e.g., if the store application restarts). 
These stores MUST retain change data for at least the CRP as long as at least one session is connected 
to the store’s endpoint. If the store DOES lose the retention history, the store MUST send the earliest 
timestamp for which it DOES have retained change data in the earliestRetainedChangeTime field in either 
the RequestSession or OpenSession messages. From the customer’s perspective, this essentially 
serves as a potentially shorter CRP than usual when initially connecting. For the remainder of this 
appendix, when ChangeRetentionPeriod or CRP are used, they mean either the store’s advertised 
ChangeRetentionPeriod OR the shorter period based on the store’s earliestRetainedChangeTime. 

The CRP can be exchanged in both of these ways: 
 In the server capabilities endpoint, before establishing the WebSocket connection (for more 

information, see Section 4.3).   

 In the RequestSession and OpenSession messages when establishing the ETP session (for more 
information, see Chapter 5).   

So when you connect to an ETP endpoint, you can discover its CRP and you will have the CRP when you 
begin exchanging timestamps (which are explained in Section 26.6.2.1 above) during the session.  

NOTE: Information on required behaviors related to use of the ChangeRetentionPeriod are defined in the 
Required Behavior section of each relevant protocol chapter.  

This section provides a brief general explanation of how CRP and timestamps work, based on the simple 
example in Figure 39.  

 

Figure 39: Example showing how timestamps in various messages and change retention period work to 
retain a "high-water mark" timestamp, which is crucial to determine what content changed during an outage.  

In general, the basic idea of how timestamps and the CRP works is as follows:  
1. Before connecting and/or as part of the establishing the ETP session, an endpoint's CRP is 

discovered. 

2. When a session is established, initial (t0) timestamps (currentDateTime) are exchanged in Core 
(Protocol 0) RequestSession and OpenSession messages. 

3. While connected, the latest timestamp of changes that have been pushed or pulled can be tracked (t1, 
t2); during periods of inactivity, Ping and Pong messages can be used to track updated timestamps 
(t3); this latest timestamp of known change(s) is informally referred to as the high-water mark. The 
active participant MUST track this high-water mark during the ETP session.  

DETAILS from Figure 39: At t1, an object was created, so an ObjectChanged message is sent 
saying an object was created at timestamp t1. Timestamp t1 is now the high-water mark, so we know 
about any and all changes that may have happened in the window between t0 and t1. 

At t2, an object is deleted, and an ObjectDeleted message is sent with the timestamp of t2, so t2 
becomes the new high-water mark.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 502 

Then the data transmission goes idle for a while. So to establish a new (more recent) high-water mark 
within the source store's CRP, the customer endpoint sends the Core.Ping message and receives 
the response Core.Pong message with a timestamp of t3. Timestamp t3 is now the high-water mark. 

After t3, the connection is inadvertently dropped and the session disconnected. So t3 remains the last 
known high-water mark.  

4. When reconnecting after the disconnect (t4), the currentDateTime timestamps are exchanged when 
establishing the new session (just like when the initial session was established).  

5. After reconnecting, the active participant must compare the gap between the timestamp of the new 
session start (t4) and the high-water mark from the previous session (t3) to the CRP. Necessary 
actions depend on whether the gap is less than/equal to the CRP (i.e., you have reconnected within 
the CRP) or greater than the CRP (i.e., you have connected later than the CRP).  

For next steps, see Section 26.6.3 Main Resumption Workflow.  

NOTES:  

1. Real-world operations—which may mean hundreds or thousands of messages flowing back and forth 
between endpoints simultaneously, some operations resulting in multiple notifications with the same 
timestamp, and receipt of multiple messages at a particular timestamp—will make it more challenging 
to determine exactly what happened at a particular timestamp. However, if an endpoint receives a 
message with a particular timestamp, it can be confident it received all changes before that 
message/timestamp. This is an important semantic that stores must understand and support for this 
change detection process to work. 

2. The process for determining missed data during an outage is more relevant to pull workflows than 
push workflows (because an active participant that is pushing data "knows/tracks" what data it was 
pushing). However, the process is important to man-in-the-middle applications, which uses both push 
and pull workflows.  

26.6.3 Main Resumption Workflow 

To resume data replication after a previous session was disconnected, the active participant must follow 
the general workflow below. This main resumption workflow "branches" for difference tasks/steps for push 
and pull, and it contains links to the push- and pull-specific details.   

REMINDER: In both the "push" and "pull" workflows, it is the ETP-assigned role of "customer" that is the 
active participant (in the disconnected replication session). However, in the push workflow, the 
customer/active participant is the source (i.e., the content being replicated), and in the pull workflow, the 
customer/active participant is the destination. (For more information about definitions for these terms, see 
Section 26.2.1.) 

The active participant must follow these steps:  
1. Establish an ETP session. (For detailed instructions for establishing the WebSocket connection, see 

Chapter 4. For information about establishing the ETP session, see Section 5.2.1.1.) If the active 
participant is also the ETP client, it should establish a new connection to start the ETP session. If the 
active participant is acting as an ETP server, it must wait for the other endpoint to reconnect before 
proceeding with session establishment. 

REMINDER: Each ETP session is independent of any other ETP session (i.e., there is no session 
survivability, no automatic resumption of past activities). So "everything" that was happening in the 
interrupted session must be recreated in the new session.  

2. Determine whether the disconnected period was within the endpoint's change retention period. (For 
information on how the change retention period (ChangeRetentionPeriod) works, see Section 
26.6.2.1.)  

Whether or not the disconnected period was within or beyond the endpoint's change retention period 
determines if and how to identify what changed during the disconnected period (next step).  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 503 

3. Identify what changed during the disconnected period. 

a. RECOMMENDATION: When querying for changes since the high-water mark or determining if 
the high-water mark is older than the ChangeRetentionPeriod or not, it is recommended to 
subtract a small time delta, such as the store’s ChangePropagationPeriod, from the high-water 
mark to maximize the likelihood of not missing any changes. 

b. If the disconnect period is within the change retention period, the active endpoint can 
understand all changes that may need to be replicated by using an appropriate combination of 
Discovery.GetResources, Discovery.GetDeletedResources, 
ChannelSubscribe.GetChannelMetadata, ChannelSubscribe.GetChangeAnnotations, 
GrowingObject.GetPartsMetadata, and GrowingObject.GetChangeAnnotations. 

NOTE: If a customer makes a request that is greater than the store's CRP, the store MUST send 
error ERETENTION_PERIOD_EXCEEDED (5001). 

c. If the disconnected period is longer than the change retention period, the results and 
possible required actions depend on the nature of the change.  

The table below provides highlights for key changes that may have occurred and the actions 
required to determine changes.  

 In some cases (e.g., data objects), you can determine exactly what changed.  

 In other cases, you cannot determine exactly what changed; in these cases, you'll need to 
decide if you can accept the results the store can provide or if you must re-send or request 
"all data" (i.e., from the start of the disconnected session).  

Nature of Change Result/Required Action 

Data object updated Changes can determined through the storeLastWrite element, 
which can be used in discovery and query protocols to filter data 
objects.  

When you get a resource or data object, its storeLastWrite 
element shows when it last changed. If a data object's 
storeLastWrite is greater than your high-water mark from the 
previous session, then you must get the data object.  

Data object deleted or 
access revoked 

This cannot be reliably detected. 

Here is the process: 

1. Use Discovery (Protocol 3) to discover the set of data objects 
that you were previously replicating when the outage occurred 
(the previously known set).  

2. Do a "diff" between the previously known set of data objects 
and the set of data objects returned in Step 1. 

The diff reveals if you have fewer (or more) data objects and 
which ones are no longer in the replication scope (and which 
ones have been added). You can assume that the data 
objects no longer in the replication scope were either deleted, 
unjoined or your access to them was revoked. You can 
differentiate between unjoined and deleted or access revoked, 
but you cannot differentiate between deleted and access 
revoked.   

In some cases, these issues are not important. You can 
simply resume operations for the remaining set of data 
objects.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 504 

Nature of Change Result/Required Action 

Channel data and 
growing data object 
parts 

Cannot be reliably detected and may need to be replicated "from 
scratch" (i.e., re-send all data).  

 

3. After the changes have been identified, the active participant must: 

a. Start pushing or pulling any changes detected in the new session. 

 For the push workflow, see Section 26.6.4. 

 For the pull workflow, see Section 26.6.5. 

b. Replicate the changes that happened while disconnected and, when needed, replicate any 
objects from scratch. 

26.6.4 Resumption Workflow: Details for Push  

In the data push workflow, the burden is on the source to track what data it has successfully pushed to 
the destination, so that, on reconnect, the source knows what data it must resume sending. This 
"knowledge" appears to be "session survivability" (which was removed from ETP in v1.2), but it is not. 
The source can persist this information however it deems appropriate; the method is not specified by 
ETP.  

The data the source must track includes: 
 The objects it is pushing to the destination. 

 For each object, the most recent change to the object that was successfully pushed.  
NOTE: Put response messages notify an endpoint of what data was successfully put. So in the 
original replication workflow, the destination will send positive response messages for all previous 
successful put operations.  

 For each growing data object, the most recent change (create, update, delete) to parts in the object 
that were successfully pushed. 

 For each channel, both:  

 The most recent appended data index sent to the destination.  
NOTE: ETP does not specify a success message for this operation. However, as part of the 
process of the source resuming pushing data, the destination responds to the source with its 
current end index for each channel. The source must determine if that end index is the same or 
different than the last one it sent, and then take necessary action. 

- The most recent change to existing data that was successfully pushed.  
NOTE: Like store put operations, a successful replace range operation has a successful 
confirmation message.  

On reconnect, the source must follow these steps: 
1. To understand the changes that it must push, the source must compare the tracked information (i.e., 

the list above) against its current state of data.  

 When the source is a data store, the source must use its internal knowledge about the current 
state of data in itself. For example, a source must determine things such as: Are there new or 
different data objects in replication scope that weren't there before that it now needs to push? Are 
there changes to objects that it sent previously that are more recent than what the destination 
has?  

 If the source is a sync app, the sync app must use the pull workflow to get the current state of 
data from the data store it is replicating. It will need to issue queries to understand the current 
state.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 505 

 The source may additionally use aspects of the pull workflow on resumption by issuing queries to 
the destination to verify that the destination’s content matches the source’s expectations based 
on the information it tracked. This option is not described in detail here, but possible actions when 
the source’s expectations are not met are to stop the transfer with an error or triggering a full 
resend of data for affected data objects 

2. On reconnect, after the changes that need to be pushed have been identified (step 1), the changes 
are pushed using the normal push workflow (described in Section 26.4). 

In the push workflow, there is no difference between pushing changes that happened while 
disconnected and pushing changes that happen while connected. 

26.6.5 Resumption Workflow: Details for Pull 

Resumption of the data pull workflow is inherently more complex than in the data push workflow. In the 
pull workflow, the burden is on the destination to track what it has successfully pulled or received from the 
source, which includes: 

 The list of objects it is pulling (the replication scope).  

 For each object, the most recent change to the object that was received. 

 For each growing data object, the most recent change (create, update, delete) to parts in the object 
that was received. 

 For each channel, the most recent appended data index received and the most recent change (i.e., 
range replaced or channels truncated) to existing data that was pulled or received. 

This section (including subsequent sub-sections) gives an overview of what must be tracked, how to 
determine changes, and how to resume operations for the pull workflow. 

On reconnect, the destination must follow these steps: 
1. To understand the changes it must pull, the destination compares this tracked information against the 

current state of data in the source, which is typically done with queries.  

NOTE: In general, the current state of data in the destination is NOT used. If more than one entity 
may be changing data in the destination, extra care is needed; but multi-master replication is not 
currently addressed in ETP. 

a. To understand the state of the data in the source, the destination must gather information about 
the items listed in the first column of this table. For more information on the specifics of what the 
destination must track for each item in column 1, see Section 26.6.5.1 and the detailed section 
referenced in the table below.  

To understand the types of changes to this 
and how to detect them… 

See this section: 

Replication scope 26.6.5.2.1 

Objects in the replication scope 26.6.5.2.2 

Growing data object parts in the replication 
scope 

0 

Channel data in the replication scope 0 

 

2. After the changes have been identified, the destination must pull the changes. 

26.6.5.1 Information That Must Be Tracked by the Destination and How to Initialize and Track it 
During the replication process, the destination in the pull workflow must track what is being replicated (the 
list in Step 1a above and repeated in the table below), and it must tracks changes to those items 
throughout the replication process, so it can keep the required tracked information current.  



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 506 

NOTE: This information is NOT explicitly listed for the push workflow, because in the push workflow, the 
source is in control of sending the messages to push the data (from itself!) and must simply track 
confirmation that the action specified in the messages was successfully completed (with the positive 
responses from the destination). In the pull workflow, the destination must also pull this "tracking data" 
from the source.  

The following tables summarizes, what must be tracked (column 1), and for each of those items, 
specifically what is tracked (column 2), how the tracked information is initialized (column 3), and updated 
(column 4) during the replication process. The text below the table describes the behavior for each "row" 
in the table.   

Information 
Tracked 

About 

What Is 
Tracked 

How Tracked Information Is 
Initialized 

How Tracked Information Is 
Updated 

Replication 
Scope 

URIs of all data 
objects in scope 

Discovery.GetResources StoreNotification.ObjectChanged 

StoreNotification.ObjectAccessRevoked 

StoreNotification.ObjectDeleted 

Data Objects storeLastWrite Discovery.GetResources storeLastWrite on DataObject in 
StoreNotification.ObjectChanged 

Growing data 
object Parts 

Last timestamp of 
part change 

GrowingObject.GetChangeAnnotations 
with latestOnly=true 

Or, if none, timestamp from 
RequestSession or OpenSession 

GrowingObjectNotification.PartsChanged 

GrowingObjectNotification.PartsDeleted 

GrowingObjectNotification.PartsReplaced
ByRange 

Channel Data Current end index ChannelSubscribe.GetChannelMetadata ChannelSubscribe.ChannelData 

Last timestamp of 
edit or delete 

ChannelSubscribe.GetChangeAnnotati
ons with latestOnly=true 

Or, if none, timestamp from 
RequestSession or OpenSession 

ChannelSubscribe.ChannelsTruncated 

ChannelSubscribe.RangeReplaced 

 

(Row 1) On initial connection for replication, the destination initializes the replication scope using the 
Discovery.GetResources message; the source replies with the list of resources (one for each data 
object in the scope) which contains the URI for the data object (among other data). The destination must 
also subscribe to notifications for changes to objects in the replication scope; when changes occur, the 
source sends the destination StoreNotification.ObjectChanged, 
StoreNotification.ObjectAccessRevoked, and StoreNotification.ObjectDeleted. The destination uses 
these notices to update the data object's storeLastWrite time.  

(Row 2) For each data object in the replication scope, the destination must track its URI and its 
storeLastWrite time.  

(Row 3) The high-water mark for edits or deletes to parts in a growing data object is the timestamp on the 
most recent ChangeAnnotation for that growing data object; it conveys that no parts were changed in 
that growing data object after that timestamp. (For information about how change annotations (CA) work 
in this workflow, see Section 0.) The destination initializes this information by sending message 
GrowingObject.GetChangeAnnotations (with latestOnly=true). If no CAs are returned, the high-water 
mark is the currentDateTime stamp exchanged in Core (Protocol 0) when establishing the session in the 
RequestSession and OpenSession messages. Tracked information is updated in the destination during 
replication with GrowingObjectNotification.PartsChanged,GrowingObjectNotification.PartsDeleted, 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 507 

and GrowingObjectNotification.PartsReplacedByrange messages, which will result in changes to the 
storeLastWrite of a growing data object. 

(Row 4) For channel data, appended data (Row 4a) must be tracked independently of edits and deletes to 
existing data (Row 4b). 

(Row 4a) For appended channel data, the destination must track the end index (endIndex) of each 
channel in its replication scope. On initialization the destination gets that information by sending the 
GetChannelMetadata message; the source responds with the GetChannelMetadataResponse 
message, which is part of the process of subscribing to receive data from a channel using 
ChannelSubscribe (Protocol 21) (NOTE: The endIndex is on the IndexInterval record). As part of the 
subscription, as new data are available in the source, the destination receives 
ChannelSubscribe.ChannelData messages, which is used to update the endIndex of the channel. 

(Row 4b) The high-water mark for edits or deletes to existing channel data is the timestamp on the most 
recent ChangeAnnotation for that channel; it conveys that no data was changed in that channel after 
that timestamp. (For information about how change annotations (CA) work in this workflow, see Section 
0.) The destination initializes this information by sending message 
ChannelSubscribe.GetChangeAnnotations (with latestOnly=true). If no CAs are returned, the high-
water mark is the currentDateTime stamp exchanged in Core (Protocol 0) when upgrading the 
WebSocket connection to ETP, in the RequestSession and OpenSession messages. Tracked 
information is updated in the destination during replication with ChannelSubscribe.ChannelsTruncated 
and ChannelSubscribe.RangeReplaced messages, which will result in changes to the storeLastWrite of 
a channel and may result in changes to the endIndex of a channel.  

26.6.5.2 How to Detect Specific Types of Changes  

26.6.5.2.1 Replication Scope 
While disconnected, changes can happen to the set of objects in the replication scope (for the definition of 
replication scope, see Section 26.2.3.). The changes in the scope occur due to addition and deletion of 
data objects, and addition or removal of relationships between objects.  

 Figure 40 shows an example of how a replication scope my change as the result of various operations; 
these changes are explained below.  

 
Figure 40: Example replication scope changes while disconnected. Solid colorled circles represent data 
objects of interest (in the replication scope); dashed-line circles are objects outside the replication scope. 
After reconnect (righ) in this example, B is now in scope and G is out of scope.  

Change Type How Store Retains It How Customer Discovers 
Change on Reconnect 

How Customer 
Requests Change 

New data object created Updates storeLastWrite and 
storeCreated 

Object URI not in previously tracked 
replication scope 

Store.GetDataObjects 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 508 

Change Type How Store Retains It How Customer Discovers 
Change on Reconnect 

How Customer 
Requests Change 

Existing data object added 
to scope 

Updates storeLastWrite on 
one end of the relationship 

Object URI not in previously tracked 
replication scope and storeCreated is 
older than the high-water mark. 

Store.GetDataObjects 

Existing object deleted DeletedResource No Resource returned matching 
previously tracked URI.  
Discovery.GetDeletedResources has a 
matching DeletedResource. 

 

Access to existing object 
revoked 

Not retained in information 
available through ETP 

No Resource returned matching 
previously tracked URI. 
Discovery.GetDeletedResources 
does NOT have a matching 
DeletedResource. 

 

Existing object removed 
from scope 

Updates storeLastWrite No Resource returned matching 
previously tracked URI. 

 

 

(Row 1) New objects may be created in the source that fall within the replication scope. Any time a new 
object is created, the source store initializes both storeLastWrite and storeCreated to the object’s creation 
time. On reconnect, the destination sends Discovery.GetResources to get the updated replication 
scope. Any URIs that were not previously known to the destination are newly created data objects if their 
storeCreated time is newer than the destination’s high-water mark. The destination requests the new data 
object with Store.GetDataObjects. 

(Row 2) New relationships may be created in the source between existing data objects that cause the 
existing data objects to be included in the replication scope. When this happens, the source store 
initializes the storeLastWrite of the container data object or the source of the data object reference in the 
relationship. On reconnect, the destination sends Discovery.GetResources to get the updated 
replication scope. Any URIs that were not previously known to the destination are existing data objects 
that have been added to the scope if their storeCreated time is newer than the destination’s high-water 
mark. The destination requests the new data object with Store.GetDataObjects. 

(Row 3) Existing data objects within the replication scope may be deleted. When this happens, the source 
creates a DeletedResource for the data object. On reconnect, the destination sends 
Discovery.GetResources to get the updated replication scope. If any URIs previously known to the 
destination are missing from the response, the destination sends Discovery.GetDeletedResources to 
get the list of deleted DeletedResource records. A deleted object will have a corresponding 
DeletedResource in the response. 

(Row 4) The source may revoke the destination’s access to an object that is within the replication scope. 
When this happens, the store does not track this information in a field on an ETP record. On reconnect, 
the destination sends Discovery.GetResources to get the updated replication scope. If any URIs 
previously known to the destination are missing from the response, the destination sends 
Discovery.GetDeletedResources to get the list of deleted DeletedResource records. If any URIs 
previously known to the destination do NOT have a corresponding DeletedResource in the response, the 
destination sends a Discovery.GetDeletedResources for each such URI and scoped only to that URI. If 
no Resource is returned, the destination has lost access to the data object. 

(Row 5) Relationships between objects within the replication scope in the source may be modified 
causing some of the objects to no longer be in the scope. When this happens, the source store initializes 
the storeLastWrite of the container data object or the source of the data object reference in the 
relationship. On reconnect, the destination sends Discovery.GetResources to get the updated 
replication scope. If any URIs previously known to the destination are missing from the response, the 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 509 

destination sends Discovery.GetDeletedResources to get the list of deleted DeletedResource records. 
If any URIs previously known to the destination do NOT have a corresponding DeletedResource in the 
response, the destination sends a Discovery.GetDeletedResources for each such URI and scoped only 
to that URI. If a Resource IS returned, the data object has been removed from the replication scope. 

26.6.5.2.2 Objects 
While disconnected, data objects in the replication scope may be updated; that is, elements on the data 
object have changed.  

 
Figure 41: Example of update to data object. While disconnected, the channel's title has been changed (from 
"Hookload" to "HKLD".   

Change 
Type 

How Store 
Retains It 

How Customer Discovers 
Change on Reconnect 

How Customer Requests Change 

Object 
Changed 

Updates storeLastWrite Resource.storeLastWrite newer than 
previously tracked storeLastWrite and 
storeCreated is older 

Store.GetDataObjects or 
GrowingObject.GetDataObjectsHeader 

Object 
Deleted and 
Recreated 

Updates storeLastWrite 
and storeCreated 

Resource.storeCreated newer than 
previously tracked storeLastWrite 

Store.GetDataObjects or 
GrowingObject.GetDataObjectsHeader 
followed by ChannelSubscribe.GetRanges or 
GrowingObject.GetPartsByRange if appropriate 

 

(Row 1) Data objects within the replication scope may be changed in the source. Any time an object is 
changed, the source updates storeLastWrite. On reconnect, the destination sends 
Discovery.GetResources to get the updated replication scope. If the Resource for a data object has a 
newer storeLastWrite than the data object’s last known storeLastWrite AND the Resource has a 
storeCreated that is equal to or older than the data object’s last known storeLastWrite, then the data 
object was changed while the session was disconnected. To get the last data for the data object, the 
destination sends Store.GetDataObjects or GrowingObject.GetDataObjectsHeader. 

(Row 2) Data objects within the replication scope may be deleted and recreated in the source. Any time 
this happens, the source updates both storeLastWrite and storeCreated. If the Resource for a data object 
has a newer storeCreated than the data object’s last known storeLastWrite, then the data object was 
deleted and recreated while the session was disconnected. To get the last data for the data object, the 
destination sends Store.GetDataObjects or GrowingObject.GetDataObjectsHeader. If the data object 
is a growing data object or a channel, the destination requests the new data with 
GrowingObject.GetPartsByRange or ChannelSubscribe.GetRanges. 

26.6.5.2.3 Growing data object Parts 
While disconnected, parts in growing data objects may be added, updated or deleted.  

 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 510 

 

Figure 42: Example: trajectory had 4 trajectory stations; on reconnect there are still 4, but one has been 
deleted, a new one added, and one has been updated.  

The table below lists the four possible actions, which are explained below the table. 

Change 
Type 

How Store 
Retains It 

How Customer 
Discovers Change on 
Reconnect 

How Customer Requests 
Change 

Part Added Creates 
ChangeAnnotation 

New ChangeAnnotation 
covering the changed interval 

GrowingObject.GetChangeAnnotations 

Part Changed Creates 
ChangeAnnotation 

New ChangeAnnotation 
covering the changed interval 

GrowingObject.GetChangeAnnotations 

Part Deleted Creates 
ChangeAnnotation 

New ChangeAnnotation 
covering the changed interval 

GrowingObject.GetChangeAnnotations 

Range Updated Creates 
ChangeAnnotation 

New ChangeAnnotation 
covering the changed interval 

GrowingObject.GetChangeAnnotations 

 

(Row 1) New parts may be added to growing data objects within the replication scope. When this 
happens, the source updates the index ranges as necessary and creates a ChangeAnnotation for the 
affected data objects. On reconnect, the destination sends GrowingObject.GetChangeAnnotations with 
the high-water mark to get any new ChangeAnnotations that may have been created while 
disconnected. Steps to take in response to new ChangeAnnotations are described below. 

(Row 2) Existing parts may be modified in growing data objects within the replication scope. When this 
happens, the source creates a ChangeAnnotation for the affected data objects. On reconnect, the 
destination sends GrowingObject.GetChangeAnnotations with the high-water mark to get any new 
ChangeAnnotations that may have been created while disconnected. Steps to take in response to new 
ChangeAnnotations are described below. 

(Row 3) Parts may be deleted from growing data objects within the replication scope. When this happens, 
the source updates the index ranges as necessary and creates a ChangeAnnotation for the affected 
data objects. On reconnect, the destination sends GrowingObject.GetChangeAnnotations with the 
high-water mark to get any new ChangeAnnotations that may have been created while disconnected. 
Steps to take in response to new ChangeAnnotations are described below. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 511 

(Row 4) Ranges of parts may be deleted from growing data objects and replaced with new parts within 
the replication scope. When this happens, the source updates the index ranges as necessary and creates 
a ChangeAnnotation for the affected data objects. On reconnect, the destination sends 
GrowingObject.GetChangeAnnotations with the high-water mark to get any new ChangeAnnotations 
that may have been created while disconnected. Steps to take in response to new ChangeAnnotations 
are described below. 

Handling New ChangeAnnotations on Reconnect 
There are three cases that must be handled with ChangeAnnotations: 

1. The ChangeAnnotation is entirely within the growing data object’s previously known data range. In 
this scenario, the destination discards any previously known parts entirely covered by the 
ChangeAnnotation interval and requests new parts for the interval with 
GrowingObject.GetPartsByRange.  

2. The growing data object’s previously known start or end index falls within the ChangeAnnotation 
interval. In this scenario, the destination must discard all previously known parts entirely covered by 
the ChangeAnnotation interval and requests the new data for the interval with 
GrowingObject.GetPartsByRange. 

3. The ChangeAnnotation is entirely beyond the previously known index range for the growing data 
object. In this scenario, the destination retrieves all new data beyond the previously known index 
range with one or two GrowingObject.GetPartsByRange messages. 

26.6.5.2.4 Channel Data 
While disconnected, new channel data may be appended and existing channel data may be edited or 
deleted. 

 

Figure 43: Example of change annotations and how they work (see details below). 

The example in Figure 43 is channel data with indexes increasing downward. The table below lists the 
changes to channel data that can occur (or some combination of these). A customer must be able to 
detect all these changes on reconnect. 

Change 
Type 

How Store 
Retains It 

How Customer Discovers 
Change on Reconnect 

How Customer Requests 
Change 

New Data 
Appended 

Updates end Index New end index values in the interval 
field on IndexMetadataRecord in 
ChannelMetadataRecord 

ChannelSubscribe.SubscribeChannels 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 512 

Change 
Type 

How Store 
Retains It 

How Customer Discovers 
Change on Reconnect 

How Customer Requests 
Change 

Channel 
Truncated 

Updates end Index  
and creates 
ChangeAnnotation 

New ChangeAnnotation that may or 
may not extend beyond current end 
index. 

ChannelSubscribe.GetRanges 

Data Changed Creates 
ChangeAnnotation 

New ChangeAnnotation covering the 
changed interval. 

ChannelSubscribe.GetRanges 

Data Deleted Creates 
ChangeAnnotation 

New ChangeAnnotation covering the 
deleted interval. 

ChannelSubscribe.GetRanges 

 

(Row 1) New data may be appended to channels within the replication scope. When this happens, the 
source updates the end indexes for the affected channels. On reconnect, the destination sends 
ChannelSubscribe.GetChannelMetadata and compares the previously known end indexes for each 
channel against the new ones returned in ChannelMetadataRecord. If the new end indexes are beyond 
(where beyond may be greater than or less than depending on direction in IndexMetadataRecord) the 
previously known end indexes, new data was appended. The destination sends 
ChannelSubscribe.GetRanges to request the new data. 

(Row 2) A channel within the replication scope may be truncated, which is when the end index is reset to 
an earlier value and any data beyond the new end index is deleted. When this happens, the source resets 
the channel’s end index, and it creates a ChangeAnnotation covering the truncated interval, merging this 
as needed with existing ChangeAnnotation records. On reconnect, the destination sends 
ChannelSubscribe.GetChangeAnnotations with the high-water mark to get any new 
ChangeAnnotations that may have been created while disconnected. Steps to take in response to new 
ChangeAnnotations are described below. 

(Row 3) Data within a channel within the replication scope may be changed. When this happens, the 
source creates a ChangeAnnotation covering the changed interval, merging this as needed with existing 
ChangeAnnotation records. On reconnect, the destination sends 
ChannelSubscribe.GetChangeAnnotations with the high-water mark to get any new 
ChangeAnnotations that may have been created while disconnected. Steps to take in response to new 
ChangeAnnotations are described below. 

(Row 4) Data within a channel within the replication scope may be deleted. When this happens, the 
source creates a ChangeAnnotation covering the deleted interval, merging this as needed with existing 
ChangeAnnotation records. On reconnect, the destination sends 
ChannelSubscribe.GetChangeAnnotations with the high-water mark to get any new 
ChangeAnnotations that may have been created while disconnected. Steps to take in response to new 
ChangeAnnotations are described below. 

Handling New ChangeAnnotations on Reconnect 
There are three cases that must be handled with ChangeAnnotations: 

1. The ChangeAnnotation is entirely within the channel’s previously known data range. In this 
scenario, the destination discards any previously known data for the ChangeAnnotation interval and 
requests new data for the interval with ChannelSubscribe.GetRanges.  

2. The channel’s previously known end index falls within the ChangeAnnotation interval. In this 
scenario, the destination must discard all data from the start of the ChangeAnnotation interval to the 
previously known end index. It this requests the new data for the interval with 
ChannelSubscribe.GetRanges. 

3. The ChangeAnnotation is entirely beyond the previously known end index for the channel. In this 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 513 

scenario, the destination retrieves all new data beyond the previously known end index with a single 
ChannelSubscribe.GetRanges. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 514 

27 Appendix: Security Requirements and 
Rationale for the Current Approach 

This appendix lists the requirements for the new security approach added in ETP v1.2. The requirements 
were driven in large part by a specific request from the WITSML Executive Team, which includes 
representatives from several large operators, that the Basic Authentication in previous versions of ETP 
was no longer sufficient.  

The Energistics Architecture Team (responsible for the design of ETP v1.2) worked with the Executive 
Team to clarify the requirements, explored possible solutions, and met with security experts from several 
operator companies both for input/guidance and to vet the solution. 

This appendix also lists other options that were considered and explains why the current approach was 
selected.  

For information about the security in ETP v1.2 and how it works, see Chapter 4. 

27.1 ETP Security Considerations and Requirements 

This is the summary of considerations, operating conditions, and the resulting ETP security solution 
requirements:  

 Due to long-lived connections: 

 Sessions must be able to terminate if access has been revoked. 

 ETP clients must be able to retrieve a refreshed bearer token that will be accepted by an ongoing 
ETP session. 

 Additionally, care must be taken when linking a bearer token to session entitlements (This 
impacts scenarios where ETP servers live behind intermediate layers like API gateways or load 
balancers that may handle access authorization). 

 Due to low-connectivity scenarios: 

 High-connectivity 2FA/MFA approaches (e.g., phone calls, SMSs, e-mails, physical key 
generation devices) cannot be made a hard requirement for ETP.  

 Due to cross-organization scenarios: 

 Federated authentication must be possible. 

- Reverse data flows, where data flows the opposite direction of HTTP Authorization, must be 
possible.  

 Due to machine-to-machine scenarios, authorization cannot always be strongly tied to an end-user. 

Additional considerations: 

 ETP is a standard that will be implemented by many server applications and many client applications. 

 It is impractical, for a given server, to know in advance the full list of client applications that may 
need to connect to it. 

 It is necessary to allow arbitrary clients to connect to arbitrary servers without dedicated, server-
specific, connection logic. 

 Cloud and rig have different security requirements: 

 Rig security must be as simple as possible.  

o Current workflow is field hand at rig gets e-mailed a URL, username, and password. 

o New workflow must not be much harder than this. 

o New workflow must avoid pitfalls that would potentially disrupt data flowing merely because 
the sending application could not be authorized. 

 Rig workflow must be “compatible” with the cloud workflow. 



Energistics Transfer Protocol (ETP) Specification  

 

Standard: v1.2 / Document: v1.1 / Sept. 27, 2021 515 

 Same applications/services must be usable with both. 

 Data typically flows between “services” and not end users. 

27.2 Approaches Considered and Why the Current One Was Selected 

The current approach was determined and designed for these reasons:  

 Extensive investigation showed there is no one standard or simple approach that could simply be 
"picked off the shelf". 

 All options that were investigated had limitations; these included: HTTPS, Cookies, Basic, Mutual 
TLS, URL Query, Sec-WebSocket-Protocol, other Headers. 

 Many of the current security systems are for user-driven, interactive workflows, which are not 
appropriate for most of our device-to-device connectivity scenarios. 

Based on the research and the feedback collected from the community, including security experts, the 
Architecture Team believes this is the best approach because:  

 It best supports our use cases.  

 It's a minimal but extensive method that appears mainstream enough and is implemented in sufficient 
packages and languages (i.e., existing tools are available to support it).  

 It does not prevent organizations from supporting more advanced, interactive workflows.  

 It's believed to be extensible in the future without further schema changes (but, of course, there are 
no guarantees—Internet security changes fast).  

 It's simple to implement Auth Server on an ETP server for small, self-contained installs, while allowing 
external Auth Servers for larger/corporate configurations. 


	Table of Contents
	1 Introduction to ETP
	1.1 Working with Different Energistics Data Models
	1.2 Support for Multiple Versions of ETP
	1.3 Overview of Supported Use Cases
	1.4 ETP Design Principles
	1.4.1 Design Decisions for ETP v1.2

	1.5 Document Details
	1.5.1 How to Use This Document (IMPORTANT: Read This!)
	1.5.2 Recommendation for Using the PDF
	1.5.3 Parts of this Document Are Created from the ETP UML Model
	1.5.4 Documentation Conventions

	1.6 ETP Resources Available for Download

	2 Published ETP Protocols and Summary of Changes
	2.1 Summary of Changes from ETP v1.1 to v1.2
	2.1.1 The Specification Document has been Reorganized and Improved
	2.1.2 Things that Have Been Removed from ETP
	2.1.2.1 Stability Indexes
	2.1.2.2 Protocol 8 (WitsmlSoap) Deprecated/Moved to Custom Protocol
	2.1.2.3 Session Survivability Functionality

	2.1.3 Improved/Redesigned ETP Sub-Protocols and New Features
	2.1.3.1 New URI Format
	2.1.3.2 New Plural Messages
	2.1.3.3 New ETP-Defined Response Messages
	2.1.3.4 New Reliability Features
	2.1.3.5 New Security Functionality and Requirements

	2.1.4 New ETP Sub-Protocols
	2.1.5 Error Codes Have Been Significantly Revised


	3 Overview of ETP and How it Works (Crucial—read this chapter!)
	3.1 ETP Overview: Big Picture
	3.1.1 Sub-Protocols defined by ETP
	3.1.1.1 Custom Protocols
	3.1.1.2 Requirements for Supporting ETP Protocols

	3.1.2 Endpoints and Roles
	3.1.2.1 ETP Defines Two Roles for each Protocol
	3.1.2.2 Current Roles in ETP
	3.1.2.3 Example of Roles and Their use from WITSML

	3.1.3 Session
	3.1.4 Data objects, Resources, and Identifiers (UUIDs, URIs, and UIDs)
	3.1.5 ETP Messages
	3.1.6 Security

	3.2 Sessions: HTTP, WebSocket and ETP
	3.2.1 Why WebSocket for Transport?

	3.3 Capabilities: Endpoint, Protocol, Server and Data Object
	3.3.1 How Protocol and Endpoint Capabilities Work
	3.3.2 "Global" Capabilities
	3.3.2.1 ActiveTimeoutPeriod (Endpoint)
	3.3.2.2 ChangePropagationPeriod (Endpoint)
	3.3.2.3 ResponseTimeoutPeriod (Endpoint)
	3.3.2.4 MaxDataObjectSize (Endpoint)
	3.3.2.5 MaxPartSize (Endpoint)
	3.3.2.6 MaxSessionClientCount (Endpoint)
	3.3.2.7 MaxSessionGlobalCount (Endpoint)
	3.3.2.8 MaxWebSocketFramePayloadSize (Endpoint)
	3.3.2.9 MaxWebSocketMessagePayloadSize (Endpoint)
	3.3.2.10 RequestSessionTimeoutPeriod (Endpoint)
	3.3.2.11 SessionEstablishmentTimeoutPeriod (Endpoint)

	3.3.3 Support for ETP Optional Functionality
	3.3.4 Data Object Capabilities: How They Work
	3.3.4.1 Data Object Caps for Get, Put and Delete
	3.3.4.2 "Specialty" Data Object Capabilities

	3.3.5 ADVISORY: Implication of Capabilities and Required Behavior for Stores

	3.4 ETP Message Approach
	3.4.1 Messages are Defined by Avro Schemas
	3.4.1.1 Messages are Composed of Data Types and Primitives Defined by Avro and ETP
	3.4.1.2 How the Avro Schemas are Generated

	3.4.2 General Message Types and Naming Conventions

	3.5 ETP Message Format and Basic Sequence Requirements
	3.5.1 Overview of an ETP Message
	3.5.2 General Requirements for ETP Message Format
	3.5.3 General Sequence for ETP Request/Response Messages
	3.5.4 ETP Message Header
	3.5.4.1 Required Behavior for Populating a Message Header
	3.5.4.2 Required Behavior for Processing Message Headers

	3.5.5 ETP Message Body
	3.5.6 Mechanisms to Limit Message Size
	3.5.7 Message Compression

	3.6 ETP Extension Mechanisms
	3.6.1 Custom Protocols and Capabilities
	3.6.2 MessageHeaderExtension
	3.6.3 Data Attribute Metadata
	3.6.4 Message Extension
	3.6.5 Data Object Extension

	3.7 ETP Message Patterns
	3.7.1 Message Patterns: Key Concepts and Definitions
	3.7.1.1 "Universal" Messages (Definition)
	3.7.1.2 Plural Message (Definition)
	3.7.1.3 Map (Definition) and Use of "Small Keys"
	3.7.1.4 Chunk Message (Definition)
	3.7.1.5 Multipart Requests, Responses, and Notifications (Definition)

	3.7.2 ETP "Universal" Messages: Usage Rules
	3.7.2.1 ProtocolException Message: Usage Rules
	3.7.2.2 Acknowledge Message: Usage Rules

	3.7.3 Usage Rules for "Plural Messages"
	3.7.3.1 Usage Rules for Multipart Requests, Responses, and Notifications
	3.7.3.1.1 Multipart Message Capabilities
	3.7.3.1.1.1 MaxConcurrentMultipart (Endpoint)
	3.7.3.1.1.2 MultipartMessageTimeoutPeriod (Endpoint)


	3.7.3.2 Sending Binary Large Objects (BLOBs) in ETP

	3.7.4 How and "Where" URIs are Used in ETP (General Usage Rules)
	3.7.4.1 Rules for Using Alternate URI Formats in ETP
	3.7.4.2 Rules for when Alternate URIs MAY Be Used and when Canonical URIs MUST Be Used


	3.8 Avro Serialization
	3.8.1 Supported Data Encoding

	3.9 WebSocket Transport
	3.9.1 How ETP is Bound to WebSocket
	3.9.1.1 WebSocket Message Fragmentation
	3.9.1.2 Limits to WebSocket Message Sizes

	3.9.2 ETP Uses Asynchronous Exchange of Messages
	3.9.2.1 How ETP Ensures Messages are Correctly Correlated


	3.10 URI Query String Syntax with OData
	3.11 Tracking and Detecting Changes in an ETP Store
	3.11.1 Benefits of Change Tracking and Detection Features
	3.11.2 "Relaxed" Change Tracking and Detection Behavior for Some Stores
	3.11.3 Some Important Points About Change Detection

	3.12 How to Handle Commonly Used Types of Data in ETP
	3.12.1 Data Model as a Graph
	3.12.1.1 Benefit of Graphs in ETP

	3.12.2 Encoding Rules for ETP
	3.12.3 Serialization of URIs
	3.12.4 "Store-Managed" Fields
	3.12.5 Time
	3.12.5.1 Time Data Types
	3.12.5.2 New in ETP v1.2: storeCreated and storeLastWrite

	3.12.6 Units of Measure (UOM)
	3.12.7 Use of PWLS
	3.12.8 Value and Range Endpoint Comparisons in Requests
	3.12.9 Nullable Values

	3.13 Troubleshooting
	3.13.1 ETP-defined Capabilities
	3.13.2 Trying to Do Too Many Operations at the Same Time
	3.13.3 Always an Option: Drop the Connection
	3.13.4 Receiver not Receiving Messages Fast Enough
	3.13.5 Authorization Expiring


	4 Securing an ETP Session and Establishing a WebSocket Connection
	4.1 ETP Security
	4.1.1 Overview of the Approach
	4.1.1.1 Authorization Options: Transport Layer or Application Layer
	4.1.1.2 Changes to ETP to Implement this New Approach

	4.1.2 High-Level Workflow for Getting a Bearer Token
	4.1.3 Contents of the AuthorizationDetails Capability and How it is Used
	4.1.4 ETP Security Requirements for Establishing a WebSocket Connection
	4.1.4.1 Authorization for Browser-Based Clients ONLY


	4.2 Prerequisites for Establishing a WebSocket Connection
	4.3 How a Client Establishes a WebSocket Connection to an ETP Server
	4.3.1 Requirements for Getting and Using an ETP ServerCapabilities
	4.3.2 How Browser-based Clients use Query Parameters Instead of Header Properties


	5 Core (Protocol 0): Establishing and Authorizing an ETP Session
	5.1 Core: Key Concepts
	5.1.1 ETP Session
	5.1.2 Security and Authorization

	5.2 Core: Required Behavior
	5.2.1 Core: Message Sequences
	5.2.1.1 To establish and (optionally) authorize an ETP session:
	5.2.1.2 To end an ETP session:

	5.2.2 Core: General Requirements
	5.2.3 Core: Capabilities

	5.3 Core: Message Schemas
	5.3.1 Message: RequestSession
	5.3.2 Message: OpenSession
	5.3.3 Message: CloseSession
	5.3.4 Message: Authorize
	5.3.5 Message: Ping
	5.3.6 Message: Pong
	5.3.7 Message: AuthorizeResponse
	5.3.8 Message: ProtocolException
	5.3.9 Message: Acknowledge


	6 ChannelStreaming (Protocol 1)
	6.1 Channels: Key Concepts
	6.1.1 Channel Definition and its Design in Energistics Standards
	6.1.1.1 About Indexes and Channel Data

	6.1.2 Metadata for Channels, Indexes and Attributes
	6.1.3 What Data is Sent When Streaming Channels
	6.1.3.1 Sending an Array in a Data Value
	6.1.3.2 Reducing Channel Data Message Size on the Wire

	6.1.4 "Simple Streamer" vs. "Standard Streamer"
	6.1.5 Organizing Channels into ChannelSets and Logs

	6.2 ChannelStreaming: Required Behavior
	6.2.1 ChannelStreaming: Message Sequence
	6.2.1.1 Main Message Sequence for Simple Streamers

	6.2.2 ChannelStreaming: General Requirements
	6.2.3 ChannelStreaming: Capabilities

	6.3 ChannelStreaming: Message Schemas
	6.3.1 Message: StartStreaming
	6.3.2 Message: StopStreaming
	6.3.3 Message: ChannelMetadata
	6.3.4 Message: ChannelData
	6.3.5 Message: TruncateChannels


	7 ChannelDataFrame (Protocol 2)
	7.1 ChannelDataFrame: Concepts
	7.1.1 Channel, Channel Set, Log and Frame
	7.1.2 Support for Secondary Indexes

	7.2 ChannelDataFrame: Required Behavior
	7.2.1 ChannelDataFrame: Message Sequences
	7.2.1.1 To get row-oriented frames of data
	7.2.1.2 To cancel a GetFrame operation

	7.2.2 ChannelDataFrame: General Requirements
	7.2.3 ChannelDataFrame: Capabilities

	7.3 ChannelDataFrame: Message Schemas
	7.3.1 Message: GetFrame
	7.3.2 Message: GetFrameResponseHeader
	7.3.3 Message: GetFrameResponseRows
	7.3.4 Message: CancelGetFrame
	7.3.5 Message: GetFrameMetadata
	7.3.6 Message: GetFrameMetadataResponse


	8 Discovery (Protocol 3)
	8.1 Discovery: Key Concepts
	8.1.1 Data Model as a Graph
	8.1.1.1 Energistics Data Models
	8.1.1.1.1 Links and Relationships: Sources and Targets
	8.1.1.1.2 Types of Relationships: Primary and Secondary
	8.1.1.1.3 How to Use this Information in Discovery (Protocol 3)
	8.1.1.1.4 Logic of the Discovery Operation



	8.2 Discovery: Required Behavior
	8.2.1 Discovery: Message Sequences
	8.2.1.1 To discover data objects in a store and optionally the relationships between them:
	8.2.1.2 To discover deleted objects in a store:

	8.2.2 Discovery: General Requirements
	8.2.3 Discovery: Capabilities

	8.3 Discovery: Message Schemas
	8.3.1 Message: GetResources
	8.3.2 Message: GetResourcesResponse
	8.3.3 Message: GetResourcesEdgesResponse
	8.3.4 Message: GetDeletedResources
	8.3.5 Message: GetDeletedResourcesResponse


	9 Store (Protocol 4)
	9.1 Store: Key Concepts
	9.1.1 ETP uses 'Upsert' Semantics
	9.1.2 Handling Binary Large Objects (BLOBs) in ETP
	9.1.3 "Container" and "Contained" Data Objects
	9.1.3.1 Joining and Unjoining
	9.1.3.2 Pruning


	9.2 Store: Required Behavior
	9.2.1 Store: Message Sequences
	9.2.1.1 To get data objects from a store:
	9.2.1.2 To put data objects in a store:
	9.2.1.3 To delete one or more data objects from a store:

	9.2.2 Store: General Requirements
	9.2.3 Store: Capabilities

	9.3 Store: Message Schemas
	9.3.1 Message: GetDataObjects
	9.3.2 Message: PutDataObjects
	9.3.3 Message: PutDataObjectsResponse
	9.3.4 Message: DeleteDataObjects
	9.3.5 Message: DeleteDataObjectsResponse
	9.3.6 Message: GetDataObjectsResponse
	9.3.7 Message: Chunk


	10 StoreNotification (Protocol 5)
	10.1 StoreNotification: Key Concepts
	10.1.1 Definitions
	10.1.2 Data Model as Graph
	10.1.3 Handling Binary Large Objects (BLOBs) in ETP

	10.2 StoreNotification: Required Behavior
	10.2.1 StoreNotification: Message Sequences
	10.2.1.1 To subscribe to notifications (i.e., create a subscription):
	10.2.1.2 To unsubscribe to notifications (i.e., cancel a subscription):

	10.2.2 StoreNotification: General Requirements
	10.2.3 StoreNotification: Capabilities

	10.3 StoreNotification: Message Schemas
	10.3.1 Message: UnsubscribeNotifications
	10.3.2 Message: ObjectChanged
	10.3.3 Message: ObjectDeleted
	10.3.4 Message: ObjectAccessRevoked
	10.3.5 Message: SubscriptionEnded
	10.3.6 Message: SubscribeNotifications
	10.3.7 Message: SubscribeNotificationsResponse
	10.3.8 Message: ObjectActiveStatusChanged
	10.3.9 Message: UnsolicitedStoreNotifications
	10.3.10 Message: Chunk


	11 GrowingObject (Protocol 6)
	11.1 GrowingObject: Key Concepts
	11.1.1 What is a Growing Data Object and how is it Handled in ETP?
	11.1.2 Most Actions are on the "Parts" in the Context of One "Parent" Data Object
	11.1.3 An Update Operation on a Range of Parts is an Atomic Operation
	11.1.4 Change Annotations
	11.1.4.1 Definitions for ChangeAnnotation-Related Behavior
	11.1.4.2 Overview of How Change Annotations Work


	11.2 GrowingObject: Required Behavior
	11.2.1 GrowingObject: Message Sequences
	11.2.1.1 To get parts metadata for one or more growing data objects:
	11.2.1.2 To get the headers for one or more growing data objects:
	11.2.1.3 To get the parts for one growing data object:
	11.2.1.4 To get a range of parts (interval) for one growing data object:
	11.2.1.5 To add or update the headers for one or more growing data objects:
	11.2.1.6 To add or update one or more parts for one growing data object:
	11.2.1.7 To delete one or more parts from one growing data object:
	11.2.1.8 To delete a range of parts (interval) and (optionally) replace it with another range of parts:
	11.2.1.9 To determine what has changed in a store after a disconnect (using ChangeAnnotations):

	11.2.2 GrowingObject: General Requirements
	11.2.2.1 Overlapping Interval Range Operations
	11.2.2.1.1 EXAMPLE
	11.2.2.1.2 Logic for how IncludeOverlappingIntervals Works

	11.2.2.2 Rules for Creating Change Annotations for Channel Data Objects
	11.2.2.3 Rules for Creating Change Annotations for Growing Data Objects
	11.2.2.4 Rules for Merging Change Annotations
	11.2.2.5 Additional Rules for Change Annotations

	11.2.3 GrowingObject: Capabilities

	11.3 GrowingObject: Message Schemas
	11.3.1 Message: GetParts
	11.3.2 Message: GetPartsResponse
	11.3.3 Message: GetGrowingDataObjectsHeader
	11.3.4 Message: GetGrowingDataObjectsHeaderResponse
	11.3.5 Message: PutParts
	11.3.6 Message: PutPartsResponse
	11.3.7 Message: PutGrowingDataObjectsHeader
	11.3.8 Message: PutGrowingDataObjectsHeaderResponse
	11.3.9 Message: DeleteParts
	11.3.10 Message: DeletePartsResponse
	11.3.11 Message: GetPartsByRange
	11.3.12 Message: GetPartsByRangeResponse
	11.3.13 Message: GetPartsMetadata
	11.3.14 Message: GetPartsMetadataResponse
	11.3.15 Message: ReplacePartsByRange
	11.3.16 Message: ReplacePartsByRangeResponse
	11.3.17 Message: GetChangeAnnotations
	11.3.18 Message: GetChangeAnnotationsResponse


	12 GrowingObjectNotification (Protocol 7)
	12.1 GrowingObjectNotification: Key Concepts
	12.2 GrowingObjectNotification: Required Behavior
	12.2.1 GrowingObjectNotification: Message Sequences
	12.2.1.1 To subscribe to notifications about parts in a growing data object (i.e., create a subscription):
	12.2.1.2 To unsubscribe (cancel) notifications:

	12.2.2 GrowingObjectNotification: General Requirements
	12.2.3 GrowingObjectNotification: Capabilities

	12.3 GrowingObjectNotification: Message Schemas
	12.3.1 Message: SubscribePartNotifications
	12.3.2 Message: SubscribePartNotificationsResponse
	12.3.3 Message: PartsChanged
	12.3.4 Message: PartsDeleted
	12.3.5 Message: UnsubscribePartNotification
	12.3.6 Message: PartsReplacedByRange
	12.3.7 Message: PartSubscriptionEnded
	12.3.8 Message: UnsolicitedPartNotifications


	13 DataArray (Protocol 9)
	13.1 DataArray Key Concepts
	13.1.1 HDF5 and EPC Files

	13.2 DataArray: Required Behavior
	13.2.1 DataArray: Message Sequences
	13.2.1.1 To get one or more data arrays:
	13.2.1.2 To put one or more data arrays:
	13.2.1.3 Transactions

	13.2.2 DataArray: General Requirements
	13.2.2.1 Allowed Mappings of Logical Array Types and Transport Array Types

	13.2.3 DataArray: Capabilities

	13.3 DataArray: Message Schemas
	13.3.1 Message: GetDataArrays
	13.3.2 Message: GetDataArraysResponse
	13.3.3 Message: GetDataSubarrays
	13.3.4 Message: GetDataSubarraysResponse
	13.3.5 Message: PutDataArrays
	13.3.6 Message: PutDataArraysResponse
	13.3.7 Message: PutDataSubarrays
	13.3.8 Message: PutDataSubarraysResponse
	13.3.9 Message: PutUninitializedDataArrays
	13.3.10 Message: PutUninitializedDataArraysResponse
	13.3.11 Message: GetDataArrayMetadata
	13.3.12 Message: GetDataArrayMetadataResponse


	14 Overview of Query Behavior
	14.1 Supported Query Options and Requirements
	14.1.1 Filtering
	14.1.2 Pagination
	14.1.2.1 Server Sort Order Requirements


	14.2 Unsupported Query Options
	14.3 General Behavior for all ETP Query Sub-Protocols
	14.3.1 Message Sequence for All ETP Query Sub-Protocols
	14.3.2 Usage Rules for Query Syntax with ETP Query Sub-Protocols
	14.3.3 Use of PWLS in Queries

	14.4 Query Examples

	15 DiscoveryQuery (Protocol 13)
	15.1 DiscoveryQuery: Key Concepts
	15.1.1 Data Model as Graph

	15.2 DiscoveryQuery: Required Behavior
	15.2.1 DiscoveryQuery: Message Sequence
	15.2.2 DiscoveryQuery: General Requirements
	15.2.3 DiscoveryQuery: Capabilities

	15.3 DiscoveryQuery: Message Schemas
	15.3.1 Message: FindResources
	15.3.2 Message: FindResourcesResponse


	16 StoreQuery (Protocol 14)
	16.1 StoreQuery: Key Concepts
	16.1.1 Data Model as Graph

	16.2 StoreQuery: Required Behavior
	16.2.1 StoreQuery: Message Sequence
	16.2.2 StoreQuery: General Requirements
	16.2.3 StoreQuery: Capabilities

	16.3 StoreQuery: Message Schemas
	16.3.1 Message: FindDataObjects
	16.3.2 Message: FindDataObjectsResponse
	16.3.3 Message: Chunk


	17 GrowingObjectQuery (Protocol 16)
	17.1 GrowingObjectQuery: Key Concepts
	17.2 GrowingObjectQuery: Required Behavior
	17.2.1 GrowingObjectQuery: Message Sequence
	17.2.2 GrowingObjectQuery: General Requirements
	17.2.3 GrowingObjectQuery: Capabilities

	17.3 GrowingObjectQuery: Message Schemas
	17.3.1 Message: FindParts
	17.3.2 Message: FindPartsResponse


	18 Transaction (Protocol 18)
	18.1 Transaction: Required Behavior
	18.1.1 Transaction: Message Sequence
	18.1.1.1 To execute a transaction:

	18.1.2 Transaction: General Requirements
	18.1.3 Transaction: Capabilities

	18.2 Transaction: Message Schemas
	18.2.1 Message: StartTransaction
	18.2.2 Message: StartTransactionResponse
	18.2.3 Message: CommitTransaction
	18.2.4 Message: CommitTransactionResponse
	18.2.5 Message: RollbackTransaction
	18.2.6 Message: RollbackTransactionResponse


	19 ChannelSubscribe (Protocol 21)
	19.1 ChannelSubscribe: Key Concepts
	19.2 Required Behavior
	19.2.1 ChannelSubscribe: Message Sequence
	19.2.1.1 To do the initial setup to subscribe to channels and be streamed data as it is available:
	19.2.1.2 For the customer to "unsubscribe" from streaming data:
	19.2.1.3 To request a range of data:
	19.2.1.4 To reconnect and resume streaming when the session has been interrupted (using ChangeAnnotations):

	19.2.2 ChannelSubscribe: General Requirements
	19.2.3 ChannelSubscribe: Capabilities

	19.3 ChannelSubscribe: Message Schemas
	19.3.1 Message: GetChannelMetadata
	19.3.2 Message: GetChannelMetadataResponse
	19.3.3 Message: SubscribeChannels
	19.3.4 Message: SubscribeChannelsResponse
	19.3.5 Message: ChannelData
	19.3.6 Message: ChannelsTruncated
	19.3.7 Message: RangeReplaced
	19.3.8 Message: UnsubscribeChannels
	19.3.9 Message: SubscriptionsStopped
	19.3.10 Message: GetRanges
	19.3.11 Message: GetRangesResponse
	19.3.12 Message: CancelGetRanges
	19.3.13 Message: GetChangeAnnotations
	19.3.14 Message: GetChangeAnnotationsResponse


	20 ChannelDataLoad (Protocol 22)
	20.1 ChannelDataLoad: Key Concepts
	20.2 ChannelDataLoad: Required Behavior
	20.2.1 ChannelDataLoad: Message Sequences
	20.2.1.1 To do the initial setup and begin streaming data:
	20.2.1.2 To "close" a channel:

	20.2.2 ChannelDataLoad: General Requirements
	20.2.3 ChannelDataLoad: Capabilities

	20.3 ChannelDataLoad: Message Schemas
	20.3.1 Message: OpenChannels
	20.3.2 Message: OpenChannelsResponse
	20.3.3 Message: CloseChannels
	20.3.4 Message: TruncateChannels
	20.3.5 Message: TruncateChannelsResponse
	20.3.6 Message: ChannelData
	20.3.7 Message: ReplaceRange
	20.3.8 Message: ReplaceRangeResponse
	20.3.9 Message: ChannelsClosed


	21 Dataspace (Protocol 24)
	21.1 Dataspace: Key Concepts
	21.1.1 Dataspace: Definition

	21.2 Dataspace: Required Behavior
	21.2.1 Dataspace: Message Sequence
	21.2.1.1 To get a list of dataspaces on a store:
	21.2.1.2 To create a dataspace on a store:
	21.2.1.3 To delete a dataspaces from a store:

	21.2.2 Dataspace: General Requirements
	21.2.3 Dataspace: Capabilities

	21.3 Dataspace: Message Schemas
	21.3.1 Message: GetDataspaces
	21.3.2 Message: GetDataspacesResponse
	21.3.3 Message: PutDataspaces
	21.3.4 Message: PutDataspacesResponse
	21.3.5 Message: DeleteDataspaces
	21.3.6 Message: DeleteDataspacesResponse


	22 SupportedTypes (Protocol 25)
	22.1 SupportedTypes: Key Concepts
	22.1.1 Data Model as Graph

	22.2 SupportedTypes: Required Behavior
	22.2.1 SupportedTypes: Message Sequence
	22.2.1.1 To discover data object types that are instantiated or supported in the store:

	22.2.2 SupportedTypes: General Requirements
	22.2.3 SupportedTypes: Capabilities

	22.3 SupportedTypes: Message Schemas
	22.3.1 Message: GetSupportedTypes
	22.3.2 Message: GetSupportedTypesResponse


	23 ETP Datatypes
	23.1 AnyLogicalArrayType
	23.2 AnyArrayType
	23.3 DataObjectCapabilityKind
	23.4 EndpointCapabilityKind
	23.5 ProtocolCapabilityKind
	23.6 fixed: Uuid
	23.7 record: ArrayOfBoolean
	23.8 record: ArrayOfNullableBoolean
	23.9 record: ArrayOfInt
	23.10 record: ArrayOfNullableInt
	23.11 record: ArrayOfLong
	23.12 record: ArrayOfNullableLong
	23.13 record: ArrayOfFloat
	23.14 record: ArrayOfDouble
	23.15 record: ArrayOfString
	23.16 record: ArrayOfBytes
	23.17 record: AnySparseArray
	23.18 record: AnySubarray
	23.19 record: ServerCapabilities
	23.20 record: SupportedDataObject
	23.21 record: SupportedProtocol
	23.22 record: Version
	23.23 record: DataAttribute
	23.24 record: AttributeMetadataRecord
	23.25 record: MessageHeader
	23.26 record: MessageHeaderExtension
	23.27 record: Contact
	23.28 record: ErrorInfo
	23.29 union: AnyArray
	23.30 union: DataValue
	23.31 union: IndexValue
	23.32 DataArrayTypes
	23.32.1 record: DataArray
	23.32.2 record: DataArrayMetadata
	23.32.3 record: DataArrayIdentifier
	23.32.4 record: GetDataSubarraysType
	23.32.5 record: PutDataArraysType
	23.32.6 record: PutUninitializedDataArrayType
	23.32.7 record: PutDataSubarraysType

	23.33 ChannelData
	23.33.1 ChannelDataKind
	23.33.2 ChannelIndexKind
	23.33.3 IndexDirection
	23.33.4 PassDirection
	23.33.5 record: DataItem
	23.33.6 record: IndexMetadataRecord
	23.33.7 record: ChannelMetadataRecord
	23.33.8 record: ChannelRangeInfo
	23.33.9 record: ChannelSubscribeInfo
	23.33.10 record: OpenChannelInfo
	23.33.11 record: FrameChannelMetadataRecord
	23.33.12 record: FramePoint
	23.33.13 record: FrameRow
	23.33.14 record: TruncateInfo
	23.33.15 record: ChannelChangeRequestInfo
	23.33.16 record: PassIndexedDepth

	23.34 Object
	23.34.1 ActiveStatusKind
	23.34.2 RelationshipKind
	23.34.3 ContextScopeKind
	23.34.4 ObjectChangeKind
	23.34.5 record: DataObject
	23.34.6 record: ObjectPart
	23.34.7 record: ObjectChange
	23.34.8 record: IndexInterval
	23.34.9 record: PutResponse
	23.34.10 record: Dataspace
	23.34.11 record: Resource
	23.34.12 record: DeletedResource
	23.34.13 record: Edge
	23.34.14 record: SupportedType
	23.34.15 record: ContextInfo
	23.34.16 record: SubscriptionInfo
	23.34.17 record: PartsMetadataInfo
	23.34.18 record: ChangeAnnotation
	23.34.19 record: ChangeResponseInfo


	24 ETP Error Codes
	24.1 Error Code Numbering Scheme
	24.2 Domain Model-Defined Error Codes
	24.3 Current ETP Error Codes

	25 Appendix: Energistics Identifiers
	25.1 Definitions: Data Objects, Resources, and Dataspaces
	25.2 Mechanisms for Identification: UUIDs and URIs
	25.3 Energistics URIs
	25.3.1 Requirements for Supporting URIs
	25.3.2 Overview
	25.3.3 URI Notation
	25.3.4 Canonical URIs
	25.3.5 Canonical Energistics URIs
	25.3.6 Dataspace URIs
	25.3.7 Data Object URIs
	25.3.7.1 Data Object Types
	25.3.7.2 Rules for Using Dataspaces and Version in Data Object URIs

	25.3.8 Data Object Query URIs
	25.3.8.1 Rules for Using Dataspaces and Version in Data Object Query URIs

	25.3.9 Alternate URIs
	25.3.10 Regular Expressions for Validating Canonical Energistics URIs


	26 Appendix: Data Replication and Outage Recovery Workflows
	26.1 Goal and Scope of Replication
	26.2 Key Concepts and Definitions for Replication
	26.2.1 Change Annotations
	26.2.2 Replication Approaches and Related Definitions
	26.2.3 Graphs, Scope and Replication Scope
	26.2.4 Understanding the Workflows in this Appendix

	26.3 Main Replication Tasks
	26.4 Push Workflow
	26.5 Pull Workflow
	26.6 Outage Recovery: Resuming Operations After a Disconnect
	26.6.1 Goal of Outage Recovery
	26.6.2 Key Concepts for Outage Recovery
	26.6.2.1 Timestamps from the ETP Store
	26.6.2.2 Change Retention Period

	26.6.3 Main Resumption Workflow
	26.6.4 Resumption Workflow: Details for Push
	26.6.5 Resumption Workflow: Details for Pull
	26.6.5.1 Information That Must Be Tracked by the Destination and How to Initialize and Track it
	26.6.5.2 How to Detect Specific Types of Changes
	26.6.5.2.1 Replication Scope
	26.6.5.2.2 Objects
	26.6.5.2.3 Growing data object Parts
	26.6.5.2.4 Channel Data




	27 Appendix: Security Requirements and Rationale for the Current Approach
	27.1 ETP Security Considerations and Requirements
	27.2 Approaches Considered and Why the Current One Was Selected


